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Abstract—Recently, deep learning-based algorithms have been
widely used for classification of hyperspectral images (HSIs) by
extracting invariant and abstract features. In our conference
paper presented at IEEE International Geoscience and Remote
Sensing Symposium 2018, 1-D-capsule network (CapsNet) and
2-D-CapsNet were proposed and validated for HSI feature ex-
traction and classification. To further improve the classification
performance, the robust 3-D-CapsNet architecture is proposed in
this article by following our previous work, which introduces the
maximum correntropy criterion to address the noise and outliers
problem, generating a robust and better generalization model. As
such, discriminative features can be extracted even if some samples
are corrupted more or less. In addition, a novel dual channel
framework based on robust CapsNet is further proposed to fuse
the hyperspectral data and light detection and ranging-derived
elevation data for classification. Three widely used hyperspectral
datasets are employed to demonstrate the superiority of our pro-
posed deep learning models.

Index Terms—Capsule network (CapsNet), deep learning,
feature extraction (FE), hyperspectral image (HSI) classification.

I. INTRODUCTION

W ITH advanced technologies on sensors and imaging
systems, a hyperspectral image (HSI) contains abundant

spectral information in hundreds of narrow and contiguous
bands, and also presents rich contextual structure information of
imaged scenes. HSIs have been widely applied in many fields,
such as agriculture [1], mineralogy [2], and environment [3].
However, as the number of spectral bands increases, the problem
of the curse of dimensionality [4] inevitably occurs. In order
to address this issue, dimensionality reduction (DR) [5], [6]
has been proved an effective technique for hyperspectral data
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processing, which usually includes feature extraction (FE) [7]–
[9] and feature selection (FS) [10]–[12]. Different from FS that
finds a subset of the original spectral bands, FE is to transform
the original features into a low-dimensional feature space.

Generally, FE methods can be spectral-based and spatial-
spectral-based. As far as the spectral-based FE techniques are
concerned, principal component analysis (PCA) [13] is the most
common one due to its simplicity. PCA is not designed to
improve important discriminative information. To overcome this
problem, linear discriminant analysis (LDA) [14] was proposed,
which is further improved by local Fisher’s discriminant analysis
(LFDA) [15]. Considering the large spatial variability of spectral
signature introduced by light-scattering mechanisms, the hyper-
spectral data usually presents a nonlinear characteristic [16],
[17]. In this case, the aforementioned FE methods based on linear
transformation may not be adequate for subsequent analysis.

Recently, manifold learning was successfully introduced to
extract intrinsic features of hyperspectral data, such as lo-
cally linear embedding (LLE) [18], locality preserving pro-
jection (LPP) [19], and neighborhood preserving embedding
(NPE) [20]. In addition, kernel techniques [21], [22] also suc-
ceed in solving the nonlinear problem by projecting the original
data into a higher dimensional kernel-induced feature space,
e.g., kernel principal component analysis (KPCA) [23]. By
further combining the kernel techniques and graph theory, some
advanced and promising FE methods have been developed,
such as kernel Laplican regularized collaborative graph-based
discriminant analysis (KLapCGDA) [24], kernel sparse and
low-rank graph-based discriminant analysis (KSLGDA) [25].

However, in the case where only spectral information is
considered for FE, classification performance is not so promis-
ing. Actually, spatial information has encouraged much better
performance. For example, Huang et al. [26] proposed multiple
morphological profiles extracted from multicomponent base
images to enhance classification accuracy. In [27], a novel
principal component analysis-based edge-preserving features
(PCA-EPFs) method was developed to extract discriminative
features. From the perspectives of graph construction and tensor
representation, Pan et al. [28] proposed a tensor sparse and
low-rank graph-based discriminant analysis method for the FE
and classification of HSIs.

In view of the aforementioned FE methods, only shallow ap-
pearance features are extracted for classification. Recent studies

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9735-570X
https://orcid.org/0000-0002-6267-6167
https://orcid.org/0000-0002-4215-9509
https://orcid.org/0000-0001-7015-7335
https://orcid.org/0000-0001-8354-7500
https://orcid.org/0000-0002-5243-7189
mailto:lihengchao_78@163.com
mailto:wwy@my.swjtu.edu.cn
mailto:mapan.lei@163.com
mailto:liwei089@ieee.org
mailto:rantao@bit.edu.cn
mailto:du@ece.msstate.edu


LI et al.: ROBUST CapsNet BASED ON MAXIMUM CORRENTROPY CRITERION HSI CLASSIFICATION 739

on deep learning [29]–[31] have opened a new topic for the
analysis of HSIs. By designing two or more training layers, deep
learning-based models, such as stacked autoencoder (SAE) [32],
deep belief network (DBN) [33], and convolutional neural net-
work (CNN) [34], [35], aim to simulate the biological process
from the retina to the cortex of human beings. Depending on the
high-level features learned by these deep architectures, better
performance is certainly yielded.

