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Abstract—Due to its remarkable feature representation ca-
pability and high performance, convolutional neural networks
(CNN) have emerged as a popular choice for hyperspectral image
(HSI) analysis. However, the performances of traditional CNN-
based patch-wise classification methods are limited by insufficient
training samples, and the evaluation strategies tend to provide
overoptimistic results due to training-test information leakage.
To address these concerns, we propose a novel spectral–spatial
3-D fully convolutional network (SS3FCN) to jointly explore
the spectral–spatial information and the semantic information.
SS3FCN takes small patches of original HSI as inputs and produces
the corresponding sized outputs, which enhances the utilization
rate of the scarce labeled images and boosts the classification
accuracy. In addition, to avoid the potential information leakage
and make a fair comparison, we introduce a new principle to
generate classification benchmarks. Experimental results on four
popular benchmark datasets, including Salinas Valley, Pavia Uni-
versity, Indian Pines, and Houston University, demonstrate that the
SS3FCN outperforms state-of-the-art methods and can be served
as a baseline for future research on HSI classification.

Index Terms—Hyperspectral image (HSI) classification, 3-D
fully convolutional networks, spectral–spatial exploration.

I. INTRODUCTION

W ITH the rapid development of sensor technologies,
it is feasible to capture hyperspectral images (HSI)

containing hundreds of continuous spectral bands in a single
acquisition [1], [2]. The abundant spectral information enables
the successful applications of HSI in a broad range of areas, such
as agriculture, military, environmental sciences, physics, and
mineralogy [3], [4]. Most of these applications rely on robust
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and accurate classification of each pixel, i.e., HSI classification
and segmentation [5]. However, it is costly and labor intensive
to generate annotations for HSI due to the wide variety of
sensors used. The current available HSI benchmark datasets
only include far fewer labeled pixels in the whole image.
Although various methods have been proposed in the last few
decades, HSI classification is still a challenging problem due
to limited annotated data and the complicate nature of these
images [6].

A few traditional machine learning classifiers, such as random
forest and support vector machines, have achieved great success
in HSI classification [7], [8] by using only spectral informa-
tion. However, the unbalance between the large dimension of
spectral information and limited training samples impede the
further improvement of classification performance [5]. It has
been verified that the spatial correlation across HSIs can provide
complementary information to spectral features, and should
be taken into account [9]. An intuitive idea to boost the perfor-
mance is to incorporate the spatial features and jointly explore
the spectral–spatial information. Prior to the application of deep
learning, there are two major categories of methods to exploit
the spectral–spatial information: postprocessing and feature
concatenation [9]. The first one assumes that the neighboring
pixels with similar spectral characters are prone to be the same
class and utilizes the spatial features in a postprocessing manner
to further refine the spectral feature based classification. For
instance, Markov random field and graph cut were employed
to sharpen the classification boundaries in [10] and [11]. The
second one extracts the spectral and spatial information sep-
arately and concatenates them before performing HSI classifi-
cation [12]. Although these handcrafted features-based methods
have made substantial improvements in understanding HSI, their
poor generalization ability is generally observed due to the do-
main knowledge dependence nature of feature engineering [4],
[13]. Those shallow handcrafted features have limited power
in fully representing the abundant spectral and spatial informa-
tion. In addition, considerable work has been done on improv-
ing the classification performance via feature transfer learning
[14], [15].

Recently, deep learning based methods have shown promising
results in HSI classification [5], [6], [9], [16]–[21]. In [18]
and [19], the spectral–spatial information was exploited via
stacked autoencoder (SAE) and deep belief network (DBN),
respectively. However, both SAE and DBN only accept 1-D
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Fig. 1. Demonstration of traditional way to create training-test splits.
(a) False color image. (b) Ground truth, different colors represent different
classes. (c) Zoom-in of the selected area and demonstration of different splits
for training/test set.

input data. The flatten layer has to be employed to collapse
the spatial dimension into a vector whereas it may bring about
spatial information loss. Considering the importance of spatial
information in HSI classification and the remarkable achieve-
ments of convolutional neural networks (CNN) in the field
of computer vision, CNN is becoming the most popular and
effective way for HSI classification. In the past few years, many
CNN-based studies have been reported and their impressive
performances were witnessed [20], [22], [23]. For instance, Zhao
et al. [23] applied 2-D CNN to extract spatial features from the
first three principal components bands of the raw HSI. Then,
the extracted spatial features were combined with the spectral
features. Despite of the improved performance compared with
previous studies, there are spectral–spatial information loss due
to only three principal components are fed into CNN. In order
to fully exploit the joint spectral–spatial information which is
important for HSI classification, 3-D CNN were adopted to
extract deep spectral–spatial features directly from 3-D cube
of raw HSI [5], [9], [24]. It was demonstrated that 3-D CNN
is able to provide robust and discriminative features. Similarly,
some recent deep learning based methods for HSI classification
can also be found in [25]–[29].

