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Abstract—Object tracking is one of the most important compo-
nents in numerous applications of computer vision. Remote sensing
videos provided by commercial satellites make it possible to extend
this topic into the earth observation domain. In satellite videos,
typical moving targets like vehicles and planes only cover a small
area of pixels, and they could easily be confused with surrounding
complex ground scenes. Similar objects nearby in satellite videos
can hardly be differed by appearance details due to the resolution
constraint. Thus, tracking drift caused by distractions is also a
thorny problem. Facing challenges, traditional tracking methods
such as correlation filters with hand-crafted visual features achieve
unsatisfactory results in satellite videos. Methods based on deep
neural networks have demonstrated their superiority in various
ordinary visual tracking benchmarks, but their results on satellite
videos remain unexplored. In this article, deep learning technolo-
gies are applied to object tracking in satellite videos for better
performance. A simple regression network is used to combine a
regression model with convolutional layers and a gradient descent
algorithm. The regression network fully exploits the abundant
background context to learn a robust tracker. Instead of hand-
crafted features, both appearance features and motion features,
which are extracted by pretrained deep neural networks, are used
for accurate object tracking. In cases when the tracker encounters
ambiguous appearance information, the motion features could
provide complementary and discriminative information to improve
tracking performances. Experimental results on various satellite
videos show that the proposed method achieves better tracking
performance than other state-of-the-arts.

Index Terms—Convolutional neural networks (CNNs), deep
learning, object tracking, satellite video.

I. INTRODUCTION

V ISUAL object tracking is a fundamental task in com-
puter vision with various practical applications. Given

the initialized state (e.g., position and size) of a target ob-
ject in a frame of a video, the goal of tracking is to esti-
mate the states of the target in the following frames [1]. With
the advancement in remote sensing satellite platforms, e.g.,
Skysat-1 and Jilin-1 satellite, high-resolution videos gazing a
specific area of the ground are available. These videos bring
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about new means for monitoring land surface. Accordingly,
satellite video object tracking becomes an emerging research
topic. It can be used for many important applications, such as
estimating traffic density [2], monitoring sea ice, and fighting
wildfires [3].

In recent years, commercial satellite technology has achieved
great progress in capturing high-resolution videos. Among the
video satellites, Skysat-1 launched by Skybox Imaging Com-
pany in 2013 is the first one in the globe to capture panchromatic
high-resolution videos [4]. The resolution of Skysat-1 reaches
meter level, and the ground coverage of its image products is
about 2 km2. The Jilin-1 Smart Video Satellites produced by
China-Changguang Satellite Technology Company, Ltd. pro-
vides 4K high-definition imagery in real-time monitoring and
can capture live imagery for faster response. The early video
products, which cover 4.6 × 3.4 km ground area, have a resolu-
tion of about 1.13 m, and the newest products could reach less
than 0.92-m resolution.

Compared with ordinary videos, different characteristics of
satellite videos need to be taken into consideration when track-
ing the moving objects. Since satellite videos are collected in
space, common challenges in ordinary tracking datasets such as
occlusion and scale changing are not severe. However, compared
with the large size of the whole frame, the moving objects usually
cover only a small area of pixels, providing little feature and
texture information. Owing to this attribute, different targets
in the same category could have similar appearances, which
could mislead the tracker to error results. Besides, the targets
sometimes could also be mixed into the land background when
passing through shadow areas due to limited contrast in between.
This could cause model drift.

Derived from the pioneering work of MOSSE [5] and
CSK [6], the trackers based on a discriminative correlation filter
(DCF) [7]–[10] have taken the leading position among tracking
algorithms in recent years. By the dense sampling strategy and
transforming operations to the Fourier domain, DCF trackers
perform well in terms of both accuracy and speed. However,
these methods face challenges when applied to satellite videos,
which have a small target size and complex background [11].
With the significant success of the convolutional neural network
(CNN) models in many vision tasks, researchers are also inspired
to explore the capability of deep learning for tracking problems.
State-of-the-art CNN-based trackers [12]–[15] have made great
progress toward this goal. Trackers based on deep learning are
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more robust compared with traditional methods. But they still
need to be adjusted for satellite videos.

There have been several studies aiming to solve the problem
of object tracking in satellite videos [11], [16]–[19]. Most of
these trackers use hand-crafted feature representations, such as
invariant moment, histogram of oriented gradient (HOG), or op-
tical flow. Deep neural network features have been successfully
transferred to various computer vision tasks. Activations from
convolutional layers of the CNN are semantically meaningful
and contain structural information crucial for the localization
task. These motivate us to harness deep features for the tracking
task on satellite videos. A convolutional regression network
(CRN) [20], [21] is adopted as the backbone of our tracker. The
CRN uses convolutional layers to solve the regression problem
with gradient descent in an end-to-end learning manner.