Recently, for the first time, Chen et al. [36] proposed a
hybrid framework that combines PCA and logistic regression
simultaneously with the deep architecture of SAE, providing
competitive performance. Subsequently, an improved autoen-
coder, called spatial updated deep autoencoder (SDAE), was
proposed by integrating contextual information when updat-
ing features in [37]. Again, from the perspective of DBN,
Chen et al. [38] developed a novel deep architecture that com-
bines spatial-spectral FE and classification together to obtain
better classification performance. However, the aforementioned
deep models involve many parameters to be trained. Moreover,
due to the vector-based representation of spatial information,
SAE-based and DBN-based learning models fail to extract spa-
tial information efficiently. Fortunately, the CNN has demon-
strated advantages in effective extraction of spatial informa-
tion and significant reduction of training parameters. In [39],
Romero et al. proposed a deep CNN model for HSI processing
by using greedy layerwise unsupervised pretraining. In order
to improve the discriminative ability of extracted features, a
supervised deep CNN architecture containing five layers was
developed for HSI classification [40]. To effectively extract
spectral and spatial features simultaneously, Chen et al. [41]
further developed a 3-D-CNN model, along with the strategy
for solving the overfitting problem. Recently, several deep CNN
structures, such as residual network (ResNet) [42], [43], dense
convolutional network (DenseNet) [44], [45], and dual path
network (DPN) [46], have also been constructed for uncovering
the highly discriminative spectral–spatial features of the HSI
data.

However, the input and output of CNN are both scalars, which
leads to a low representative ability. Besides, the CNN adopts
the max-pooling strategy to offer invariance, ignoring spatial
relationship of significant features that can improve the discrim-
inative ability. Recently, a multilayer deep learning model based
on the concept of so-called capsule has been proposed in [47].
In that work, Hinton et al. [47] pointed out that an activity vector
containing the information of position, orientation, deformation,
and texture in a capsule is better at revealing and learning the
discriminative features. Deng et al. [48] proposed a modified
two-layer capsule network (CapsNet) with limited training sam-
ples for HSI processing. To improve the network architecture
and present a reasonable initialization strategy, Yin et al. [49]
proposed a new architecture with using only three shallow
layers and presenting the elaborated initialization strategy for
the classification of HSIs. In order to extract more discriminative
features, a supervised deep CapsNet architecture containing five
layers was developed for HSI classification [50]. Aiming to
overcome the deficiencies of the existing CNN-based models
when classifying the HSI, Wang et al. [51] proposed a hybrid

method based on CapsNet and TripleGANs models. However,
the HSI usually contains the noise and outliers introduced in the
process of data measurement and acquisition [52]. Although the
aforementioned deep models can obtain good performance, this
problem has still not been effectively addressed.

In recent years, it has been found that multisource data, e.g.,
light detection and ranging (LiDAR), can provide a source
of complementary information to further improve classifica-
tion performance. The elevation and object height information
contained in LiDAR data is helpful with improvement on the
discrimination of different classes. Therefore, compared with
an individual source [53]–[55], the joint use of LiDAR and HSI
can promote higher discrimination power. For instance, support
vector machines (SVMs) and Gaussian maximum likelihood
were adopted to investigate the joint classification for the HSI
and LiDAR [55]. In order to accurately classify land covers,
the CNN was developed to fuse the features extracted from the
HSI and LiDAR in [56]. Furthermore, Xu et al. [57] developed
a two-branch convolution neural network to fuse features from
HSIs and LiDAR data. However, the CNN exploits only the sig-
nificant differences in samples considered from the point of the
pooling operation, ignoring the relative positions of significant
differences in samples, or sample-related shapes, textures, and
other location information. Meanwhile, the pooling operation
loses exact location and relative spatial information.

In our previous conference paper [58], we proposed the 1-D-
CapsNet and 2-D-CapsNet models for HSI FE and classifica-
tion. Following this work and considering the aforementioned
drawbacks of the existing deep models, the maximum corren-
tropy criterion (MCC)-based robust 3-D-CapsNet architecture
is proposed in this article. In our proposed work, the MCC is
applied to control the negative impact introduced by the noise
and outliers, generating a more robust and representative deep
architecture. In order to efficiently exploit useful information
from multisource data and further overcome the shortcomings
of CNN for multisource remote sensing data classification, a
novel dual channel framework based on CapsNet is proposed.
In the CapsNet model, the dynamic routing agreement replaces
the pooling operation in CNN to make full use of the position
information of samples, resulting in a better representation and
higher classification performance.

To sum up, the main contributions of our proposed work lie
in the following aspects.

1) The MCC is introduced into the proposed 3-D-CapsNet
model for robust feature learning. To the best of our
knowledge, it is the first time that the MCC is used in
CapsNet for addressing the noise and outlier problem in
HSIs.

2) A novel MCC-based dual channel robust CapsNet frame-
work is proposed to fuse multisource remote sensing
data, e.g., hyperspectral data and LiDAR data, in which
the spatial–spectral information of HSI and the elevation
information of LiDAR can be efficiently fused to extract
more discriminative features for the classification.