Although significant performance improvement have been
achieved by deep learning based methods, there are still some
issues need to be tackled.

First and foremost, the potential training-test information
leakage renders overoptimistic performance, especially for
CNN-based HSI classification methods [30]. Traditional HSI
classification models aim to classify a given patch with the
central pixel T, as shown in Fig. 1. The corresponding label of the
patch is same as the label of T and the neighbor pixels are selected
to assist the classification of T. However, in the previous routines
of constructing test dataset, researchers always do not exclude
all the neighborhoods of the pixels in the training set. Taking
the scenario in Fig. 1 as an example, patch 1 is selected as the
training sample, whereas the patches 2 and 3 which have overlaps
with patch 1 may be selected as the test samples. The attempt
utilizing partial samples in both training and test set leads to
the training–testing information leakage. Although Nalepa et al.
proposed a strategy to avoid the information leakage [30], there
is still much room to improve the accuracy without information
leakage.

Second, researchers in the remote sensing field used to employ
patch-wise classification methods to predict the labels of each
pixel, and ignore the difference between patch-wise classifi-
cation and pixels-to-pixels classification [31], [32]. This may
render the failure to fully explore the complicated nature of
HSI. It should be note that there are significant differences
between them. Patch-wise classification decides the label of the
central pixel based on the information from the whole patch,
and therefore only utilizes a mere portion of the limited labeled
pixels in the case without training-test information leakage. In
comparison, pixels-to-pixels classification aims to classify each
pixel into a fixed set of categories, and this prediction strategy
can fully utilize the limited annotated images.

At last, a more effective and robust way to extract the latent
spectral–spatial features from limited labeled data is highly
desired. For instance, a few researchers assume that the spectral
information and the spatial information are of similar impor-
tance, and merely employ the 3-D CNN to joint explore the
spectral–spatial information. However, for HSI with low spatial
resolution, several objects may reside in one pixel. Therefore,
the label information might be questionable and the spatial
information is limited. In dealing with low spatial resolution
HSIs, spectral information should be paid more attention than
spatial information.

To address the above concerns, we propose a novel framework
to classify each pixel via 3-D fully convolutional network. The
main contributions of our spectral–spatial 3-D fully convolu-
tional network (SS3FCN) lies in three folds.

1) We share our observations of the potential training-test
information leakage in traditional patch-wise HSI clas-
sification and introduce a novel way to generate clas-
sification benchmarks without training-test information
leakage, which make a fair comparison feasible.

2) We interpret the task of assigning label for each pixel
as the pixels-to-pixels classification problem, rather than
the traditional patch-wise classification. Our key insight is
that the pixels-to-pixels prediction strategy can fully uti-
lize the limited annotated images. To the best of the authors
knowledge, we are the first few to employ FCN in HSI
classification.

3) We exploit the spectral–spatial information by the fusion
of 3-D and 1-D FCN, and demonstrate that the spectral
information might be more powerful in analyzing HSIs
with low spatial resolution. With simple structure, the
proposed SS3FCN generalizes well on four popular HSI
benchmarks and achieves state-of-the-art performance in
term of both average accuracy (AA) and overall accuracy
(OA).

II. TRAINING-TEST SPLITS AND DATA ENHANCEMENT

Considering the overoptimistic performance for the training-
test information leakage and inspired by the patch-based split,
in this article, we propose a novel data partition method and
obtain a balanced training/test partition without information
leakage. In addition, we employ data enhancement to enrich
the limited training/test samples. Comparison experiments with
state-of-the-art HSI classification methods are set up on four
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Fig. 2. Training-test blocks splits. (a) Input HSI. (b) Dividing the image into blocks. (c) Blocks extraction. (d) Arranging blocks in order. (e) Different folds of
blocks from the input HSI.

benchmark hyperspectral datasets, including Salinas Valley,
Pavia University, Indian Pines, and Houston University, to verify
the effectiveness of the proposed method.

A. Training-Test Splits

Traditional ways via random splits do not exclude all neigh-
borhoods of the training samples in constructing test set and
therefore may lead to the training-test information leakage,
as shown in Fig. 1. Recently, Nalepa et al. [30] developed a
training-test partition method by patch-based algorithm from the
input images. There is no overlap between the obtained training
and test set. However, their patch-based method gives rise to
the unbalanced pixels in training, validation, and test set. For
instance, the C7 class of Pavia University is completely selected
as the test set but is not present in the training set, and therefore
the trained model cannot distinguish this class from the others.
It directly affects the performance, especially for the class with
a limited number of pixels.

