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Deep Learning Algorithm for Satellite Imaging
Based Cyclone Detection

Snehlata Shakya

Abstract—Satellite images are primary data in weather predic-
tion modeling. Deep learning-based approach, a viable candidate
for automatic image processing, requires large sets of annotated
data with diverse characteristics for training purposes. Accuracy
of weather prediction improves with data having a relatively dense
temporal resolution. We have employed interpolation and data aug-
mentation techniques for enhancement of the temporal resolution
and diversifications of characters in a given dataset. Algorithm
requires classical approaches during preprocessing steps. Three
optical flow methods using 14 different constraint optimization
techniques and five error estimates are tested here. The artificially
enriched data (optimal combination from the previous exercise) are
used as a training set for a convolutional neural network to classify
images in terms of storm or nonstorm. Several cyclone data (eight
cyclone datasets of a different class) were used for training. A deep
learning model is trained and tested with artificially densified and
classified storm data for cyclone classification and locating the cy-
clone vortex giving minimum 90 % and 84 % accuracy, respectively.
In the final step, we show that the linear regression method can be
used for predicting the path.

Index Terms—Miscellaneous applications, optical data.

I. INTRODUCTION
A. Remote Sensing (RS)

S APPLICATIONS, mainly, via satellite imagery has ex-

panded from conventional meteorology, geological explo-
ration, oceanography toward homeland security, urban planning,
ecology and several other novel unconventional fields. Cost-
effective unmanned aerial vehicle (UAV) and weather balloon
approaches have shared the burden but suffer from limitations
such as 1) low elevation point for imaging, 2) stability issues
under bad weather conditions, and 3) dependence on navigation
satellites. Meteorological applications, especially weather fore-
casting for disaster readiness, yet, requires dedicated but costly
satellite infrastructure. Routine scheduling of multispectral
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satellite imaging requires optimized schemes fulfilling dif-
ferent reward opportunities such as operating time windows,
changeover efforts between two consecutive imaging tasks,
cloud-coverage effects, etc. [1], [2]. Sometimes expected data
often are not available at the landscape scale in abundance
[3]. Trading-off between several such engineering factors limits
the temporal resolution of imaging dataset, typically an hour.
Resource optimization equally affects temporal resolution when
imaging is performed using UAV or weather balloon.

B. Image Processing Framework

The sparsely acquired imaging datasets comprise of limited
temporal resolution that may affect the accuracy of the analysis
[4]. Expert individuals can perceive and estimate missing infor-
mation (such as if a set of images depict storm, a pathway of
clouds, location of vortex, etc.) just seeing consecutive image
frames. However, the accuracy of analysis again depends on
this person’s experience and off course temporal resolution of
timeframes. Although classical image processing techniques are
proven useful but the element of humanlike perception can only
be replicated via an artificial neural network (ANN) based image
processing algorithm. Several fields of research and applications
have exploited this direction but state of the art for weather
prediction analysis still is under development [4]. Few examples
such as rainfall predictions using limited data setting [3], estima-
tion of hydrological variables to forecast the runoff at ungauged
river basins [5], air quality index estimation and prediction [6],
analyzing and predicting an individual’s movements/locations
[7], optical flow based interpolation for structure-preservation
using tomography images for improving data quality [8], [9],
precipitation now casting as a spatio—temporal sequence fore-
casting problem [10], etc., are based on ANN.

Studies have reported weather forecasting problems using
machine-learning algorithms [10], [11]. Deep learning (DL) al-
gorithms, which learn the characteristic features in a hierarchical
manner, have been introduced into the RS community due to the
availability of data. DL has a wide variety of applications in
RS including image preprocessing, pixel-based classifications,
target identification, and scenario understanding. In one of the
recent surveys, the superiority of DL algorithm (due to feature
learning abilities) is shown to outperform existing commonly
used image processing algorithm in hybrid field of agriculture
and RS [12]. It is also shown that an outcome can be enhanced
with spatio—temporal interpolation by hybridizing discrimina-
tively trained predictive models with a deep neural network [11].
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A deep neural network with stacked denoising autoencoders is
found comparatively better for predicting air temperature when
compared with standard ANNs [13].

For image preprocessing purposes, a specific deep network
such as a deconvolution network [14] and a sparse de-noising
auto-encoder [15] are constructed. Pixel-based classification is
already employed in the field of geoscience and RS. Aspects
of handcrafted feature description [15], discriminative feature
learning [16], and powerful classifier designing [17] are suc-
cessfully tested. DL methods, thus, are made well suited for the
extraction of low-level features with a high frequency, such as
edges, contours, and outlines of objects, shape, size, color, and
rotation angle of the targets [18]. Training of such an algorithm
requires a significant amount (quantitative reference) of images
containing a vast set of features/characters categorized under
supervision. In the absence of a large dataset, one approach is
artificially enriching the data using interpolation techniques for
generating missing time frames and densify the feature-based
information content.

1) Interpolation: Interpolation might increase the probabil-
ity to distinguish successive peaks in the frequency domain. The
probability can be controlled using an apt method of interpola-
tion. It is expected that this step will enhance the interpretability
of characters for the DL algorithm. It has been used for enhanc-
ing the image quality [19], [20]. Another technique involves
optical flow-based temporal interpolation by using backward
warping [8], [9]. Optical flow based method is the preferred ap-
proach with an atmosphere full of clouds to obtain interpolation
related image processing characters.