The rest of this article is organized as follows. Section II
briefly reviews 3-D-CNN and CapsNet. Then, two proposed
classification frameworks are introduced in detail in Section III,
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Fig. 1. Example of 3-D-CNN architecture, which has two convolutional layers,
two pooling layers, and one fully connected layer.

including the robust 3-D-CapsNet and the dual channel robust
CapsNet. The experimental results and discussion are presented
in Section IV. Finally, Section V concludes this article.

II. RELATED WORK

A. Convolutional Neural Network (CNN)

The CNN plays a significant role in processing visual-based
problems, which was first proposed in [59] and has multifarious
combinations of convolutional layers and pooling layers, and
finally ends with a fully connected layer. By using the local
connectivity among the neurons of adjacent layers, CNN can
exploit the locally spatial information. In order to effectively
investigate the spatial and intrinsic structure information from
the 3-D data, 3-D-CNN has been proposed to extract the contex-
tual structure features by 3-D convolutional kernels. A typical
instance of 3-D-CNN is presented in Fig. 1, which includes
two 3-D-convolutional layers, two pooling layers, and one fully
connected layer. First, the feature extractors (3-D-convolutional
kernels) of the convolutional layer sweep over the topology
and transform the input into feature maps. Then, the pooling
layer is adopted to enlarge the perception area and increase the
invariance property of features. After that, the feature maps are
flattened into a feature vector, followed by the fully connected
layer. Finally, the softmax is utilized as the output layer activa-
tion to generate the prediction probabilities.

B. Capsule Network (CapsNet)

To overcome the shortcomings of CNN and make it closer
to the cerebral cortex activity structure, Hinton [47] proposed a
high dimensional vector called “capsule” to represent an entity
(an object or a part of an object) by a group of neurons rather than
a single neuron. The activities of the neurons within an active
capsule represent various properties of a particular entity that is
presented in the image. Each capsule learns an implicit definition
of a visual entity that outputs the probability of an entity and
a set of “instantiated parameters,” including the precise pose
(position, size, orientation), deformation, velocity, albedo, hue,
texture, etc.

The architecture of CapsNet is different from other deep
learning models. The results of inputs and outputs of CapsNet
are vectors, whose norm and direction represent the existence
probability and various attributes of the entity, respectively.
The same level of a capsule helps to predict the instantiation
parameters of a higher-level capsule through a transformation
matrix and, subsequently, dynamic routing is adopted to make
the prediction consistent. When multiple predictions are consis-
tent, the higher-level of one capsule will become active.

A simple CapsNet architecture is shown in Fig. 2, in which
the architecture is shallow with only two convolutional layers
(Conv1, PrimaryCaps) and one fully connected layer (Entity-
Caps). Specifically, Conv1 is the standard convolutional layer,
which converts images to primary features and outputs to Prima-
ryCaps through a convolution filter with a size of 13 × 13 × 256.
In the case where the original image is not suitable for the input
of the first layer of the CapsNet, the principal features after
convolutions are adopted.

The second convolutional layer constructs the corresponding
vector structure as the input of the capsule layer. The traditional
convolution of each output is a scalar, but the convolution of Pri-
maryCaps is different from the traditional one. It can be regarded
as a 2-D convolution of eight different weights for the input of
15 × 15 × 256. Each time the implementation takes 32 sizes
of 11× 11 steps to two convolved, and outputs 5 × 5 × 8 × 32
vector structure input. The third layer (EntityCaps) is the output
layer, which contains nine standard capsules corresponding to 9
different classes.

Recalling the original formulation in [47], a layer of a capsule
network is divided into multiple computational units named
capsules. Assume that the capsule i outputs activity vector ui

from the PrimaryCaps i, it is provided to the capsule j to generate
activity level vj of EntityCaps. Propagation and updating are
conducted using vectors between PrimaryCaps and EntityCaps.

Matrix processing is utilized for scalar input in each layer of
traditional neural network, which is essentially a linear combina-
tion of output. The capsule processing input is divided into two
stages: linear combination and routing. The linear combination
here refers to the idea of processing scalar input by the neural
network, which means to process the relationship between two
objects in the scene through the visual transformation matrix
while preserving their relative relation. Specifically, the linear
combination is formulated as

ûj|i = uiW ij (1)

where ûj|i is a prediction vector produced by transforming the
output ui of a capsule in the layer below by a weight W ij .
Then, in the routing stage, the input vector sj of capsule j can
be defined as

sj =
∑

i

cijûj|i (2)

where cij is the coupling coefficient determined by the iterative
dynamic routing process. The routing part is actually a weighted
sum of ûj|i with the coupling coefficient. The vector output
of capsule j is calculated by applying a nonlinear squashing
function that can ensure short vectors to be shrunk to almost zero
length and long vectors get shrunk to a length slightly below one
as

vj =
‖sj‖2

1 + ‖sj‖2
sj

‖sj‖ . (3)

Obviously, the capsule’s activation function actually suppresses
and redistributes vector lengths. Its output can be used as the
probability of the entity represented by the capsule in the current
category.
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Fig. 2. Illustration of CapsNet classification framework.