In order to address the information leakage and unbalanced
problem, we propose a novel data partition method to jointly
exploit spectral–spatial information and achieve a more balanced
training/test split. First, we divide the whole HSI into blocks
with the size of W ×H × C, where W and H are the width
and height, C is the number of spectral bands, as illustrated
in Fig. 2(b). The W and H are selected heuristically based on
the tradeoff between the size and the number of blocks. In this
article, we assume the width W is same to the height H. As
shown in Fig. 2(c), we discard the blocks where all the pixels
are unlabeled and select the blocks with only one kind of pixels
as the test set, denoted as test set-1. The remaining blocks with
more than one class of pixels are sorted column-wisely following
their orders in the HSI, as demonstrated in Fig. 2(d). We further
split these multiclass blocks into training set, validation set, and
additional test set, denoted as test set-2. Different from the way
in Monte Carlo cross validation, all the multiclass blocks are

partitioned into K folds, where the subsequent two blocks in
each fold is K apart in term of the order. The parameter K is
limited by the percentage of pixels taken as training samples,
which is smaller than 12% in this article. For instance, as shown
in Fig. 2(e), we split the multiclass blocks in Salinas Valley into
nine folds and the order of samples in the k-th fold is [k, 9 +
k,..., 9N + k] where N represents the number of samples in this
fold. We select a single fold as the training set, the other one as
the validation set, and the remaining seven folds as the test set-2.
The test set-1 and set-2 are combined into the test set. There is
no overlap between training and test set avoiding the potential
information leakage. We repeat this process nine times where
each fold is used exactly once as the training data.

B. Data Enhancement

The combination of more samples and deep network always
outperforms the combination of limited sample and shallow
network [33]. The strategy which employs the sliding window
through the entire HSI may cause the overlapping problem. In
this article, we apply the sliding window on each block within
training/test set separately. The window with the size of D ×D
(D < W ) is utilized to slide in the spatial domain and thus
can provide patches from each block, as shown in Fig. 3(a).
In addition, we employ the traditional data augmentation meth-
ods, such as flip, random rotation, on each patch, as shown in
Fig. 3(b). Although this method appears trivial and simple, in
practically, it can significantly enhance the number of samples
in the training set and ensure that there is no information leakage
between training and test set.

In general, our data preparation method effectively avoids the
potential training-test information leakage for the nonoverlap
patches between training and test set. In addition, we split the
data sequentially and thus alleviate the data imbalance problem
between the training, validating, and testing set [30], [34], [35].
The data augmentation strategy enables us to train a deeper
neural network with better performance.
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Fig. 3. Process of data enhancement via (a) sliding window to divide the blocks
into patches. (b) Traditional data augmentation methods including flipping and
rotating.

Fig. 4. Differences between patch-wise classification and pixels-to-pixels
classification.

III. PROPOSED SS3FCN FOR PIXELS-TO-PIXELS

CLASSIFICATION

Many researchers in the field of hyperspectral imaging via
deep learning, if not most, pay more attention to the patch-wise
classification method and ignore the semantic segmentation
method in computer vision. Although both aim to obtain label
information from the input images, there is significant difference
between them. In this article, we interpret the task of assigning
label for each pixel as the pixels-to-pixels classification (which is
similar in appearance to semantic segmentation) problem, rather
than the traditional patch-wise classification.

A. Pixels-to-Pixels Classification Versus
Patch-Wise Classification in HSI

Traditional HSI classification aims to assign a single class to
the central pixel using the spectral–spatial information from the
whole patch (i.e., patch-wise classification) whereas pixels-to-
pixels classification aims to classify every pixel of the whole
patch [32]. Since the pixels-to-pixels classification is able to
provide the predictions of all pixels in a single trail, this task is
always referred to as dense per-pixel prediction.

In traditional HSI patch-wise classification, the neighbors
spectral–spatial information is employed to assist the prediction
of the central pixel. Given a patch with a spatial size of W ×H ,
the classification model will output a single class for its central
pixel, as shown in Fig. 4(a). However, if the patches used for
training have overlap with the patches for test (i.e., the case in
Fig. 1), it may lead to overoptimistic experimental insights. In

case of the splits without overlap, the obtained patches may be
too less to train the deep learning model in HSI analysis. Unlike
the patch-wise classification, HSI pixels-to-pixels classification
provides an efficient way to assign label to each pixel in the given
HSI. It takes input of patch with the spatial size of W ×H
and produces the correspondingly sized output with the label
information, as shown in Fig. 4(c). Compared with the traditional
patch-wise classification which aim to assign a single label to the
central pixel, it can utilize more annotated information without
overlap, and provide more robust inference.

B. HSI Pixels-to-Pixels Classification via
3-D Fully Convolutional Networks

Convolutional neural networks have shown break-through
performance on various vision-related tasks, such as object de-
tection, image segmentation, and video classification, especially
in the scenarios where local information are beneficial for the
classification. As to the HSI analysis, the spatial features provide
complementary information to the spectral features, and the
joint extraction of spectral–spatial information can significantly
improve the performance [9]. Due to the remarkable successes
obtained by FCN in semantic segmentation of general images,
in this work, we propose a novel architecture based on 3-D FCN
to assign a label for each pixel in an HSI, shown in Fig. 5.