Estimated image velocity by an optical flow can be used
for supervised scene interpretation to an unsupervised dynamic
investigation. Many methods for computing optical flow have
been proposed. For in-depth insight, we refer to Barron et
al. [21]. The process of determining optical flow is generally
carried out through utilizing a brightness constancy constraint
equation (BCCE). The relation makes the use of spatio—temporal
derivatives of image intensity [22], [23]. Determining optical
flow using the BCCE is an ill-posed problem. Classical gradi-
ent based methods, for example, Cauchy’s method [24], [25],
Newton’s method [26], Marquardt’s method [27], conjugate
gradient method [28], quasi-Newton methods [26], [29], are
useful solving underlying optimization problem.

Smoothness constraints by Horn and Schunck’s method found
helpful minimizing the distortions in optical flow estimation
[30]. Combination of local and global methods was introduced
by Bruhn ef al. [31] to deal with ill-posedness. Spatial and
temporal derivatives were used as constraints to overcome the
ill-posedness issue. The choice of initial guess affects the per-
formance of an iterative optimization technique resulting in a
global or local extremum. Previously estimated optical flow
fields were used as initial estimates by Giaccone and Jones
[32]. A perceptually weighted optical flow was also proposed by
Malo et al. [33]. Backward-warping [20] method for temporal
interpolation was initially proposed by Ehrhardt et al. [8], [9].
This discussion inspires for carrying out a sensitivity analysis
using various optimization methods and error estimates.

C. Motivation and Methodology

In this article, the DL algorithm is used for the classification of
satellite images under storm or nonstorm category. It is also used
for locating the eye of the storm so that the regression model can
be fitted for prediction automatically. The training process in-
volves the formation of the system of equations, constraints, and
its preferred solutions as input. These systems of equations and
constraints can be solved by classical optimization techniques.
There are several optimization methods and error estimates that
can be used but the DL algorithm may not be sensitive to all.
Thus, it is important to choose a proper combination of methods
to use for a given dataset. The present work illustrates a case
study for cyclone data. The manuscript presents an exhaustive
study testing multiple mathematical frameworks (14) and several
error estimates (6) for converting sparse into sufficient data
enhancing its usability for the DL algorithm. Multiple satellite
data having cyclones are tested and compared with previously
reported estimations. Optical flow estimation methods are com-
pared in terms of error after temporal interpolation. Generalized
model to compute optical flow incorporating fractional order
(FO) gradients is preferred over Brox’s method and Horn and
Schunck after testing. This model furnishes the dense optical
flow while preserving the discontinuities at sharp boundaries
[34], [35], good for images with clouds. In order to perform
interpolation, inversion of an optical flow vector is required. A
sensitivity analysis is performed for inverting the optical flow
vector using 14 classical optimization methods. Performance
metrics, namely: 1) mean square error (MSE), 2) mean differ-
ence error (MDE), 3) number of sites of disagreements (NSDs),
4) percentage error (PE), 5) peak signal-to-noise ratio (PSNR),
and 6) sharpness are used for choosing the best solution method.
Again DL platform and the artificially enriched data carrying
storm features are used for classifying the cyclonic weather and
estimation of the location of vortex of the cyclone. Finally, the
regression method is used for predicting the path of cyclone. Th
same is illustrated in Fig. 1 in the form of flow diagram. Satellite
data available at NASA and ISRO servers are used for training
and testing purposes.

II. METHODOLOGY

This section is divided into two parts: 1) temporal interpola-
tion algorithms and 2) DL frameworks. The interpolation section
explains mathematical formulation for estimation of optical flow
and algorithm.

A. Optical Flow

We present an improved version of Horn and Schunck’s
method [22] for computing the optical flow field. A detailed
version can be found elsewhere [34]; here, a summary is pre-
sented. The energy functional [22] is given as follows:

Edata (p) :/Q [(VITp+It)2 +a? (|Vu|2 + \Vv|2)}da:dy
(D
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Fig. 1. Flow diagram describing the methodology.

where V1 is the gradient of image intensity, I, is the temporal
derivative of image intensity, P = (u,v)7 is the velocity vector
(optical flow components), and o > 0 is aregularizing parameter.

This model was combined with Nagel and Enkelmann [38]
and the energy functional becomes [35]

Edata (p)z/ﬂ[(WTerIt)ﬁﬁz (pr+k(|Vp|)2ﬂdQ
(2)

Here, (3 is a constant value. This model preserves the discon-
tinuity and gives a dense optical flow. It was further improved
by incorporating FO derivatives optical flow components [34].
The energy functional is given as

FEgata (p) :/Q {(VITp—‘,—It)Q

+ 52 (pr + )»(|Dap|)2)} Q. (3)

Here, D := (D%, D)" is called the left fractional deriva-
tive operator of Riemann-Liouville and | D%u| is defined as

|Dp| = \/((Dgu)2 + (Dgu)2).

This model is a generalization of the integer-order variational
optical flow models. The variational functional, (3), can also be
written as follows:

Faata (p) = /Q [(VITp + It)2 + (2 (u2 + 112)

+A (|Dau|2 + |D%|2)} Q. @)

A detailed description of the method can be found elsewhere
[34]. We choose a=0.8, 8 =600, and A = 1. Detailed
information about the choice of these values is given by Kumar
et al. [34].

We will also be estimating the optical flow using Brox’s
method and Horn and Schunck. However, the technical details
are not given here for the sake of brevity. Interested reader may
follow [30] for more detail.