Fig. 3. Architecture of the proposed robust 3-D-CapsNet.

The total loss function of the original CapsNet is a weighted
summation of marginal loss and reconstruction loss. The mean
square error (MSE) is used in the original reconstruction loss
function, which degrades the model significantly when process-
ing noisy data. In the next section, the MCC [60] is presented to
address this problem.

III. PROPOSED ROBUST DEEP FRAMEWORKS

A. MCC

Recently, correntropy-based information theoretic learning
(ITL) shows robust performance in face recognition [61]. Cor-
rentropy is a generalized similarity measure between two ran-
dom variables A and B, defined as

V (A,B) = E[κσ(A − B)] (4)

where E(·) is the expectation operator and κσ(·) is a kernel
function. The most widely used kernel in correntropy is the
Gaussian kernel κσ(e) = exp{−‖e‖22/σ2} with a width param-
eter σ. In practice, the joint probability density function of A
and B is often unknown and only a finite number of empirical
data {(ai, bi)}ni=1 are given, resulting in the sample estimator of
correntropy

V̂n,σ(A,B) =
1

n

n∑

i=1

κσ(ai − bi). (5)

The correntropy of the error between ai and bi can be used as a
cost function for adaptive system training and referred to as the
MCC. The optimization cost under MCC is thus

max
1

n

n∑

i=1

κσ(ei) = max
1

n

n∑

i=1

κσ(ai − bi) (6)

where ei = ai − bi is the error variable. Although the noise and
outliers can introduce large errors when using the MSE loss
function, this can be effectively controlled with the help of the
MCC.

B. Robust 3-D-CapsNet Based on MCC

In this subsection, a robust 3-D-CapsNet architecture is devel-
oped to extract the spatial–spectral features effectively, whose
architecture is shown in Fig. 3. Here, only special parts of the
proposed CapsNet are explained in detail.

The neighboring pixels may have similar spatial contexts,
which can provide supporting information for classification. The
K ×K neighbors of a pixel are exploited as the input of this
CapsNet model. In the first layer, a convolutional kernel with
the size of 3 × 3 × 4 is used for 3-D convolution to combine
spatial and spectral information, providing expressive features
for the second layer and passing the spatial–spectral information
through the whole network. In order to make the underlying
capsules more perceptive, the stride of size 3 × 3 × 3 is chosen
to expand the perceived area. Since a single convolutional layer
is unable to extract appropriate features, another convolutional
capsule layer (24 convolution channels, eight filters per con-
volution) is added. Unlike traditional convolutional layer, each
channel of convolutional capsule layer generate eight (i.e., the
number of neural units contained in each capsule) feature maps,
which can be understood as a matryoshka doll. The third layer
(EntityCaps) is the output layer, which contains 16 standard
capsules corresponding to 16 different classes.

The loss function of the proposed model can be formulated as
a combination of two terms: Margin loss term and reconstruction
constraint term

L = Lm + λLr (7)
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where λ is a balance coefficient to assign an appropriate weight
to the reconstruction loss. The margin loss function of the
framework can be expressed as

Lm = Tc max (0,m+− ‖ vc ‖)2

+ λ1(1− Tc)max (0, ‖ vc ‖ −m−)2 (8)

where c is the classification category and λ1 is a free parameter
that needs to be tuned empirically, Tc is the indicator of the
classification (c exists as 1, c does not exist as 0), m+ is the upper
boundary, and m− is the lower boundary. In addition, ‖vc‖ is
the length of the activity vector (i.e., the probability). For each
category, there is a separate loss function as the objective for
model optimization.

The MSE is usually used in the original reconstruction loss
function, which depends heavily on the Gaussian and linear
assumptions. However, in presence of non-Gaussian noise and
large outliers, the effectiveness of the MSE-based loss function
is significantly deteriorated. To address this issue, the MCC is
used to deal with the noise and outliers in HSIs. The corren-
tropy function is adopted as a simple and robust cost function
that may achieve much better performance in practical appli-
cations, particularly when the data contains outliers. Thus, the
reconstruction constraint loss function of the framework can be
expressed as

Lr = 1− exp

{
− ‖X −X ′‖22

σ2

}
(9)

where X is the original input data and X ′ is the reconstructed
output data. MCC maps the input space into a high-dimensional
space by using the Gaussian kernel function. It is not difficult
to see that the MCC cost in (9) with Gaussian kernel reaches
its minimum if X = X ′. Compared with the MSE, the MCC
is more robust for outliers. The MCC is only sensitive in an
area of small residual errors, which are controlled by the kernel
bandwidth. With this constraint, extremely erroneous samples
have less influence on the model. Hence, using MCC to re-
place the MSE-based loss function may achieve much better
performance, especially when the data contains the noise and
outliers.