To solve the tracking drift problem caused by similar tar-
gets nearby, appearance features and motion features [22] are
combined together to improve robustness. High-level motion
features, which are extracted based on the optical flow values,
provide complementary representations beyond appearance fea-
tures. Targets with similar appearance could be discriminated by
differences in motion features. This can alleviate the tracking
drift problem. In our proposed method, a convolutional regres-
sion network with appearance and motion features (CRAM),
two regression networks are trained with different appearance
and motion features, respectively, and their responses are then
integrated for final target location prediction. The contributions
of each response will be weighted by their qualities, which are
measured by the peak-to-sidelobe ratio (PSR) [5].

The main contributions of this article are summarized as
follows.

1) A CRAM tracker is designed for object tracking in satellite
videos based on the CRN, which replaces the commonly
used DCF framework. The regression network fully ex-
ploits the abundant background context with end-to-end
learning, increasing tracker’s discriminative power during
the tracking process.

2) Appearance and motion features extracted by deep neu-
ral networks are combined together in use. The tracking
performance could be improved benefiting from the high-
level feature representations and complementary informa-
tion.

The rest of this article is organized as follows. Section II
gives an overview of the prior studies relevant to this article.
The details of the proposed tracking method are presented in
Section III. The experimental results on our satellite video
dataset are presented in Section IV. Finally, Section V concludes
this article.

II. RELATED WORK

A. DCF-Based Object Tracking

Trackers originated from the DCF framework have been the
recent trends in object tracking. The key procedure is to solve
the regression problem by directly learning a mapping from
regularly dense samples of target objects to soft Gaussian labels
for target positions estimation. Formally, the goal is to learn a

linear function y = θT · x, where x denotes the m-dimensional
feature of a sample pixel and y is the corresponding label of the
pixel. The regression coefficients θ can be learned by solving
the following minimization problem:

argmin
θ

‖Xθ − Y ‖2 + λ‖θ‖2 (1)

where matrix X ∈ Rm×n consists of n feature samples, rep-
resenting the features extracted from the search area, while
Y ∈ Rn represents the labels of these n pixels in the search
area. λ is the regularization parameter to penalize overfitting.
This problem has a closed-form solution, which is given by

θ = (XTX + λI)−1XTY (2)

where I is an identity matrix.
The direct solution of (2) becomes computationally pro-

hibitive when m and n are large. The CSK [6] tracker intro-
duces circularly shifting of samples and kernel trick to form
a correlation filter for fast computation, and this strategy is
adopted by other DCF trackers. Benefit from the structure of the
DCF framework, multichannel features could be incorporated to
improve tracking performance. KCF [7] adopts HOG feature to
increase accuracy, and DSST [8] further exploits on solving the
scale estimation problem. However, the extra background infor-
mation needed for training samples generation and the boundary
effects induced by the circulant structure impose limitation to
the performance of the regression model.

B. Deep CNN Used in Object Tracking in General Scenes

With the emergence of deep CNN in computer vision field,
given architectures such as AlexNet [23] and VGGNet [24]
trained on the ImageNet dataset [25] are studied in object
tracking [12], [15], and [26] as feature extractors. Multiple
convolutional layers are employed in hierarchical or joint ways
to integrate different visual information. The CF2 [12] tracker
adaptively learns correlation filters on different convolutional
layers to encode the target appearance and hierarchically in-
fer the maximum response of each layer to locate targets. In
ECO [15], deep CNN layers along with handcrafted features are
integrated with a factorized convolution operator. Deeper and
more sophisticated networks boost the performance of the state
of the arts. However, the increasing translation invariance in
deeper layers resulting from spatial pooling operations hinders
precise localization in DCF trackers. Considering the low reso-
lution of satellite videos, layers used for the deep CNN model
need to be carefully selected.

The object tracking community later started training network
architectures to take full advantage of the benefits of end-to-end
learning [13], [14], [27]. In MDNet [13], a multidomain net-
work is proposed to learn the shared representation of targets
from multiple annotated video sequences for tracking. The fully
convolutional siamese network is used in [14] to directly learn
strong embeddings from large amounts of video data. The offline
training design makes this tracker operate beyond real-time with
competitive performance. SiamRPN [27] proposed in 2018 com-
bines a region proposal network [28] with the siamese network
to get a more accurate bounding box. It got top performance with



HU et al.: OBJECT TRACKING IN SATELLITE VIDEOS BASED ON CRN WITH APPEARANCE AND MOTION FEATURES 785

real-time speed and could perform better with more training data.
However, due to the scarcity of annotated datasets of satellite
videos, it is difficult to develop an end-to-end deep learning
tracker for satellite platforms.