B. Temporal Interpolation Algorithms

Ehrhardt et al. [8], [9] have proposed an interpolation tech-
nique that utilizes the weighted average of optical flow compo-
nents. The interpolation equation is given as follows:

I(z,t)= (1-5t)-

+6t-I(x—(1—6t)-

I(x—dt-u,t;)
u it ©)

Here, I is the image intensity, x is the position vector, ¢; and
t;+1 are two consecutive time instances, u = (u, v) is the optical
flow vector, 6t = t — t; and time is normalized, i.e., ;11 — t; =
1. For computing u™', Ehrhardt et al. [8], [9] have used Newton—
Raphson method. Shakya and Kumar [39] have also used this
method for interpolation with optical flow vectors computed
from the FO-based method. We will be using various techniques
for numerical interpolation of the above-mentioned formulae.

Method 1: Moore—Penrose pseudoinverse of the optical flow
vector.

Method 2: Scattered data interpolation (SDI) for the inverse of
optical flow vector.

Method 3: Nearest neighbor (NN) calculation for the inverse of
optical flow vector.

Method 4: Thin plate spline (TPS) interpolation.

Method 5: Kernel regression (KR).

Method 6: Sigmoid function interpolation (SFI).

A brief description of the above-mentioned methods is given
as follows.

Method 1: Moore—Penrose pseudoinverse of optical flow vec-
tor: A matrix A, x,, with m = n or m#n, can be decomposed
using singular valued decomposition into one diagonal matrix ¥
and two orthogonal matrices U and V such that A = UXV7T.
The pseudoinverse of the matrix is defined as At = UXRTV7T,
This method is used to compute the inverse of the optical flow
vector and interpolation has been done using (5).

Method 2: SDI for the inverse of the optical flow vector: SDI
is another technique that has been used to compute the inverse
of optical flow vector. Following Shakya and Kumar [39], if we
define a forward transformation T from source image space s to
target image space t, the points in source space are specified as
s =t + T(t).

Then, the inverse transformation is given as

+T)

(6)
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where

w(d;) = (# - %)27 if d; < R

0, otherwise

(N

is the distance weight function associated with each interpolation
point, d; is the distance of interpolated point from the ¢th data
point, and R is the search radius.

Method 3: NN calculation for the inverse of the optical
flow vector: Negative nearest forward transformation is used
as inverse transformation to estimate the inverse of optical flow
vector. If the nearest forward transformed point lies outside the
source voxel, then averaging of surrounding voxels of forward
transformed points is used.

Method 4: TPS interpolation: Having a set of k points
Pj(xj,y;)andheights h forj = 1, 2,..., k, TPS interpolation
is defined as [41]

k

fz,y) :a0+a$a:+ayy+chU(x
j=1

— x5 Y _yj)' (8)

Here, constants ¢y, co, . . .,

property f(z;,y;) =h;Vj=1,2,...,
defined as

Ck, o, Gy, Gy need to be find with
k. The term U (x,y) is

Ul(z,y) = (z* +y°) In (2* + ¢°) .

Method 5. KR: Following Miihlenstddt and Kuhnt [42],
consider a set x = {xl,x27 ...,Tp} with N simplices S; =
1,2,..., N and vertices z?, le, .. ,xi T is the Delaunay tri-
angulatlon of the set x. A linear function §j;(z) = 8 + 27 3
for all S; can be fitted that will interpolate the vertices. The KR
interpolator is constructed on polygons and it is combined with
locally fitted linear functions [42]

Yi r=x;,1=1,2,...,n

:’)j (.%‘) = SN gi (@) N C))
=19 L)Y, (z)
S elsewhere

Method 6. SFI: We used a sigmoid function for interpolation.
For univariate logistic curve, it is defined as

1
1+e P
where [ is the logistic growth rate or steepness of the logistic
curve.

The above-mentioned methods are categorized as direct inter-
polation methods. We are also incorporating iterations on some
of those techniques. Solution is updated, locally and globally,
after each iteration. The local method inverts point by point in
target space, whereas the global method inverts the whole field
in source space [40]. Therefore, results of interpolation with 14
methods: 1) pseudoinverse, 2) pseudoinverse with local conver-
gence, 3) pseudoinverse with global convergence, 4) SDI, 5) SDI
with local convergence, 6) SDI with global convergence, 7) NN,
8) NN with local convergence, 9) NN with global convergence,
10) random with local convergence and 11) random with global
convergence, 12) TPS interpolation, 13) KR, and 14) SFI are
compared (see Table III). Here, an initial choice of optical flow

S ()= (10)

vector is chosen randomly between maximum and minimum
values of optical flow components.

We use the following metrics for comparing the results from

different interpolation techniques.

1) MDE: Let I'"*P(z) and I°"'¢ () represent interpolated and
original image intensities at pixel position x in the 7th
frame. N, denotes the number of interpolated images and
Q). the set of pixels in frame 7. Then, the MDE is defined
as [8]

1 &

MDE =
N,

— 12 (x)|.

an

2) NSD: This metric is defined by the number of pixels where
the difference between I'™P(x) and I°"8(x) is greater
than a threshold value ©. It is defined as follows [8], [9]:

1 .
a2 e

=1 xeQ)-

NSD = }: }:tﬂfmm — I (x)| (12)
T=1x€eQ,
where
0, if 2<0
5(z) = . (13)
1, otherwise

Here, 0 is threshold and it is chosen 5% in the present study.