In the proposed algorithm, the weight is iteratively updated by
minimizing the joint loss function in (7). During the optimiza-
tion, the parameters of the neural network are fixed and only the
weight is updated through the gradient back-propagation (BP).
The proposed loss function can be optimized through the BP
algorithm, which involves two parts: forward weight update and
reconstruction weight update.

The {(X1, Y1), . . . , (Xk, Yk)} are minibatches of training
samples. With the input sample Xk in hand, the feature map
vc and the reconstructed sample X ′

k can be obtained from the
forward pass of CapsNet. Wi(=1,2,3) and Wj(=4,5,6) correspond
to the weight parameters of forward layer i = {1, 2, 3} and
reconstruction layer j = {4, 5, 6}, respectively. In layer j of
feature reconstruction, the loss function L is optimized to obtain
the gradient ∂L

∂Xk
. The gradient ∂L

∂Xk
is back-propagated to

update the Wj , which can be shown as

∂L

∂Xk
=

∂Lm

∂Xk

∂Xk

∂Wj
+ λ

∂Lr

∂Xk

∂Xk

∂Wj

= 0 + λ
∂Lr

∂Xk

∂Xk

∂Wj

= λ
∂Lr

∂Xk

∂Xk

∂Wj
(10)

Wj(t) = Wj(t− 1)− η
∑

k

λ
∂Lr

∂Xk

∂Xk

∂Wj
(11)

where t is the number of iterations and η is the learning rate. For
example, the weight of the last layer is updated by

W6(t) = W6(t− 1)− η
∑

k

λ

σ2
2(Xk −X ′

k)X6(k)

× exp

{
− ‖Xk −X ′

k‖22
σ2

}
(12)

where W6 and X6(k) are the weight and the input of the last
layer, respectively.

In layer i of forward feature extraction, the proposed CapsNet
optimization is implemented to minimize the term Lm + λLr

to obtain the gradient ∂Lm

∂Xk
and ∂Lr

∂Xk
. Finally, both gradients

∂Lm

∂Xk
and ∂Lr

∂Xk
are back-propagated to update Wi, which can be

shown as
∂L

∂Xk
=

∂Lm

∂Xk

∂Xk

∂Wi
+ λ

∂Lr

∂Xk

∂Xk

∂Wi
(13)

Wi(t) = Wi(t− 1)− η
∑

k

(
∂Lm

∂Xk

∂Xk

∂Wi
+ λ

∂Lr

∂Xk

∂Xk

∂Wi

)
.

(14)

For example, the weight of the third layer is updated by

W3(t) = W3(t− 1)− η
∑

k

(
∂Lm

∂Xk

∂Xk

∂W3
+ λ

∂Lr

∂Xk

∂Xk

∂W3

)
.

(15)

∂Lm

∂Xk

∂Xk

∂W3
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Tc

(
ATAW3 − m+ATAW3

‖AW3‖
)
+ 2λ1(1− Tc)

×
(
ATAW3 − m−ATAW3

‖AW3‖
)
,

if m+ > ‖vc‖, ‖vc‖ > m−

2λ1(1− Tc)
(
ATAW3 − m−ATAW3

‖AW3‖
)
,

if m+ ≤ ‖vc‖, ‖vc‖ > m−

2Tc

(
ATAW3 − m+ATAW3

‖AW3‖
)
, if m+>‖vc‖, ‖vc‖ ≤ m−

0, if m+ ≤ ‖vc‖, ‖vc‖ ≤ m−

(16)

∂Lr

∂Xk

∂Xk

∂W3
=

1

σ2
2(Xk −X ′

k)AW4W5W6

× exp

{
− ‖Xk −X ′

k‖22
σ2

}
(17)
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Fig. 4. Architecture of the proposed MCC-based dual channel robust CapsNet for multisource remote sensing data classification. Note that the input data are a
local patch around its center pixel.

Algorithm 1: Training Algorithm.

Input: Minibatches {(X1, Y1), . . . , (Xk, Yk)} of training
samples, learning rate η, number of iterations t = 0,
hyperparameters λ, σ, initialized parameters W in the
network

Output: The trained network parameters W .
1: while not converge do
2: t = t+ 1,
3: for layer i = {1, 2, 3} of forward layer do,
4: Compute the joint loss L by (7),
5: Compute the backpropagation error ∂L

∂Xk
for each k

by (13),
6: Update the parameters Wi by (14),
7: end for
8: for layer j = {4, 5, 6} of reconstruction layer do,
9: Compute the reconstruction loss Lr by (9),

10: Compute the backpropagation error ∂Lr

∂Xk
for each k

by (10),
11: Update the parameters Wj by (11),
12: end for
13: end while

where A = C3X2(k), W3 and X2(k) are the weight and the
input of the third layer, respectively. C3 is the coupling coef-
ficient of the third layer determined by the iterative dynamic
routing process. The main steps of the proposed robust CapsNet
optimization process are summarized in Algorithm 1.