The basic unit of our network consists of convolution layer,
normalization terms, and ReLU, as shown in Fig. 5(a). Convolu-
tion and ReLU layers are used to hierarchically extract high-level
features and improve the nonlinear representation power of the
network [36]. 3-D FCN is used to extract the spectral and
spatial information simultaneously. ReLU, the most popular
activation function, is also used to speed up the training [5].
Considering the fact that the annotated samples is limited and
the network structure is relatively shallow, the initialization of
parameters has a great impact on the performance of the deep
learning model [37]. To address this concern, we introduce the
batch normalization (BN) to increase the networks robustness
against potential bad initialization. It also can alleviate the risk of
overfitting and enable deeper network with limited training sam-
ples [38]. According to the findings in previous researches [36],
[39], BN is a favorite technique in deep learning, which always
can speed up the training and provide improved performance.

First, a convolution kernel with big stride is employed to
reduce the spectral redundancy since a few spectral bands may
be highly correlated [40]. To avoid the Hughes phenomenon and
extract robust spectral features, we employ a convolution kernel
rather than the PCA prior to further analysis [5], [41], [42]. Then,
in order to better segment HSIs, two branches were designed
in our network, including the 3-D branch to jointly extract
spatial–spectral features [see Fig. 5(b)] and the 1-D branch to
focus on spectral information [see Fig. 5(c)]. Then, these two
branches are concatenated and the obtained tensors are sent to
classification. In this study, we empirically set the spatial size of
the 3-D kernels as 3× 3 in the 3-D branch and spectral size of
the kernels as three in both the 1-D branch and 3-D branch, as
many previous attempts in vision-related tasks [5], [43]. Given
that the input patch size is relatively small, we only employ four
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Fig. 5. SS3FCN architecture used for HSI classification. (a) Basic unit of SS3FCN. (b) and (c) Structure of the proposed SS3FCN. Prior to the fusion of two
branches, we employ a convolution layer with large stride (1*1*10 for Salinas Valley and Indian Pines, 1*1*6 for Pavia University and Houston University). The
features from 3-D branch and 1-D branch are concatenated into 512 feature maps, and forwarded to the last convolution layer.

basic units to extract the spectral–spatial features. Owing to the
abundant spectral information within HSIs and its importance
for HSI classification, we adopt one specialized 1-D branch with
five basic units to extract additional spectral features. Then, the
output feature maps from these two branches are concatenated
and fed into the subsequent convolution layer to predict each
pixels label. Take the Salinas Velley dataset as an example,
there are 256 feature maps with the size of 6 × 6 × 3 from the
3-D branch and 256 features maps with the same size from the
1-D branch. Then, these features are concatenated together and
forwarded to the final convolution layer. The related code is
freely available1.

IV. DATASETS AND EXPERIMENTAL SETUP

A. Experimental Dataset

As the sizes of these four HSIs are different, we employ
different parameters in term of the size of blocks, the number of
folds K to split the whole image.

Salinas Valley: The data, captured by the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) sensor, is of 512×
217 pixels with a spatial resolution of 3.7 m per pixel. It has
224 bands and 16 classes. We split the whole image of Salinas
Valley into nine folds, and therefore we repeat the experiment
nine times with different training samples. Fig. 6(a) 1–9 are
the visualized demonstrations of all the nine folds with white

1[Online]. Available: https://github.com/leonzx7/SS3FCN

patches for training, and the Fig. 6(a) 0 is the ground-truth for
Salinas Valley.

Pavia University: The data was captured by the reflective op-
tics system imaging spectrometer sensor with 103 bands over the
Pavia University in northern Italy. The spatial size of the image
is 610× 340 with high resolution of 1.3 m per pixel. We split
the image into ten different folds, as shown in Fig. 6(b) 1–10.
Fig. 6(b) 0 is the ground truth for Pavia University.

Indian Pines: This image was captured by AVIRIS sensor
over the Indian Pines test site in Northwestern Indiana. It has
145× 145 pixels (with a spatial resolution of 20 m per pixel)
and 200 bands after removing 20 water absorption bands. It has
16 labeled classes. We set the parameter K as four in the split
stage. Fig. 6(c) is the visualization of this dataset, with Fig. 6(c) 0
as the ground truth and Fig. 6(c) 1–4 as four different folds. The
white represents the patches used for training in each fold.

Houston University: This image was captured by ITERS-
CASI over the University of Houston and the neighboring urban
area. The spatial size of this image is 349× 1905 with a spatial
resolution of 2.5 m per pixel. It has 15 labeled classes. We split
the whole image of Houston University Dataset into six folds.
Fig. 6(d) 0 shows the ground truth, and the white in Fig. 6(d) 1–6
are the six different folds used for training in each fold.