3) PE: It is defined as follows [43]:
Avg Error

H T [ +

Here, Avg Error is the average error defined as [43]

2 271/2
Avg Error = [ZZ {Dl + D2 } ] (15)

where D1, = Uorig — Uing and D2, = Vgrig — Ving. More-
over, u and v are horizontal and vertical components of flow,
respectively. Suffixes orig and int are used for original and
interpolated flow. (V, M) is the size of ground truth image. Term
(Ne, M.) is the size of D1..
4) PSNR: A PSNR value is calculated between true and
estimated flow [43]

PE =

.4
}1/2

orlg

2552

16)

where MSE is the mean squared error

2

M N
ZZ Imt Z J IOI‘]g (Z ]))

=0 j=

MSE =
S M><N

5) Sharpness ratio: This metric is defined as follows:

S {(dr/dw)” + (daf /ay)* |
. |

sharpness = (17)
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C. DL Frameworks

For classification purposes, a basic Keras model [44] was
trained on the dataset. The platform provided by Google colabo-
ratory [45] was used for training. Standard convolutional neural
network (CNN) models like Xception [46], NasNetMobile, and
MobileNet were also applied on the preprocessed dataset using
Keras applications.

The methodology for object detection and localization is to
break down the image into multiple segments and feed each
segment to the model and get the label. It is highly likely that
the object will appear half cropped in one segment. In order
to get complete object in our segment, we need to work with
images of different scales. This increases the computational cost
and the inference time, thus making the model impractical in
real-time scenarios. This idea, implemented in a sliding window
technique, is fairly outdated [47].

To overcome the cost of time as well computation, you only
look once (YOLO) [37] is preferred in this work, for detecting
the circular rotating area. YOLO system helps in detection of
objects in real time. It consists of 23 convolutional layers and it
uses batch normalization technique and leaky ReLU activation
[37]. Unlike sliding window technique or regional proposal
network, YOLO considers the whole image and thus encodes the
contextual information about the classes and their appearance.
Fast region-based CNN (R-CNN) [48], a top detection method,
mistakes the background patches as an object because it cannot
see the larger context. The number of background errors is
significantly reduced with YOLO in comparison to fast R-CNN
[47]. The YOLO pixelates input image into N x N grid cells. A
particular grid detects an object, if its center falls into that grid
cell. Each grid cell predicts B number of bounding boxes and
confidence scores for those boxes. The confidence score tells
about the accuracy of prediction. For each bounding box, five
values x, y, w, h, and confidence score are predicted, where (x, y)
represents the center of box relative to the grid cell. The width
(w) and height (4) are predicted relative to the whole image.

In YOLO, an individual grid cell is allowed to contain a single
class with the capability to predict two bounding boxes only.
This spatial constraint limits the prediction capability of the
number of nearby objects. Overall, the model struggles with
the detection of small objects that appear in groups. RetinaNet
[49], a relatively sophisticated model, uses Resnet and feature
pyramid network. Single-stage detectors are less accurate but
had fast inference time, whereas two-stage detectors are more
accurate but took significant time during inference. RetinaNet
is a modified model of a single-stage detector with improved
accuracy by modifying the loss functions. It outperforms the
two-stage/shot detector faster R-CNN in terms of speed as well
as accuracy. The cross-entropy/focal loss (FL) function (18) is
reshaped by adding a modulating factor (1 — p;) to downweight
low level examples and focusing parameter ~. The constraint is
meant to training on hard negatives

FL(pt)"log (pt) (18)

where focusing parameter  is tested in the range of [0, 5] in the
experiment. v = 2 works best in our experiment. The focusing

TABLE I
RAW DATA EXTRACTED FROM THE IMD SITE FOR INTERPOLATION

Cyclone [Year|Peak Category No. odlmage
Name Images/Type
IAILA 2009 [Severe Cyclonic Storm 190  |Visual
BOB3 2007 |Cyclonic Storm 129  |Visual
IGONU  [2007[Super Cyclonic Storm 112 |Infrared
LEHAR [2013|Very Severe Cyclonic Storm{l 11  |Infrared
IPHAILIN [2013[Very Severe Cyclonic Storm{103  |Infrared
PHYAN [2009|Cyclonic Storm 141  |Visual
IRASHMI [2008 [Cyclonic Storm 170  |Infrared
[FANOOS [2005 [Severe Cyclonic Storm 39 |Visual

parameter smoothly adjusts the rate at which easy examples are
downweighted. It affects the function of modulating factor [49].
If an example is misclassified and model’s estimated probability
pe is small, the modulating factor is near 1 and the loss is
unaffected. For high probability values, the factor becomes to 0
and the loss for well-classified examples is downweighted.

III. EXPERIMENTAL RESULTS
A. Dataset

For interpolation, we used the satellite images obtained from
KALPANA-I. Image data are downloaded from the India Mete-
orological Department (IMD) archive [50] for the cyclone in
June 2007. In particular, we processed (Yemyin) the images
for June 21, 2007. A depression area was declared by IMD
near east-southeast of Kakinada, Andhra Pradesh, India. For
DL classification, we downloaded data from IMD archives [50]
that contain images of cyclones from the year 1990 until recent
times with increased accuracy and coverage in recent years. With
the advancement in technology infrared, midinfrared, short-
wavelength infrared, water vapor images of the recent cyclones
were also included in the archive. Raw data are selected for
the analysis given in Table I. For prediction, we trained the
model with several random cyclone images downloaded from
Internet. Also, we downloaded images from Meteorological
and Oceanographic Satellite Data Archival Center (MOSDAC)
[51]. We tested the model on Ockhi cyclone that occurred on
December 2, 2017. Python codes and libraries are used for
creating the labels. The resolution of each image is 1024 * 1200
pixels.