C. Dual Channel Robust CapsNet Based on MCC

LiDAR can provide the elevation information of height and
shape with respect to the sensor. LiDAR contains full of altitude
information, which is valuable for better describing the same
scenario obtained by the light sensor. Because different data
sources have different characteristics, a variety of classification
fusion strategies are proposed to combine multiple characteris-
tics of different data sources. A novel MCC-based dual channel

robust CapsNet framework is proposed for pixelwise classifica-
tion with fusing multisource remote sensing data, e.g., HSI and
LiDAR.

The main procedure of the proposed classification framework
is shown in Fig. 4, in which a MCC-based dual channel robust
CapsNet for HSI and LiDAR is included. There are four parts in
the framework: a 3-D-CapsNet channel, a 2-D-CapsNet channel,
a fusion network, and a fully connected deep neural network.
The 3-D-CapsNet is designed to extract the spatial–spectral
features of HSI, the 2-D-CapsNet is designed to extract the
elevation features of LiDAR data, the fusion connected network
is designed to fuse the extracted features, and the fully connected
deep neural network is given to reconstruct input from HSI and
LiDAR.

Due to abundant spectral information, HSIs can be used
to distinguish and detect ground targets with high diagnostic
ability. However, the poor spatial resolution of HSI remains a
major concern while the LiDAR data has more accurate elevation
resolution. Therefore, the HSI and LiDAR images are firstly
merged as the input for the 3-D-CapsNet. Meanwhile, spatial
neighborhoods as the input of the 2-D-CapsNet are individually
generated from LiDAR. Next, normalized data are fed into the
first layer followed by a convolutional operation with a spatial
kernel of 5 × 5 × 3 and 5 × 5 correspond to 3-D-CapsNet and
2-D-CapsNet. In the next layer, the convolutional operation is
applied with a spatial kernel of 3 × 3 × 3 and 3 × 3 to perform
a local feature detection to obtain high-level features in each
channel, which is used as the input of primary capsule. In
2-D-CapsNet, each primary capsule adopts the convolutional
operation (16 convolution channels, two filters per convolution)
containing two convolutional units with 3 × 3 kernel and a stride
of 2 × 1. The output of 2-D-CapsNet is a capsule of a 4-D vector
of size 3 × 3 × 2 × 16. In 3-D-CapsNet, each primary capsule
adopts the convolutional operation (16 convolution channels,
eight filters per convolution) containing eight convolutional
units with 3 × 3 × 3 kernel and a stride of 8 × 1. The output of
3-D-CapsNet is a capsule of a 4-D vector of size 3 × 3 × 8 × 16.
The last layer, i.e., the output layer of each channel, is a set
of 15 standard capsules, with each capsule representing a
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category. Through 2-D-CapsNet and 3-D-CapsNet, the elevation
information and spatial–spectral information can be extracted,
respectively. Feature stacking is used for the fusion of spectral,
spatial, and elevation features. The new features contain different
features of the same objects, i.e., each entity capsule. Through
splicing operation, the features extracted from shallow networks
are aggregated into the main entity. To this end, the design
concept of the capsule network can be better utilized for fusing
different features. After fusion, all of the features are integrated
at the third layer and used as input to the reconstruction layer.
Then, the MCC is applied to reconstruct the loss function
of 2-D-CapsNet and 3-D-CapsNet, respectively. Algorithm 1
shows the optimization process for the proposed framework. In
conclusion, the dual channel CapsNet can effectively overcome
the disadvantageous impact introduced by the noise and outliers,
generating a more robust and representative deep architecture.

IV. EXPERIMENTS AND DISCUSSION

To demonstrate the effectiveness of our proposed CapsNet-
based FE frameworks, some existing deep learning models,
such as SAE [36], CNN [41], CapsNet [50], and dual-tunnel
CNN [57], are used for comparison purpose. The SVM [55]
classifier with a radial basis function (RBF) kernel is used as the
baseline method. The class-specific accuracy, overall accuracy
(OA), average accuracy (AA), and kappa coefficient (κ) are pre-
sented for quantitative assessment after ten runs. All experiments
are implemented on an Intel Core i7− 8700CPU with 8G RAM
and a Nvidia GeForce GTX 1080. The TensorFlow library is
adopted for the design of deep learning architecture.

A. Datasets

The first hyperspectral dataset was acquired by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over
the Indian Pines test site in northwest Indiana, in 1992. The
image represents an agricultural scenario with 145 × 145 pixels
and consists of 220 bands that covers the spectral range from 0.2
to 2.4 μm with a spatial resolution of 20 m. After removing 20
water absorption bands, 200 bands are preserved for subsequent
analysis. A total of 10 249 samples from 16 different classes are
used in the experiments, from which 10% samples per class are
chosen for training and the rest for testing. The specific numbers
of training and testing samples are listed in Table I. The ground
truth and false color composition of three bands are shown in
Fig. 5.