In the Salinas Valley dataset, 3.76%, 3.76%, and 92.56% of
the labeled pixels are utilized for training, validation, and test.
The ratio is 6.64%:6.64%:86.72%, 11.02%:11.02%:77.96%,
and 18.60%:18.60%:62.80 for Pavia University dataset, Indian
Pines dataset, and Houston University dataset, respectively. For

https://github.com/leonzx7/SS3FCN
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Fig. 6. Training-test splits over (a) Salinas Valley, (b) Pavia University, (c) Indian Pines, and (d) Houston University. Subfigure (a) 0, (b) 0, (c) 0, and (d) 0 are
the ground truth for the corresponding datasets. The other subfigures denote the data splits for each dataset, and the white patches are the training samples.
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comparison, we also list the number of training and test pixels
utilized in one recent paper based on nonoverlap split [30]
in Table I. We significantly reduce the ratio for training of
Salinas Valley dataset and Indian Pines dataset. As to the Pavia
University dataset, this article can provide a more balanced split
with a ratio comparable to that in VHIS [30]. For instance, we
utilize 121 of 1330 pixels with C7 class for training in this
article whereas none of them was selected in [30], as shown
in Table I(b). For the Houston University dataset, we used a
similar number of pixels to those used in [28].

B. Parameters and Configuration

Considering the variance of the spatial size and the number
of spectral bands, the corresponding structures for dealing with
these four datasets are slightly different, as shown in Table II.
More specially, the kernel size of layer 0 is set as 1× 1× 6 with
stride of 1× 1× 3 for Pavia University and Houston University
datasets, smaller than that for the other two datasets (i.e., 1×
1× 10 with stride of 1× 1× 5). The main reason is that the
Pavia University and Houston University datasets only contain
103 bands and 144 bands, approximately 50% less than that in
the other two datasets, i.e., 224 and 200 bands.

We employ the focal loss as the loss function and Adam as the
optimizer. The focal loss adds a modulating factor to the cross
entropy [44]. For binary classification, it is defined as

FL(pt) = −(1− pt)
rlog(pt)

where pt =

{
p if y = 1

1− p otherwise.

Here, p is the models estimated probability for the class with
label y = 1, r ≥ 0 is the focusing parameter. It reduces the easy
samples contributions to the loss and focus on hard samples.
The Adam is a computationally efficient and well-performing
optimization algorithm. The parameters for Adam are set as
follows, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1× e−8.
We set the initial learning rate as 0.01 and shrank it to 1/10
of the previous one after every 35 epochs. Considering the
impact of randomness, we repeat the experiments for five times
and get the average performance. We compare the proposed
2-branch SS3FCN with the one with only one branch for HSI
pixels-to-pixels classification. In addition, we also compare it
with state-of-the-art classification methods without information
leakage, and show the benefit of our proposed data split method.
We report the performance in term of AA and OA across these
four datasets. The experiments are implemented using Keras
framework on computers with NVIDIA GEFORCE GTX1080
GPU, Intel i7-8700 K processor, and 32 GB RAM.

V. RESULTS AND DISCUSSION

In this article, we evaluate the performance of the pro-
posed method on four of the most well-known hyperspectral
datasets [45], including Salinas Valley, Pavia University, Indian
Pines, and Houston University, and compare it with the recently
proposed methods.

TABLE I
AVERAGE NUMBER OF TRAINING/TESTING PIXELS IN FOUR DATASETS
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TABLE II
ARCHITECTURE OVERVIEW (SHOWN IN COLUMNS)

A. Pixels-to-Pixels Classification Results

We compare the proposed SS3FCN with state-of-the-art
methods based on 3-D CNN without information leakage. Fur-
thermore, to demonstrate the discriminative power of features
from the proposed two-branch framework, we also evaluate the
performance of networks with single-branch, i.e., the 3-D branch
using spectral–spatial information and 1-D branch focusing on
spectral information. Both pixels-to-pixels classification and
patch-wise classification can be used to assign a categorical
label to each pixel in the HSI. We compare the performance
corresponding to these two strategies. The abbreviations of the
networks to compare are as follows.

VHIS [30]: The recently proposed method utilizing 1-D
network based on patch-based data split without training-test
overlap.

3-D CNN [6]: The patch-wise classification exploring the
spectral–spatial information based on the patch-based data split
without training-test overlap.

PCA/PCA-ON [35]: The data augmentation strategy includ-
ing PCA-based offline setting and PCA online setting.

GAN/PCA-ON [35]: The data augmentation strategy includ-
ing GAN-based offline setting and PCA online setting.

3-D Branch: The 3-D branch exploring the spectral–spatial
information, as shown in Fig. 5(b).

1-D Branch: The 1-D branch focusing on spectral informa-
tion, as shown in Fig. 5(c).