Different from trackers mentioned above, deep regression
trackers apply CNNs to solve the regression problem in tracking.
The FCNT [29] tracker makes the first effort to learn regression
networks over two CNN layers. The output response maps from
different layers are switched according to their confidence to
locate target objects. Extended from FCNT, ensemble learning
is exploited in STCT [30] to select CNN feature channels.
The studies in [21], [31], and [32] all construct their trackers
based on one convolutional layer. The kernel size of the layer is
deduced from the regression model, rather than empirically set.
One single-convolutional-layer-based regression model is less
likely to be overfitted and more efficient to compute. DSLT [20]
further studies the bottleneck in training the regression network.
It uses shrinkage loss to penalize easy training data and applies
residual connections to exploit multilevel semantic abstraction.
In our work, we follow the one-layer CRN model to construct
our tracker, with both appearance and motion features extracted
by pretrained deep CNNs.

C. Satellite Video Object Tracking

Researchers have developed several methods for single-target
tracking in satellite videos in recent years. By viewing the
moving vehicles as point targets, Wu et al. [16] introduce a
method based on the Bayesian classification with the grayscale
feature and the motion smoothness constraint. Du et al. [11]
use a three-frame difference method in combination with a
correlation filter for satellite video tracking. A specific strategy
is proposed, taking advantage of the KCF [7] tracker and the
three-frame difference algorithm, to build a strong tracker. Guo
et al. [19] proposed a DCF-based high-speed tracker, which
applies a Kalman filter to correct the tracking trajectory. In
these studies, handcrafted appearance features like invariant
moment and HOG are not capable enough for robust tracking,
and it is indispensable for the combination of motion detection
algorithms such as three-frame difference or Kalman filter.

Recently, Du et al. [18] have proposed a multiframe optical
flow tracker (MOFT) to further improve the tracking perfor-
mance on satellite videos. Shao et al. [3], [17] employ the
velocity feature and the inertia mechanism to construct a ve-
locity correlation filter (VCF). Unlike ordinary videos, in which
well-designed appearance features are capable of distinguishing
similar objects in the same category, such as different cars or
persons, in satellite videos, appearance features are not enough
due to the resolution constraint. This is the reason why MOFT
and VCF use features derived from optical flow, which are rarely
used in ordinary visual tracking tasks. However, these studies
neglect the combination of appearance features, and the results
can be further improved.

Inspired by the prior works, our proposed method CRAM
fuses the motion features with standard appearance features to
exploit the complementary information. Two regression net-
works are constructed with two different features, and their

results are then integrated together. This strategy could improve
the robustness of the tracker in the case of challenging scenes in
satellite videos.

III. PROPOSED METHOD

The network architecture of the CRAM includes a feature
extraction part and a convolutional regression part. In the con-
volutional regression part, there are two CNN modules, named
Net-A and Net-M, forming two pathways in the execution of
the CRAM. They are designed with the same network structure
but trained with different features. As shown in Fig. 1, first, a
search area centered at the target position in the previous frame
will be cropped and upsampled. Next, appearance features and
motion features are extracted separately from the RGB image
and optical flow image by the feature extraction network and
fed to two separate CRNs. The output response maps of Net-A
and Net-M will then be combined together according to their
PSR. Finally, the predicted target position is set to the position,
where the highest response value appears. During tracking,
the regression model is regularly updated to adapt to current
object and background appearance. Details about the CRAM
are depicted below.

A. Feature Extraction

1) Deep Appearance Features: After training for a particular
vision task such as image classification, the feature represen-
tations learned by CNNs have proven to be generic and can
be used for a variety other vision problems. The deep features
are usually more discriminative than handcrafted features and
possess high-level visual information. Structural information
contained in the convolutional features can also be used for
the localization purpose. Since it is nontrivial to train a deep
feature extraction network for satellite images from scratch,
the CRAM adopts the VGG16 [24] model, which is pretrained
on the ImageNet dataset. The VGG16 network contains five
blocks with 13 convolutional layers in total. The CRAM uses
the first three convolution blocks and takes the activations from
the seventh convolutional layer (conv3-3), after the rectified
linear unit operation. Only the first two max-pooling layers are
retained, so the features will have a spatial stride of four pixels,
compared to the input image patch, and 256 feature channels.

It should be noted that the response map obtained in later re-
gression calculation has the same spatial size with input features,
namely one-fourth the size of the original search area. Given
hundreds or thousands of pixels of the target area, the impact
of this size shrinkage is neglectable for ordinary visual tracking
task. However, in satellite videos, with tens of target pixels, this
size shrinkage will bring significant performance degradation
(see Section IV-B2 for more details). Therefore, in the CRAM,
the search areas will be upsampled four times before feature
extraction, in order to make the spatial size of the features and
response map the same as the original input patch.