B. Interpolation Results

Temporal interpolation plays an important role when the im-
age datais available at large time intervals. We are processing im-
ages of cyclone Yemyin, which happened in June 2007. Images
obtained from satellite KALPANA-I are captured at 1 h of inter-
val. We first used two images of 2h of interval (05:00:03 hours
and 07:00:03 hours (GMT) on June 21, 2007) and generated the
image at 1 h (06:00:03 hours) of interval. The ground truth image
is also available to compare. In order to get the intermediate
images, we used (13). The optical flow is estimated with three
approaches: Brox’s [12] method, Horn and Schunck [22], and
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TABLE II
COMPARISON OF INTERPOLATION RESULTS WITH VARIOUS METHODS USING
BROX [11] METHOD FOR COMPUTING OPTICAL FLOW

S.N|Method [Tim |Iteration| MD |NSD | PE| PSN |Sharpnes
. e S E R S
1| Pinv |15.0 1 9.7817834(1.9/46.46| 0.89

3 0 |2
2 | Pinv+ (68.7 6 3.9415978(0.7147.54] 0.96
Global | 6 410
Iteration
3 | Pinv+ |159] 40 |3.95(5972]10.6(47.59| 0.96
Local | 4 9 (9
Iteration
4| SDI (297 1 3.9415975(0.6/47.56] 0.96
2 19
5| SDI+ |256.| 20 |3.94(5972]10.6(47.59| 0.96
Global | 57 6 |9
Iteration
6 | SDI+ |16.6| 40 |3.95(5973]10.6(47.59| 0.96
Local | 4 8 |9
Iteration
7 NN (24 1 3.9415971(0.6/47.58| 0.96
519
8| NN+ 3.941597210.6/47.59] 0.96
Global (229. 6 [9
Iteration| 68 20
9| NN+ 3.941597210.6/47.59] 0.96
Local 1 |9
Iteration|3.01| 40
10 |Random 3.9015910(0.7|47.21| 0.97
+ Global|235. 112
iteration| 85 20
11 |Random 3.9515986(0.6|47.64] 0.96
+ Local 6 [9
iteration [0.71 40
12| TPS 2.9414887(0.4150.91| 0.96
689 1 1 |6
13| KR 2.7914307]0.6/48.60] 0.95
121 1 5 1
14| SFI |62.4 2.3313555(0.6/48.87| 0.94
1 1 3 (0
TABLE III

COMPARISON OF INTERPOLATION RESULTS WITH VARIOUS METHODS USING
FO OPTICAL METHOD [15] FOR COMPUTING OPTICAL FLOW

Method | MDE | NSD | PE | PSNR | Sharpness
Pinv 8.48 | 65620 | 0.19 | 63.95 0.94
TPS 2.94 | 48871 [0.63 | 55.20 1.02
KR 2.79 | 43075 [0.71 | 54.15 0.99
SFI 2.34 | 35553 [0.65| 54.86 1.04
Other 3.73 | 56194 [ 0.09 | 72.25 0.98

FO derivatives [43] based method. It is found that Brox’s method
and FO derivation method provide results under acceptable error
estimation for considered data. Results by Horn and Schunck
are omitted here due to brevity. Results are compared in Tables
II and III, respectively. A comparative study is made based on
different interpolation methods mentioned above [Methods 1-6]
with global and local convergences. Error is computed with
image intensities and optical flow vector. MDE is one of the
error estimates that computes the differences of image intensities
between the original and the interpolated image. Looking into
both Tables II and III, the MDE values for different interpolation
methods, SFT has the lowest values of 2.33 with Brox’s method

and 2.34 with the FO-based method. It indicates that perfor-
mance of SFI is comparatively better than other methods, if
MDE is the criterion. Different metric values are comparatively
lower for the FO-based method. The next error measure is
NSD, which is the number of pixels where the difference of
image intensities between original and interpolated is greater
than 0.05. Thus, the smaller number of NSD indicates close
similarity to the original image. This error estimator’s behavior
is consistent with the MDE values, i.e., SFI giving the minimum
NSDs. Another error estimate is PE, which is computed from
the difference of optical flow components estimated from the
original image and the interpolated image. The behavior of PE
is different from what we observed with the previous two error
measures, which were based on image intensity differences. A
minimum value of 0.46 is observed with the TPS interpolation
method while using Brox’s method for computing optical flow.
However, we observed a very small value of 0.09 with other
methods (P;,,+ local and global iterations, SDI, SDI + local and
global iterations, NN, NN + local + global iterations, random
+ local and global iterations) with optical flow components
estimation from FO derivative based method. PSNR value is also
best for these interpolation methods. From overall observation,
we preferred to use the NN method with local convergence due
to less computational cost, fairly comparative error estimates,
and sufficient iterations before convergence aspects.

Next, we generated 14 images between the images captured
at 05:00:03 hours and 07:00:03 hours. The interpolated images
are shown in Fig. 2(al)—(al3). Leftmost image in the first row
and rightmost image in the fourth row [see Fig. 2(a) and (b)] are
the original images captured at 05:00:03 and 07:00:03 hours,
respectively. Images are interpolated at approximately 8 min
of interval; the first row contains images from 05:00:03 hours
to 05:24:03 hours (left to right). The second row displays the
images from 05:32:03 hours to 05:56:03 hours (left to right).
The third row contains images from 06:04:03 hours to 06:28:03
hours (left to right). The last row has images from 06:36:03
hours to 07:00:03 hours (left to right). By closely observing, we
found that the second image in the first row is close to the image
captured at 05:00:03 hours and the second last image in last row
is much more similar to the image at 07:00:03 hours. Ground
truth images are not available for small temporal steps (8 min).
Four instances are marked with red boundaries around cyclone
boundary. It can be observed that artificially interpolated images
show a smooth transformation of the cyclone (circular shape
and relatively small diameter) at 05:00:03 hours into cyclone
depicted into second image (relatively bigger diameter and oval
shaped). These missing (during the measurement) but artificially
generated images are expected to help the neural network to clas-
sify storm. Similarity check between interpolated and original
images is performed using shape comparison algorithm [52].
Relative change (w.r.t. first recorded image) in the Hausdorff
dimension decreases with the time series of interpolated image.
It is shown in Fig. 2(c).