1) Salinas Valley: In the first experiment, we conduct our
study on the Salinas Valley dataset. In the dataset split stage,

we set the size of blocks (i.e., W ×H) as 7× 7 and the size
of patches (i.e.,D ×D) as 6× 6 for this dataset. The pixels-to-
pixels classification performance provided by different methods
are shown in Table III. Overall, even with less training samples,
the proposed SS3FCN achieves the best performance (with
OA = 81.32% and AA = 86.13%), followed by SS3FCN 1-D
branch, SS3FCN 3-D branch, PCA/PCA-ON augmentation, and
GAN/PCA-ON augmentation, 3-D CNN and VHIS 1-D CNN
without data augmentation. Although both SS3FCN and the
methods for patch-based classification are based on 3-D CNN,
the SS3FCN interpret the problem for assigning label to each
pixel as a pixels-to-pixels classification problem. Therefore, the
proposed method can efficiently exploit the spectral–spatial in-
formation from all the pixel with labels, whereas the patch-based
classification cannot for the information leakage issue. The com-
parison among the classification strategies demonstrates that the
proposed two-branch-based method outperform the networks
with only one branch. The OA&AA are increased from 77.31%
& 82.32% to 81.32% & 86.13%, respectively, via introducing
the additional 3-D branch. The learned spatial representations
provide complementary information to the spectral features. It
also highlights that the spectral features may be more discrimi-
native than spatial features for small HSI analysis. In addition,
the detailed accuracies corresponding to 16 classes averaged
over five runs are also listed in Table III. Since the descriptions
about the network setting in [30] are not detailed enough to
produce the classification maps corresponding the performance
shown in Table III, we visually report the classification re-
sults of the methods based on pixels-to-pixels classification
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TABLE III
PERFORMANCE OF DIFFERENT METHODS FOR THE SALINAS VALLEY DATASET(%)

Fig. 7. Predicted maps of different models for Salinas Valley via one fold of the cross validation. (a) False color image. (b) Ground truth. (c) 1-D branch network
(OA: 79.82%, AA: 85.16%). (d) 3-D branch network (OA: 78.49%, AA: 83.04%). (e) SS3FCN (OA: 81.75%, AA: 86.46%).

only in Fig. 7. The qualitative comparisons among different
classification methods are in line with quantitative comparison
in Table III.

2) Pavia University: In the second experiment, we conduct
our study on the Pavia University dataset. Considering the size
of this HSI is relatively large, we select the block size as 11× 11
and the patch size as 10× 10 to avoid ignoring part of the
spatial information. The accuracies acquired by different classi-
fication methods are reported in Table IV. Similar to the results
for Salinas Valley dataset, the proposed two-branch SS3FCN
achieves the best performance. The OA/AA of the proposed two-
branch SS3FCN is 79.89%/76.60%, significantly better than
the performance based on patch-wise classification. In addition,
the proposed strategy for training-test splits provides a more
balanced dataset. As shown in Table I(b), 9.10% of pixels in class
C7 are selected for training based on our proposed data partition
method, whereas that ratio of patch-based method VHIS is 0.

This may be the main reason for failing to predict the class
C7 in VHIS, 3-D CNN, PCA/PCA-ON, and GAN/PCA-ON. In
addition, we report the detailed accuracies corresponding to 16
classes averaged over five runs in Table IV, and show the resulted
maps corresponding to one of these five runs in Fig. 8.

3) Indian Pines: Table V shows the overall and class-specific
performance acquired by different methods for Indian Pines
dataset, and Fig. 9 visually demonstrates the resulted maps. If
the input patches are too small, some of the spatial information
may be ignored. Therefore, considering the tradeoff between
the spatial size of the input patches and the number of training
samples in each class, in this experiment, we set the block
size as 4× 4 and the patch size as 3× 3. Overall, 11.02% of
pixels are selected to train the SS3FCN, less than the pixels
used in VHIS and the data augmentation methods (i.e., 24.5%).
However, the proposed method achieves 4.36%/5.54% better
performance than VHIS in term of the OA and AA. In addition,
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TABLE IV
PERFORMANCE OF DIFFERENT METHODS FOR THE PAVIA UNIVERSITY DATASET(%)

Fig. 8. Predicted maps of different models for Pavia University via one fold of the cross validation. (a) False color image. (b) Ground truth. (c) 1-D branch
network (OA: 79.20%, AA: 76.31%). (d) 3-D branch network (OA: 78.14%, AA: 74.15%). (e) SS3FCN (OA: 81.31%, AA: 78.06%).