2) Deep Motion Features: Optical flow algorithms calculate
the motion of each pixel between two frames, and the obtained
optical flow is useful in various applications, such as action
recognition and object tracking. Instead of directly using the
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Fig. 1. Overview of the proposed tracking method CRAM. (a) Feature extraction network. (b) CRN-based tracker, including Net-A and Net-M, in which appearance
and motion features are used, respectively.

original optical flow feature like MOFT and VCF, we adopt a
similar strategy as in [22], where high-level deep motion features
are extracted from optical flow fields by a pretrained CNN. In this
way, objects with different motion characteristics will exhibit
different feature representations. This could help the tracker
in distinguishing the target under tracking from other similar
distractors of the complex background.

Similar as appearance feature extraction, the CRAM reuses
the weights and biases of the first seven convolutional lay-
ers in the VGG16 network. The optical flow estimator comes
from [33]. Before deep motion feature extraction, each pixel’s
2-D optical flow vector should be transformed into a pseudo-3-D
RGB space. The CRAM adopts the idea provided by Baker
et al. [34], in which Hue, Saturation, Value (HSV) color trans-
formation is used. To use HSV transformation, direction and
magnitude of each optical flow vector are taken as Hue and
Saturation, respectively. And the Value plane is set to a constant.
As shown in Fig. 1, after the HSV to RGB transformation of each
pixel, the optical flow image is transformed to an RGB image
for feature extraction.

B. Convolutional Regression Network

Instead of directly calculating the closed-form solution as
(2), the regression model can be reformulated as a one-layer
convolution operation, in order to regress the dense sampling
of inputs to soft labels. The translation-invariant structure of
a convolutional layer makes it a helpful tool to compute the
inference of a large-scale linear regression model. Suppose that
the training samples are cropped from the search area in a dense
sliding-window manner with the spatial size of ht × wt, where
ht and wt are the height and width of object. Then, the inference

of the linear regression can be computed by forward-propagating
the search patch through a single convolutional layer with
kernel size of ht × wt. The regression coefficients θ are now
represented by weights w and bias b of the convolutional layer,
which are trained by training samples with gradient descent.
The target position is estimated by searching for the location
with the maximum value of the output response map. Training
sample patches obtained by the sliding-window operation avoid
negative effects caused by unreliable artificial sample patches
used in the DCF. The search area could be arbitrarily enlarged
without worrying about boundary effects, and the background
information can also be fully exploited.

C. Tracking Framework

1) Regression Model Initialization: The regression models
of both Net-A and Net-M should be trained before usage. To
remove redundant layers of deep features, a 1× 1 convolutional
layer is inserted in front of the regression layer, cutting down
the feature channels to 32. For Net-A, the search area image in
the first frame surrounding the given target and its corresponding
response map are used for training. The training response map is
generated by a 2-D Gaussian distribution, where the maximum
value coincides at the center of the tracking target. With low im-
age resolution and complex background changing, the calculated
optical flows often contain unneglectable noises, which could
contaminate the regression model during training. Therefore, for
Net-M, it is designed to be trained with a batch of optical flow
images collected in five consequent frames. The response map is
set to the foreground mask instead of the Gaussian distribution.
The predicted target location by Net-A will be used as ground
truth of the foreground mask, assuming the shape of the target
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unchanged. Labels in the mask are marked either one or zero,
denoting object or background. After training, Net-M will be
qualified to predict the foreground map through deep motion
features extracted from optical flows. During training, all the
parameters in the CRN layers are randomly initialized following
zero-mean Gaussian distribution.

2) Online Detection: The prediction of the target location
is formulated as the mapping of the peak value location in
the response map to the image coordinate. When there exists
distractors that have similar appearances as the tracking target
in the search window, the response map generated by Net-A will
have more than one peaks. In this case, the prediction based
only on appearance features is vulnerable. And the regression
result of Net-M, which employs motion features, can be a crucial
complementary. By combining deep appearance and motion
features, the complementary information can provide robust
tracking. Specifically, the position (xt, yt) can be optimized with
the following objective function:

argmax
xt,yt

αA(xt, yt) + (1− α)F (xt, yt) (3)

where

F (xt, yt) =
1

wtht

∑

(i,j)∈R(xt,yt,wt,ht)

M(i, j). (4)

A and M denote the response maps of Net-A and Net-M, respec-
tively. F (xt, yt) is the local average of M around target position
(xt, yt);R(xt, yt, wt, ht) is the area defined by the bounding box
with size wt, ht at xt, yt. Equation (4) tries to turn the predicted
foreground mask to a probability map. α is a weighting factor
to balance the contributions of the two regression results.