The second hyperspectral dataset was acquired by the AVIRIS
instrument over Kennedy Space Center (KSC), Florida, on
March 23, 1996. The KSC dataset has an altitude of approxi-
mately 20 km, with a spatial resolution of 18 m. The dataset
includes 176 bands used for the analysis after removing water
absorption and low-signal-to-noise-ratio bands. For classifica-
tion purpose, 13 classes are defined for the site. The ground
truth and false color composition of three bands are shown in
Fig. 6. The specific number of training and testing samples is
listed in Table II.

The last dataset was acquired using an ITRES Compact Air-
borne Spectrographic Imager 1500 hyperspectral imager over

TABLE I
CLASS LABELS AND THE NUMBER OF TRAINING AND TESING

SAMPLES FOR INDIAN PINES DATASET

Fig. 5. Indian Pines dataset. (a) Pseudocolor image. (b) Ground truth map.

Fig. 6. Kennedy Space Center dataset. (a) Pseudocolor image. (b) Ground
truth map.
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Fig. 7. University of Houston dataset. (a) Pseudocolor image. (b) Ground truth map.

TABLE II
CLASS LABELS AND THE NUMBER OF TRAINING AND

TESING SAMPLES FOR KSC DATASET

the University of Houston campus and the neighboring urban
area, which includes a hyperspectral dataset and a rasterized
LiDAR dataset that are geographically coregistered. There are
144 spectral bands that range from 0.38 to 1.05 μm. This image
presents an area with the size of 1905 × 349 pixels and the spatial
resolution of 2.5 m. A total of 15 different classes are included in
this data. The ground truth and false color composition of three
bands are shown in Fig. 7. The specific number of training and
testing samples is listed in Table III.

B. Parameter Tuning

According to the framework shown in Figs. 3 and 4, two deep
networks are need to be trained. The experimental data is first
normalized, and a neighborhood size of 27 × 27 is adopted.

TABLE III
CLASS LABELS AND THE NUMBER OF TRAINING AND TESING

SAMPLES FOR HOUSTON DATASET

Considering the limitation of input and memory, only two
convolutional layers and one fully connected layer are applied
in the proposed frameworks. For the learning rate, 0.01 is an
appropriate choice. During the training process, the minibatch
size is set to 100, and the training epoch number is 3000.
For the SVM and extreme learning machine (ELM) classifiers,
the SVM with an RBF kernel is used in this work, in which
the hyperplane parameters C and σ are tuned in the range
{0.001, 0.01, . . . , 10, 100, 1000} and {2−8, 2−7 · · · , 27, 28} by
fivefold cross-validation, respectively. Then, ELM with the sig-
moid activation function is adopted, where the hidden layer
parameters ai and bi are randomly generated based on uniform
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Fig. 8. Classification accuracies (OA) of the proposed method on the three datesets with different sizes of local window. (a) Indian Pines. (b) Kennedy Space.
(c) University of Houston.

TABLE IV
SUMMARY OF THE PARAMETERS IN EACH LAYER OF THE

TOPOLOGY OF THE PROPOSED 3-D-CAPSNET

TABLE V
SUMMARY OF THE PARAMETERS IN EACH LAYER OF THE

TOPOLOGY OF THE PROPOSED DUAL CHANNEL CAPSNET

distribution from the range [−1, 1]. Tables IV and V summarizes
the configuration parameters for each layer, which have been
demonstrated to be a good choice for obtaining promising results
with testing HSI and LiDAR. The effect of different sizes (s × s)
of local window on classification performance is further studied,
whose experimental results in Fig. 8 indicate that the proposed
3-D-CapsNet can yield the satisfactory performance when s is
fixed to 27 for Indian Pines and Kennedy Space Center dataset.
For the University of Houston dataset, 9 is a reasonable value
for s in dual channel robust CapsNet. The reason may be that
the formers are rural/vegetation scenarios, which contain large
spatial homogeneity. The University of Houston dataset includes
small homogeneous regions since it is obtained from an urban
area.

C. Comparison of Classification Performance

Tables VI–VIII show the class-specific accuracy, OA, AA,
and κ under different methods for three experimental datasets.

TABLE VI
CLASSIFICATION WITH SPATIAL–SPECTRAL FEATURES ON THE

INDIAN PINES DATASET

Bold entities indicate the optimal value in each category.

TABLE VII
CLASSIFICATION WITH SPATIAL–SPECTRAL FEATURES ON

THE KENNEDY SPACE CENTER DATASET

Bold entities indicate the optimal value in each category.
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TABLE VIII
CLASS SPECIFIC AND OVERALL CLASSIFICATION ACCURACY (%) OF DIFFRENT METHODS FOR THE HOUSTON DATA

Bold entities indicate the optimal value in each category.

Fig. 9. Classification maps of different methods for the Indian Pines dataset. (a) Ground truth map. (b) Spatial–Spectral-SVM (95.39%). (c) Spatial–Spectral-SAE
(93.81%). (d) 3-D-CNN (97.27%). (e) CapsNet (98.03%). (f) Proposed (98.57%).