TABLE V
PERFORMANCE OF DIFFERENT METHODS FOR THE INDIAN PINES DATASET(%)



ZOU et al.: SPECTRAL–SPATIAL EXPLORATION FOR HSI CLASSIFICATION VIA THE FUSION OF FULLY CONVOLUTIONAL NETWORKS 669

Fig. 9. Predicted maps of different models for Indian Pines via one fold of the cross validation. (a) False color image. (b) Ground-truth map. (c) 1-D branch
network (OA: 70.09%, AA: 62.74%). (d) 3-D branch network (OA: 60.68%, AA: 59.71%); (e) SS3FCN (OA: 71.01%, AA: 66.66%).

TABLE VI
PERFORMANCE OF DIFFERENT METHODS FOR THE HOUSTON UNIVERSITY DATASET(%)

compared with the two-branch framework, the SS3FCN 3-D
branch fails in the prediction of many more classes. A major
reason might be that the input patches are too small to reserve
the spatial information.

4) Houston University: As to the Houston University dataset,
although the image is large, the pixels with label information are
rather limited. We select the block size as 7× 7 and patch size
6× 6 to extract the edge of small pieces. Table VI shows clas-
sification accuracies acquired by different methods, and Fig. 10
visually demonstrates the resulted maps. Similar to the results of
the above four datasets, the 2-branch SS3FCN get the best result.
With the same training and test pixels, the performance of the
proposed 2-branch SS3FCN network is higher by 7.02%/8.98%
better performance than the 1-D network proposed in VHIS in
term of the OA and AA.

5) Overall Comparison: In Table VII, we show the overall
difference between the proposed 2-branch SS3FCN with the
other pixel labeling methods based on nonoverlapped train-
ing/test set, including 1-branch SS3FCN, VHIS, 3-D CNN,
PCA/PCA-ON augmentation and GAN/PCA-ON augmenta-
tion. Theoretically, the 3-D branch can provide better results
than the 1-D branch. However, the 1-D branch outperforms the
3-D one in three of these four datasets. We suspect that the main
reason is that the number of training samples is limited and the
3-D branch cannot extract enough amount of spatial information.
Comparing with single branch SS3FCN, the two-branch strategy
model obtained better performance for its ingenious design of
the network architecture. It aims to fully exploit the contribution
from the spectral and spatial information. It also demonstrates
that the abundant spectral information should be given more
attentions in analyzing HSIs with low spatial resolution.

In addition, comparing with VHIS and the other VHIS-based
networks, the proposed two-branch SS3FCN achieves a big
improvement. For instance, as in Salinas Valley, OA is increased
by up to 17.12% and AA is increased by up to 21.43%. Even
without data augmentation via advanced ways, the two-branch
SS3FCN still can get better performance.

B. Analysis and Discussion

1) Training Process: The Fig. 11 demonstrates the training
loss and validation loss with respect to the number of training
epochs on Salinas Valley, Pavia University, and Indiana Pines,
respectively. The initial learning rate is set as 0.01 and decayed
to 1/10 of the previous learning rate after every 35 epochs. The
networks are kept for training until the validation loss does not
decrease in the next 20 epochs and get the model with the best
performance on the validation dataset. As can see from Fig. 11,
the models for Salinas Valley dataset and Pavia University get
converged faster than that for Indian Pines dataset.

2) Impact of the Size of Input Patches: The Fig. 12 demon-
strates the influence of the spatial size of selected patches to the
performance on four datasets. The network structures are same
as that in Table II except for the patch size smaller than 3× 3
where we set the spectral–spatial kernel to be 1× 1× 3, rather
than 3× 3× 3. We evaluate the performance when the width
(i.e., D, equal to the height) of patches is set to be [4, 6, 8, 10],
[6, 8, 10, 12], and [1, 3, 5, 7] for Salinas Valley, Pavia University,
and Indiana Pines dataset, respectively. The obtained optimal
patch size is 6× 6, 10× 10, 3× 3 accordingly. Theoretically
speaking, the larger patches, the better performance will be
achieved. However, the size of the original HSI is limited. Given
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Fig. 10. Predicted maps of different models for Houston University dataset via one fold of the cross validation. (a) False color image. (b) Ground truth. (c) 1-D
branch network (OA: 81.93%, AA: 83.17%). (d) 3-D branch network (OA: 79.52%, AA: 79.47%). (e) SS3FCN (OA: 83.44%, AA: 83.87%).

larger patches, the number of samples might be too less to obtain
satisfying network. For instance, the number of patches will be
reduced by 31% when the patch size is changed from 10× 10
to 12× 12.

3) Impact of the Block Size: We evaluate the performance
corresponding to the blocks with different sizes. Taking the
Salinas Valley for example (see Fig. 13), the proposed method
achieve the best performance with OA/AA of 81.32%/86.13%
when the block size is 7 × 7. We suspect that, given smaller
blocks, the network cannot fully exploit the spatial information.
If we further increase the block size (larger than 7 × 7), in
order to keep the ratio of training pixels unchanged (to make

a fair comparison with other works), we have to increase the
value of K and get less blocks input to the network. Given less
training samples (patches), the performance of the network dete-
riorates. Similar results are obtained in analyzing the other three
datasets.