The value of weighting factor α is not fixed during tracking.
When the prediction by Net-A is more reliable, the weight of
its response is bigger and vise versa. The PSR is adopted as a
measurement of the tracking confidence of Net-A and Net-M.
To compute the PSR value, the response map is split into the
peak area and the sidelobe. The peak area is covered by a
square window centered at the position with the maximum
response (see Fig. 2), and the sidelobe is the rest area. The size
of the peak area is set to one-fourth the size of the response map.
The PSR is defined as

PSR =
gmax − μsl

σsl
(5)

where gmax is the maximum response value and μsl and σsl are
the mean and standard deviation of the sidelobe, respectively.
This value shows the peak strength of the response map. When
tracking results are poor, there could be multiple ambiguous
subpeak areas in the response map. These subpeak areas will
increase both μsl and σsl and degrade the PSR value. Denoting
the PSR values of Net-A and Net-M as PSRA and PSRM , α is
calculated as

α =
PSRA

PSRA + PSRM
. (6)

3) Model Update: With changing appearance and motion
features, the regression networks should be regularly updated. In
satellite videos, given the much larger field of view, the changing

Fig. 2. 3-D visualization of the response map, with peak area and sidelobe
marked in green and blue, respectively.

speed of the tracking target is relatively slow. So, the updating
frequency of the regression models is set to a moderate value of
every five frames in the CRAM. For each updating frame, new
training patches and label maps are generated from the latest
prediction results, and the regression networks are fine-tuned for
a few iterations. To alleviate noisy updates, the regression model
will only be updated if the maximum value of response map
surpasses a threshold th_update. In other words, the maximum
value of the response map will be checked every five frames to
decide whether a model updating is needed.

IV. EXPERIMENTS

A. Experimental Setups

1) Implementation Details: The tracking algorithm is imple-
mented using the Pytorch toolbox on a PC with 3.5-GHz CPUs
and a GTX 1080 GPU. For the initialization of Net-A, it is trained
with the first frame until the loss reaches a threshold of 0.001.
The regression target labels are generated using a 2-D Gaussian
function with peak value of 1.0, and the variance is set to 0.2
times the width and height of the object. For the initialization
of Net-M, the iteration number is set to 20. The optical flow
calculation is completed using the OpenCV package in python.
The gradient descent uses the Adam optimizer, with learning
rates of 5e-6 and 5e-5 for Net-A and Net-M, respectively. During
online update, we set th_update to 0.3. The iteration times for
Net-A and Net-M update are set to 5 and 2, respectively.

The width of the square search window is set to four times the
maximum value of the target width and height. A grid search
experiment on an independent dataset is performed, with the
enlargement factor varying from 2 to 5. The results are at a
similar level when the factor falls within the range of 2.5–4. Gen-
erally, larger search area could provide more negative samples
in tracker’s initialization training, increasing the discriminative
power of the learned model. Moreover, if the target undergoes
rapid movement or occlusion, the tracker with a larger search
area is more likely to catch up with the target. For the sake of
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Fig. 3. Example scenes and tracking targets of the satellite videos used in the experiments. In each scene, one selected target is enlarged and displayed in the
corners for better view.

more negative training samples during the initialization phase,
a relatively larger enlargement factor of 4 is thus adopted.

2) Dataset: The test sequences of the satellite videos are
captured by SkySat-1 and Jilin-1 satellites. The satellite videos
are cropped into nine small sequences, and 31 moving vehicles
are selected as the tracking targets [19]. There are a total of
3161 bounding boxes in this dataset, with video lengths ranging
from 70 to 140 frames. Vehicles selected include cars, buses,
and even large trucks in mines and ports; thus, the size of the
target ranges from around 4 to 21 pixels. For a comprehensive
evaluation, more than half of the video clips have challenging
attributes such as confused background or similar object nearby.
Several targets are shown in Fig. 3 to give an overview of the
satellite video dataset used.

3) Compared Methods: Several state-of-the-art trackers are
selected for performance comparison, including DSST [8],
KCF [7], CF2 [12], ECO [15], STCT [30], DSLT [20], and
MDNet [13]. In these methods, KCF and DSST are the classic
DCF trackers, while others all use deep learning techniques more
or less. Both CF2 and ECO use CNN features, and ECO gives
effective improvement to the DCF framework, making it one of
the best methods in object tracking. MDNet trains a small-scale
network by the multidomain learning strategy. STCT and DSLT
are two leading methods based on the CRN. The sizes of the
objects in satellite videos are small, but the selected trackers are
mostly targeting at general video object tracking tasks. For fair
comparison, some settings in their original implementations are
modified to fit them for satellite videos.