C. Deep Learning

We applied DL techniques for two purposes: 1) for classifying
an image under category being part of storm or not containing
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hours (GMT), respectively. From the second image (2al) in first row to the second last image (2a13) in fourth row are the interpolated images. In total, 14 images are
generated between 05:00:03 hours to 07:00:03 hours at equal time interval. Interpolated images translate characters well in-between both of the recorded images.

(c) Hausdorff dimension for each image.

any characters of the existence of storm and 2) for predicting the
storm location in near future.

1) Classification of Storm and Nonstorm Weather Condi-
tions: Tropical cyclones are a regular phenomenon in the North
Indian Ocean, which affect the Indian subcontinent mainly from
May until mid-December causing significant loss of lives and
damage to property. The region specialized meteorological cen-
ter for tropical cyclone over the North Indian Ocean, IMD, keeps
a track of the North Indian Ocean cyclones and their trajectories,
and issues a four-stage warning on any cyclonic weather system.
The four stages include a precyclone, precyclone watch, cyclone
alert, cyclone warning and post-landfall lookout.

These four stages of tracking and warning issuance are deter-
mined by the different stages of the development of a cyclonic
storm. According to IMD’s classification, North Indian Ocean
cyclone generally starts out as a depression with a wind speed
of 31-50 km/h over the Bay of Bengal or the Arabian Sea.

Depression intensifies into a deep depression when wind speed
reaches 51-62 km/h and the system starts drawing in more
moisture. When the wind speeds further intensify to 63—88 Km/h
with longer sustenance, the IMD classifies it as a cyclonic
storm and assigns it a name. The next stages of the severe
cyclonic storm are reached when the wind speeds peak to a
range of 118-165 km/h and have a potential of huge damage
to life and property. On further intensification, the cyclone is
subsequently classified into a very severe, extremely severe, and
super cyclonic system depending on the wind speeds. Weather
prediction and sensitivity analysis of these storms have a pro-
found sociological and humanitarian value. The advancements
in RS, weather prediction research, and evacuation procedures
in the last decade have significantly decreased the damage to
life caused by these cyclones. The sensitivity and accuracy
analysis of these predictions are very important in this domain. A
false alarm can cause extraneous expenditure in mobilizing and
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Fig. 3. Leftmost image is the original image, middle image after binarization,
and the rightmost image after erosion.

evacuating people and a delayed response to weather intensifi-
cation can amplify the damage incurred.

DL has shown encouraging performance for the characteriza-
tion of complex patterns such has storm classification [51]. We
deploy the CNN framework using Keras (open source neural
network library) for the classification of storm images into the
five categories specified by IMD. The satellite images (infrared
and visual) of eight cyclones from IMD are fed as input to the
CNN and the model is trained on Google collaboratory platform
to extract relevant features from these images. Temporal inter-
polation of images using optical flow based interpolation [8],
[9] is used to augment the data. Results are highly promising
and contain great future scope. We first preprocessed the images
to remove the unnecessary information, which could make the
model computationally costly.

Image preprocessing: Before training the data, we prepro-
cessed the images. This step removes the unwanted and noisy
features and also increases the efficiency of the model. The
preprocessing steps mentioned in [53] are used as a skeleton
with some changes, which were optimal for our dataset.

Raw image from the dataset was cropped to remove header
files and white edges. Subsequently, image binarization with
some additional changes was applied to the images. Objective
of this step was to remove the unnecessary information like grid
lines, geographical boundaries, and landscape. In classic image
binarization, the image is converted into a binary image with
pixel intensities above a certain threshold are converted to one
and others to zero. In our algorithm, the output was still an RGB
image and the pixels with intensities above a threshold retained
their original values while the other pixels were converted to
the lowest minimum, i.e., zero. As a result, only the vortex and
peripheral cloud patches were retained with original pixel values
and other features were removed. The threshold was taken to be
suitably optimized multiple (generally 1.4) of median of the
pixel intensities of the image. Subsequently, image erosion was
applied on the processed image. The mathematical definition of
image erosion is presented in [53]. Fig. 3 shows the preprocessed
steps for a satellite image. The unnecessary features like grid
lines and landscapes are filtered also.

Model training and output: A total of 995 images were down-
loaded from the IMD archive [50] but for training of our model,
data augmentation was required. Optical flow-based temporal
interpolation was applied to the images and ten images were
obtained between two temporally consecutive images.

A basic Keras model was trained on the preprocessed dataset.
The platform provided by Google collaboratory was used for

TABLE IV
SEQUENTIAL CNN MODEL DEVELOPED AND EMPLOYED IN IMAGE
CLASSIFICATION OF RS IMAGES

S. Type Channel of |Filter/Pool Size|Activation|
No. Filters

1 | Convolutional 32 3,3 ReLU

2 | Convolutional 32 33 ReLU

3 | Max pooling - 2,2 -

4 | Convolutional 64 33 ReLU

5 | Convolutional 64 33 ReLU

6 | Max pooling - 2,2 -

7 Dense 128 - RelLU

8 Dropout 0.3 - -

9 Dense 5 - Softmax

Validation Accuracy of different models at
each epoch

Loss of different models at each Epoch

—eo— Basic —o— MobileNet —&— Basic —&— MobileNet

Xception NasNetMobile Xception NasNetMobile

Fig. 4. Trend of loss and validation accuracy during the training of four
different CNN models.

training. The model was trained on 6930 augmented images and
validated on 2970 images randomly shuffled and splitted from
our original database. The model used is depicted in Table I'V.