4) Classification Performance With Different Initializers:
Weight initialization aims to prevent layer activation outputs
from exploding or vanishing in calculating the output values of
each layer. If either occurs, the network has to take longer time to
converge, or even does not converge at all. In this article, we eval-
uate the performance with three initialization strategies on Sali-
nas Valley dataset and the performance is shown in Table VIII.
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Fig. 11. Loss curves of training and validation loss over epochs for four datasets. (a) Salinas Valley. (b) Pavia University. (c) Indian Pines. (d) Houston University.

Fig. 12. Influence of the patch sizes on OA and AA. (a) Salinas Valley. (b) Pavia University. (c) Indian Pines. (d) Houston University.

Fig. 13. Influence of the block sizes on OA and AA. (a) Salinas Valley. (b) Pavia University. (c) Indian Pines. (d) Houston University.

TABLE VII
AVERAGE DIFFERENCE IN OA AND AA BETWEEN DIFFERENT MODELS(%)

For the random strategy, we randomly initialize the convolution
kernels. Glorot_uniform, also known as Xavier uniform, draws
samples from a uniform distribution [46]. He_normal draws
samples from a truncated normal distribution centered on 0

TABLE VIII
INFLUENCE OF INITIALIZERS FOR THE SALINAS VALLEY DATASET

with stddev = sqrt(2/fan_in) where fan_in is the number
of input units in the weight tensor [47]. As shown in Table VIII,
the network with He_normal initializations converges after 51
epoches and achieves OA/AA of 81.85%/84.45%. The experi-
ments on the other three datasets also suggest that He_normal
initializations is much more effective and efficient than the other
two ways.

5) Impact of BN: In this article, we introduce the BN to
increase the network’s robustness against potential bad initial-
ization. We evaluate the performance without BN (denoted as
No_BN), with only one BN layer after the first convolutional
layer (denoted as 1_BN), with one BN layer after each con-
volutional layer (denoted as All_BN). The results are shown in
Table IX. Taking the Salinas Valley dataset for example, All_BN
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TABLE IX
INFLUENCE OF BN LAYER ON THE OA, AA AND TRAINING SPEED

TABLE X
PERFORMANCE WITH DIFFERENT NETWORK DEPTH FOR THE

SALINAS VALLEY DATASET

TABLE XI
PERFORMANCE WITH DIFFERENT K FOR SALINAS VALLEY DATASET

network achieves an accuracy of 65% after 27.4 epochs on the
validation dataset, whereas the 1_BN cannot get similar results
until 30.5 epochs in average, and the NO_BN network cannot get
the similar results. In addition, the OA/AA of All_BN network
converges at 81.32%/86.13%, significantly higher than that of
the 1_BN and No_BN network.

6) Impact of Network Depth: In this work, we also evalu-
ate the performance of the network with different depth. For
simplicity, we also take the Salinas Valley for example. We test
the combination of 4/5 layers in the 3-D branch and 5/6 layers
in the 1-D branch. As shown in Table X, the combination of
four 3-D convolutional layers and five 1-D convolutional layers
provides the best performance. The performance degrades if we
further increase the network depth, given the training samples
are limited.

7) Performance With Various Number of Pixels in the Train-
ing Set: In this work, we evaluate the performance with different
K, corresponding to various number of pixels used for training,
and the result on Salinas Valley dataset is shown in Table XI.
With the decrease of the number of pixels for training from
6.77% to 3.07%, the performance in term of OA/AA degrades
from 84.46%/92.39% to 78.29%/85.78%. Similar results are
obtained for the other three datasets.

VI. CONCLUSION

With the great success of fully convolutional network in many
vision-related problems, we are motivated to develop a novel
pixels-to-pixels classification framework based on the fusion of
FCNs to assign label to each pixel in HSI, referred to as SS3FCN.
The literatures demonstrate that the emerging patch-wise HSI
classification methods can easily lead to overoptimistic results
for the information leakage issue. Inspired by this, we first
introduce a simple method for splitting the training/test dataset,
which provides a more balanced split. Considering the comple-
mentary characters, we employ the 3-D FCN to jointly explore
the spectral-spatial information. In light of the importance of the
spectral information in HSI classification and the relatively small
input patches in many datasets, we introduce one additional
branch based on 1-D CNN to get more discriminative and robust
features. In addition, we interpret the task of assigning label for
each pixel as a pixels-to-pixels classification problem where all
the label information is fully exploited, different from the ways
in traditional patch-wise classifications. The proposed method
takes advantages of both 3-D FCN and the training/test split
strategy, and achieves better performance with less training
pixels when it is compared with state-of-the-art classification
methods. Furthermore, the basic structure including 3-D FCN,
BN, and ReLU layer can be easily generalized to other HSI
datasets for their simple architectures and powerful learning
abilities.
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