4) Evaluation Metrics: The VOT2016 [35] toolkit is in-
tegrated with the test satellite videos for evaluation. During
evaluation, the overlap between the predicted and ground truth

bounding boxes in each tracking frame will be recorded. The
overlap score S is calculated as follows:

S =
|ag

⋂
ap|

|ag
⋃
ap| . (7)

where ag and ap represent the area of ground truth and predicted
bounding box, respectively.

When the overlap becomes zero, one failure is counted, and
the tracker will be reinitialized five frames after the failure.

The VOT2016 toolkit provides a reset-based average overlap
measure denoted as accuracy (A), which excludes those reini-
tialization frames from calculation. The per-sequence accuracy
Ai is calculated by averaging per-frame overlap score St over
valid frames

Ai =
1

Nvalid

Nvalid∑

t=1

St (8)

and the accuracy for the evaluation is the mean of Ai weighted
by the length Ni of each sequence (m sequences in total)

A =
1

Ntotal

m∑

i=1

NiAi. (9)

On the other hand, the robustness (R) measures how many
times the tracker loses the target (fails) during tracking. It is
represented as the weighted average of per-sequence failure
times Ri, as

R =
1

Ntotal

m∑

i=1

NiRi. (10)
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To rank different trackers, VOT provides a measure called
expected average overlap (EAO) [36], which combines the raw
values of per-frame accuracies and failures. EAO is an estimator
of the average overlap a tracker is expected to attain on a
large collection of short-term sequences with the same visual
properties as the given datasets [35]. In brief, suppose that we
could obtain the expected average overlap ÂNs

= 〈ANs
〉 on a

range of sequence lengths, i.e., Ns = 1 : Nmax; the EAO value
is computed as the average of ÂNs

over an interval [Nlo, Nhi]
of typical short-term sequence lengths as

EAO =
1

Nhi −Nlo

Nhi∑

Ns=Nlo

ÂNs
. (11)

See [36] for more details about the definition and calculation
of the EAO measure. Apart from the above three measures,
the toolkit also provides a no-reset average overlap, denoted
as AO, similar to OTB [1] benchmark, based on tests where the
tracker continues to the end without resets. The calculation of
AO resembles (8) and (9).

In our experiments, EAO is used as a primary measure, and
A, R, and AO are also provided for references. Running speed
of the trackers are also provided in terms of frame per second
(FPS).

B. Ablation Studies

The CRAM consists of a feature extraction part and a convo-
lutional regression part. Contributions from these components
are analyzed through ablation experiments. The performances
of different deep features of the VGG16 network are analyzed
first. Then, the performance of the CRN is compared with the
DCF tracking framework. In the above two studies, only the
Net-A model is used for fare comparison. In the third group
of comparison, the Net-M model is inserted to validate the
contribution of motion features. And a fixed α of 0.5 is also
compared with the adaptive weight strategy used in the CRAM.
Besides, an experiment is conducted to show the necessity of
upsampling search areas before CNN feature extraction.

1) Feature Selection: Features extracted from different lay-
ers of a pretrained CNN encode different visual information.
It is generally believed that the deep-layer activations encode
semantic information and are robust to significant appearance
variation, while shallow layers provide more precise localization
but are less invariant to appearance changes. Therefore, the layer
used for feature extraction in the CRAM should be carefully se-
lected by experiments. Appearance features extracted from five
different convolutional layers of the pretrained VGG16 network
are evaluated. From shallow to deep, the selected layers are the
second (conv1-2), the fourth (conv2-2), the seventh (conv3-3),
the tenth (conv4-3), and the thirteenth (conv5-3) layer. The
evaluation results are listed in the first five rows of Table I.
First ranks in each column are shown in red. For robustness, a
smaller value is better. For other metrics, a larger value is better.
As demonstrated in the results, activations of the conv3-3 layer
generate the best EAO value. For the features extract from layers
shallower or deeper than conv3-3, the corresponding tracking
performances decrease to some extent. It can be inferred that

TABLE I
PERFORMANCE EVALUATIONS OF TRACKERS BUILT ON TOP OF THE CRN AND

THE DCF FRAMEWORK, WITH DIFFERENT VISUAL FEATURES

TABLE II
OVERALL PERFORMANCES OF THE CRAM AND ITS MODIFIED VERSION ON

THE EXPERIMENTAL SATELLITE VIDEO DATASET

this layer keeps enough information for precise localization, as
well as good recognition ability.