The above model was compiled with categorical cross-
entropy loss and Adam optimizer [53]. A peak validation ac-
curacy of 97% is achieved for classifying the storm or non-
storm. Standard CNN models like Xception, NasNetMobile, and
MobileNet were also applied on the preprocessed dataset using
Keras applications.

Same train-test split was used on the standard models and the
comparison of training loss, training accuracy, and validation
accuracy of the four models is given in Fig. 4. The accuracy and
loss (categorical cross-entropy loss) of the four models have
been compared for ten epochs. When the accuracy of a model
is high and the loss is low, then the model is believed to be
trained well on the dataset. In the left graph, we can see that the
Xception model starts out with the least loss but as the number
of epochs increases, the basic model also reaches the same level.
In terms of accuracy, the basic model has the highest accuracy
from the start of the training and Xception catches up to it as
the epochs increase. Both the basic model and Xception show
highly positive results after ten epochs at the end of the training
and can be used for further testing. For further work, the data can
be augmented with other information like wind and temperature
and a combined RNN and CNN model can be used for better
classification of the storm.

To test the predicting efficiency of the model, cyclone Helen’s
data (not used in training of the model) are fed to the model.
For validation, classification information of Helen is taken from
previous work [54]. A peak validation accuracy of 45% is
obtained when 120 images of Helen are fed into the model.
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Accuracy is less due to the inconsistency of Helen cyclone
data. The model was then trained on six out of eight cyclones
mentioned in Table I and validated on the other two (in these
eight cyclone images inconsistencies have been removed by data
augmentation and other processes). A peak validation score of
58% was achieved. An increase in accuracy highlights the power
of data preprocessing.

D. Prediction of Storm

Cyclone is a system of winds rotating about a center of low at-
mospheric pressure termed as “eye’” having wind velocity above
certain limit. Here, we are presenting a model to track the eye
(or the center) of the cyclone. The aim of our model is to analyze
the patterns present in its movement and then use it to predict
the path of the cyclone. In order to achieve a robust model, we
need to have a large amount of data. We did not have any official
repository that managed the cyclone-annotated data. Therefore,
we had to manually annotate the bounding boxes across the
cyclone images. We took the cyclone images and annotated it
using python library matplotlib [55]. Unfortunately, we were
only able to extract hundreds of images but any DL network
would easily over-fit on such a small dataset. To counter this
we had to rely on augmentation. Robustness in incorporated in
the modeling by artificially adding noise. We performed differ-
ent augmentation techniques like scaling, translating, cropping,
rotating, adding Gaussian noise, adding hue and saturation to
it. After augmentation, we were able to create 5000 images for
training and 500 images for testing. For testing, we used the
archived cyclone images provided by the Indian Meteorological
Department. These satellite images were captured over half an
hour interval, over different spectrum (visible, infrared). We
applied interpolation to generate intermediate images to provide
large number of images from a particular cyclone.

Our model consists of the following two phases.

1) Training phase (see Fig. 5).

2) Prediction phase (see Fig. 6).

The DL model RetinaNet required a CSV file that contains
the following format.

path2image, x1, y1, x2, y2, obj, where path2image represents
the complete path of the image, whereas (x1, y1) and (x2, y2) cor-
respond to the top-left coordinate and bottom-right coordinate
of bounding box, respectively. As our goal was to only detect a
cyclone, the obj was set to cyclone.

Prediction phase: We had to provide two CSV files: one for
training and other for validation. The training was done over

C k Curve
(x,y) Fitting

Prediction Phase

=
-

Results

Sequence of
Images

Fig. 6. Prediction phase.

an NVIDIA GTX 1080 graphics card taking 24 h of processing
time. We saved the weights of our network, so that it can be used
later without training the network from the scratch.

In this phase, a sequence of images was fed to the RetinaNet,
which was initialized with the weights that we have saved earlier.
It produces the bounding boxes across the cyclones, i.e., it
outputs (x1, yl) and (x2, y2) coordinates (see Fig. 7). As we
are only interested in having the location of the centers, we cal-
culated the center coordinates using the top-left and bottom-right
coordinates and saved it to a CSV file. The path of the cyclone is
highly temporal; thus, another DL-based model long short-term
memory (LSTM) can be used to extract its temporal essence.
But it has its own drawbacks. To train an LSTM, we need a
high-frequency dataset that was not available [56]. Furthermore,
some of the frames were missing from the videos, which then
lead to a sudden change in center coordinates. Therefore, there
was no homogeneity within the dataset, which forced us to find
an alternative. RetinaNet is used. The model, which we used for
training, takes care of class imbalance by modifying its loss and
taking into account the examples that are less frequent in the
dataset [49], [57].