Overall, the proposed CapsNet deep models provide better
classification performance than other deep learning methods.
As shown in Tables VI and VII, the proposed deep model
performs better than the original CapsNet, which is due to that
the MCC is introduced into the proposed model to handle the
noise and outliers, leading to a more robust and representative
deep architecture.

Tables VI–VIII present the performance of all the considered
methods. From Table VI, it can be seen that the proposed frame-
work is able to present the satisfying results when compared with
other methods. Regarding the classification maps produced by
the spatial–spectral classifiers in Fig. 9, the proposed method
presents smoother results than the CapsNet, CNN, SVM, and
SAE. For instance, we can see that the classification map pro-
duced by the proposed robust deep model [see Fig. 9(f)] exhibits
less misclassified pixels than the corresponding map generated
by the CapsNet [see Fig. 9(e)]. With the help of spatial and spec-
tral information, as well as the MCC, discriminative features can
still be extracted even if some samples are corrupted more or less.

Table VII and Fig. 10 present the classification performance of
all the considered methods on the KSC data. In this experiment,
although the structures of deep learning models are similar,
the classification results show great difference. Specifically, it
can be observed that the proposed robust CapsNet model and
the existing CapsNet model perform very well when compared
with SVM, CNN, and SAE. The proposed model achieves the
best performance, followed by the existing CapsNet method,
the CNN method, and the SAE method. Specifically, the OA of
the proposed model is 98.16%, which is 1.09% higher than that

of the CapsNet (97.07%). In addition, the experiments under
different percentages of training samples are also conducted to
analyze the performance of the proposed method. The 2%, 4%,
6%, 8%, 10%, 12%, and 14% percentages samples of the Indian
Pines and Kennedy Space Center datasets are randomly selected
for training. The OA curves of all the considered methods are
given in Fig. 11, from which it is obvious that the proposed robust
3-D-CapsNet can obtain the best classification performance
under all percentages of training samples for these two HSI
datasets.

Table VIII presents the classification performance of the
University of Houston dataset, which indicates that the joint
use of spatial, spectral, and elevation information derived from
the HSI and LiDAR data could lead to better classification
performance than the individual use of a single data source.
Several traditional classifiers, e.g., SVM and ELM [62], and
the recently developed two-channel CNN are used to compare
with our proposed method. For the clarity, some notations are
defined hereafter: HSI data are represented symbolically by H,
HSI and LiDAR data concatenated together are represented
as H+ L. From Table VIII, it can be seen that the proposed
robust fusion framework could obtain the best classification
performance for Houston datasets. As for the Houston data
that presents a complex urban area, the proposed method can
also produce the best results, offering 3.33% gain in OA when
compared to the two-channel CNN. For qualitative evaluation
of the classification performance, visual maps are illustrated in
Fig. 12. The proposed method produces the most accurate and
noiseless classification maps. There are two main reasons for this
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Fig. 10. Classification maps of different methods for the Kennedy Space Center dataset. (a) Ground truth map. (b) Spatial–Spectral-SVM (88.21%). (c) Spatial–
Spectral-SAE (87.20%). (d) 3-D-CNN (96.15%). (e) CapsNet (97.07%). (f) Proposed (98.16%).

Fig. 11. Classification maps of all the considered methods with different percentages of training samples for the two datasets. (a) Indian Pines. (b) Kennedy
Space Center.

Fig. 12. Classification maps of different methods for the Houston dataset. (a) SVM(H) (76.50%). (b) SVM(H+ L) (78.60%). (c) ELM(H) (77.30%).
(d) ELM(H+ L) (79.20%). (e) CNN(H) (77.77%). (f) CNN(H+ L) (83.19%). (g) Proposed(H) (81.23%). (h) Proposed(H+ L) (86.52%).
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superior performance. On the one hand, this improvement could
be due to the benefit of invariant features learned by high-level
CapsNet FE on HSI and LiDAR, which are important for the
following fusion and classification steps. On the other hand, our
dual channel fusion scheme takes advantage of MCC to handle
the noise and outliers and further to fuse multisensor features in
a more robust and effective way.

V. CONCLUSION

In this article, a robust 3-D-CapsNet architecture has been
proposed for HSI classification, which introduces the MCC to
address the noise and outliers problem, generating a robust and
strong generalization model. Moreover, a novel MCC-based
dual channel robust CapsNet framework has also been proposed
for pixelwise classification with fusing multisource remote sens-
ing data, e.g., HSI and LiDAR. The proposed dual channel
CapsNet model contains two different channels which consists
of the same architecture of 2-D-CapsNet and 3-D-CapsNet to ex-
tract the elevation information and spatial–spectral information,
respectively. Experimental results have demonstrated the supe-
riority of our proposed deep learning models when compared
with SVM, SAE, CNN, and CapsNet.
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