2) Design Validation: In the CRAM, the commonly used
DCF framework is replaced by a CRN to solve the linear
regression model. To validate the superiority of the CRN, three
DCF trackers are constructed, based on the implementation of
KCF [7], each using a different feature. Two of them use hand-
crafted features of grayscale Intensity (I) and HOG, respectively,
and the third one uses the deep features of the conv3-3 layer from
the VGG16 network.

Experimental results are shown in the lower part of Table I.
Comparing the third and eighth rows of Table I, the EAO
value has an improvement of 20% when the base framework
is changed from the DCF to the CRN. Other evaluation metrics
are also improved. This proves that the CRN is more suitable
for satellite video object tracking. The superiority of the CRN
can be attributed to its ability in detecting objects from com-
plex background, which is obtained by training with enough
real object and background samples. Comparing the last three
rows of Table I, hand-crafted features will further decrease the
performance of the DCF tracker. This proves the superiority of
the deep feature.

As claimed in Section III-A1, the size shrinkage of features
and corresponding response map caused by CNN feature ex-
traction will bring significant performance degradation. The
experimental results about this issue are shown in Table II.
The method CRAM-O denotes the variation of the CRAM, in
which the features are extracted from original search area image
without upsampling. It can be seen that the results of CRAM-O
are worse than the CRAM, with the EAO value only 0.1919.
In CRAM-O, the spatial size of the response map is one-fourth
the size of the original search area. Since the target location
is obtained by finding the highest value in the response map,
and mapping it to the original image coordinate, the localization
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Fig. 4. Performance comparison of CRAM-A, which uses appearance features only, and CRAM, which uses both appearance and motion features.

resolution of CRAM-O is, therefore, 4 pixels of the original
image. Considering the small target size in satellite videos, this
brings ambiguity about half the size of the ground truth to the
predicted target bounding box. Consequently, the tracker will
more likely drift from the target. On the contrary, by upsampling
search areas before feature extraction to keep the size of response
map same as the original image, the tracker could give a more
precise target center location.

3) Combination of Appearance and Motion Features: The
last ablation study is to analyze the contribution of motion
features. Two modified versions of the CRAM are constructed
for performance comparison. One is denoted as CRAM-A, in
which the Net-M part is removed, and only the appearance
features are used for tracking. Another is CRAM-fix, in which
both Net-M and Net-A are used, but the value of weighting factor
α is fixed to 0.5. It means that the contribution of appearance
and motion features are equally important to the final results.
The experimental results are shown in Table II. Compared with
CRAM-A, the CRAM performs much more robustly, and the
failure rate denoted as robustness (R) decreases from 0.11 to
0. In other words, the CRAM could track all the targets in the
test video sequences successfully. As a consequence, the EAO
value has an increase of about 10%. It proofs the effectiveness
of motion features in challenging scenarios. And comparing the
performance of CRAM-fix with the CRAM, it can be seen that
using an adaptive weighting factor of α can harness the motion
information in a superior way and reaches a better performance.

Visualization of tracking results with and without motion fea-
tures is shown in Fig. 4. It further illustrates how the motion fea-
tures take effect when appearance features only are not enough.
In the two sequences shown in Fig. 4, similar cars are driving near
the one on tracking. Using appearance features only, the tracker
struggles in the two scenarios and fails to lock the target. How-
ever, with rich complementary information provided by motion
features, the tracker could identify the target successfully. Fig. 5
illustrates detailed intermediate results of the tracking process
for the frame in the middle of the second row in Fig. 4. The first
three subfigures are the visualization of the response maps from
Net-A, Net-M, and the final integration. Brighter color represents
higher response value. The last subfigure is the image of the
enlarged search area. Bounding boxes in red, green, and white,

Fig. 5. Visualization of intermediate results during tracking process when Net-
M is more reliable. (a) Response from Net-A, with PSRA = 8.4. (b) Response
from Net-M, with PSRM = 15.0. (c) Integrated response map. (d) Search area
image.

represent tracking results of the CRAM, CRAM-A, and ground
truth, respectively. In the response map from Net-A, there are
two peaks indicating possible target location, and the maximum
(denoted by red cross) is on the wrong target. And its PSR is
calculated as 8.4. On the contrary, the response map from Net-M,
which uses motion cues, only has one peak value falling on the
true target. Its PSR is calculated as 15.0. In this case, the adaptive
weighting factor α imposes Net-M more influence to the final
response map, such that the final response map can led to a
successful prediction. Moreover, in some other cases, as shown
in Fig. 6, the CRAM could also benefit from the adaptive weight
strategy when predictions from Net-A are more reliable. To sum
up, the tracker performs robustly with the help of an additional
motion features and an adaptive weighting factor α.
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Fig. 6. Visualization of intermediate results during the tracking process
when Net-A is more reliable. (a) Response from Net-A, with PSRA = 35.7.
(b) Response from Net-M, with PSRM = 4.9. (c) Integrated response map.
(d) Search area image.

TABLE III
COMPARISON OF THE CRAM WITH OTHER STATE-OF-THE-ART TRACKERS ON

THE EXPERIMENTAL SATELLITE VIDEO DATASET

C. Comparisons With State-of-the-Art

1) Quantitative Experimental Results: Quantitative experi-
mental results are shown in Table III. The EAO of the CRAM
ranks first among all the trackers with its value 0.73, which
surpasses the second best tracker MDNet 10%. Besides, the
CRAM also exhibits top performances in R and AO metrics.
MDNet and ECO trackers reaches close A and AO value as
the CRAM, showing their fine generalization ability on various
kinds of videos. Nevertheless, their complexities are too high
for real-time tracking, and the speed of the CRAM is more than
ten times faster. As can be seen from the third column of the
table, performance difference in accuracy is not severe among
top-ranked trackers. However, the robustness of these methods
varies a lot. The good performance of our method owes a great
deal to its robustness, which is brought by the combination
of appearance and motion features and the regression network
framework. The results listed in Table III are also visualized

Fig. 7. EAO rank plot of the trackers. The CRAM ranks the first according to
the EAO value.

Fig. 8. A–R plot of the trackers. Better trackers should be closer to the upper
right corner.

in Figs. 7 and 8. Fig. 7 shows the EAO plot of all the tackers
in the experiments in an ascending order, while Fig. 8 shows
the A–R (accuracy–robustness) plot of each tracker. In Fig. 8,
trackers with better performance should be closer to the upper
right corner. The robustness value in this figure is calculated
by exp( −FS

Nframes
) proposed in [37], where F is failure times and

Nframes the amounts of frames in total. These results indicate
that the CRAM has a better performance comparing with other
state-of-the-art trackers on satellite video object tracking.

2) Qualitative Experimental Analysis: Fig. 9 shows the ex-
perimental results of four top-ranked trackers STCT, ECO, MD-
Net, and CRAM on three challenging sequences. The CRAM
can successfully track the target in all the three sequences, while
other trackers encounter tracking failures more or less. In the first
sequence, the size of the moving vehicle is very small, only about
4× 5 pixels. The contrast between the target and the background
is not obvious, and a misleading speckle in the road, which has
similar shape with the target, stops ECO and STCT trackers
from tracking the real vehicle. Fig. 10 shows the intermediate
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Fig. 9. Comparison of STCT, ECO, MDNet, and CRAM trackers on three challenging satellite sequences.

Fig. 10. Visualization of intermediate results during the tracking process for
the 18th frame in the first video sequence shown in Fig. 9. (a) Predicted heat map
of STCT. (b) Continuous score map of ECO. (c) Response map of the CRAM.
(d) Cropped original image with ground truth bounding box.

results of STCT, ECO, and CRAM for the 18th frame in the
first sequence. Only our CRAM method gives the correct target
location prediction. This indicates that the discrimination abil-
ities of STCT and ECO are possibly not strong enough. The
CRAM benefits from the advantage of CRN models and, thus,
still track the target in the search area. In the second sequence,
the target vehicle drives inside the congested traffic. The STCT

method is distracted by a similar vehicle passing by. The MDNet
method, although not losing the target, is influenced by the
vehicle and gives an inappropriate target size estimation. Similar
appearance leads to similar feature representations; therefore,
these trackers could be misled by the distractors. However, with
the help of motion information, the CRAM could lock on the
target continuously, as illustrated in Fig. 5. Large trucks with
a high aspect ratio are shown in the last sequence. The STCT
tracker is not well initialized in the first frame; thus, it cannot
track the truck in consequent frames. The reason may be that the
training parameters for its model are not suitable in this case.
In conclusion, these results prove that the CRAM can provide
better tracking performances with complex scenes of satellite
videos.

V. CONCLUSION

In this article, we propose a new method CRAM for object
tracking in satellite videos. The CRAM harnesses the power
of end-to-end learning through the CRN. Deep convolutional
features that bring about effective feature representations are
successfully used on satellite videos. With the auxiliary of the
motion features, tracking drifts on satellite videos can be allevi-
ated, leading to the improvement of the CRAM in robustness
and accuracy. Experiments on the modified benchmark with
satellite videos indicate that the CRAM performs favorably
against state-of-the-art trackers and also show that the motion
information is essential to achieve good tracking results. Fu-
ture work would be focused on a more in-depth integration
method to explore motion cues in solving challenging tracking
situations.
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