The data of cyclone named Ockhi taken from MOSDAC [58]
are used for showing the final analysis now. We have processed
multiple cases studies/data from May 2016 to December 2017.
Several instances with convincing cyclonic activities are ob-
served in this duration. The case study from November 29, 2017
to December 5, 2017 shows the presence of a cyclone (termed
as Ockhi). This cyclone was found transiting from Indian Ocean
via Peninsular India toward Sea of Arabia. These data comprise
44 images for each day (each with 30 min time difference).
Data on December 2, 2017 are discussed in Fig. 7. This image
set is densified into 95 images using interpolation technique,
each image with 15-min time interval. Fig. 7(al)—(a8) shows
images from whole day. Fig. 7(b1) contains overlay of images of
Fig. 7(al) and (a8). Further, Fig. 7(c1) is an x5 zoomed section
showing existence of two eyes of cyclone or vortex by V., and
V.,. It also shows the path of the eye of cyclone for whole day,
estimated by the DL algorithm and traced manually. Fig. 7(d1)
shows separate trajectories (in red color: bigger circles by DL),
which is predicted by both methods.

The DL algorithm estimated coordinates of 95 eyes, out of
which 61 (with unique coordinates) are used for polynomial
regression fitting, toward both ends. Coordinates (71 unique) of
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Fig. 7.
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Automatic locating the eye of vortex of a cyclone: (al)—(a8) time series images (Movie 1) showing extracted boundaries of vortex between 00:00:00

hours and 23:30:00 hours; (bl) overlapped images al (red) and a8 (green); (c1) x5 zoom part covering only the cyclone regions paths traversed by eye of the
vortex (black: via DL algorithm, blue: via manually) is shown; (d1) x 11 zoom part shows coordinates of eye of vortex, initial and final vortex location v, and

Ve, TEspectively.

eyes (see Fig. 7(d1) shown in black circles) are also located,
manually. Six persons are given the data and apt training to
visualize the eye of the vortex. The averaged data (see Fig. 7(d1)
shown in blue dots) are fitted using same polynomial regression
method for predicting the path. It is compared with the predicted
path obtained by DL algorithm. Predicted path by DL algorithm
appears to be originating nearby to the first eye [see Fig. 7(al)
and (d1)] and eye [see Fig. 7(a8) and (d8)] from the final
image of the data. One can visualize clear presence of eye of
cyclonein Fig. 7(al)—(a4). Afterward in successive figures, these
six persons had to estimate approximate centers. We note [see
Fig. 7(a4)] that eye of cyclone not always remains at the center.
This might be the reason of difference between manually and
DL extracted path of cyclone in Fig. 7(cl). Average difference
between fitted curve and original position (extracted manually)
is found less than five pixels in every case that we analyzed. Our
model correctly labeled it as no cyclone and outputs no bounding
boxes, if cyclone activity was absent in images.

One pixel is equivalent to 1 km. The average velocity and
maximum velocity of cyclone can be estimated by coordinates
of eyes. In this particular case, these are found to be 30.1 and
140.2 km/h off course, a correlation is required for estimating
the ground reality. Coordinates information with respect to time
is used for this calculation. Close observation of the initial few
images depicts appearance of two cyclones, one in left bottom
and other, rather a week case, in right side. The weaker cyclone,
on the right side, gets dissolved after 9 h. DL algorithm clearly
avoids classifying it into storm case. We have found many

TABLE V
DL ALGORITHM ESTIMATIONS

S.N. | Name Duration RMSE %
1 ROANU 17-21 May 2016 15.55
2 KYANT 25-26 Oct. 2016 5
3 VARDAH 07-12 Dec. 2016 9
4 MORA 27-30 May 2017 6
5 OCKHI 29 Nov. — 06 Dec. | 11
2017

instances (not this case study) with situations such as if in a
time sequence multiple cyclones exist or will arise in the future.

In some instances cyclone with strong appearances dies out
while weaker gets converted into strong cyclone. All such cases
are tested, successfully. The algorithm is also tested with the
option when images contain multiple cyclones together. In this
figure that option is not used. The processed data between May
17, 2016 and December 6, 2017 are shown in Fig. 8. Table V
contains the details of five different cyclones developed in this
duration. Respective data are obtained from the Joint Typhoon
Warning Center (JTWC) and shown in Fig. 8(a) [59]-[62].
JTWC data tracks are obtained from web repositories of 1)
NCAR Lab, UCAR (yellow pin shape: only in case of Ockhi)
and 2) North Indian Ocean Best Track Data by Naval Meteorol-
ogy and Oceanography Command of U.S. Navy (multicolored
cyclone shape). Coordinates of eyes of all five cyclones are
obtained manually and shown in Fig. 8(b) and (c) using red
dots [best seen in the composite image in Fig. 8(d)]. Fig. 8(c)
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contains data related to Ockhi in Arabian Sea side of Indian
Peninsula. The other four storms were present in Bay of Bengal
side. Root-mean-square error (RMSE) is estimated between
coordinates obtained by DL and coordinates obtained manually.
Manually obtained coordinates are assumed near to be the true
value. The DL algorithm has successfully detected instances of
cyclonic activities in two-year durations in respective locations
that match with manually obtained with less than 16% error.

Weaker instances (wind speed less than 55 km/h) namely,
TWO, NADA, MAARUTHA, FOUR are skipped to keep the
clarity in this figure. Fig. 8(c) shows datewise color-tagged esti-
mated path (coordinates of eye of cyclone) using DL algorithm
(green, pink, blue, yellow-red, blue, yellow, green, respectively,
from November 29 to December 4, 2017). Fig. 8(d) is made by
overlaying the images shown in Fig. 8(a)—(c).

For Ockhi, estimation by the DL algorithm, reported earlier
and manually, is closer to each other from November 30, 2017
to December 4, 2017. For VARDHA (green dots by DL and
curve with cyclone marker by JTWC), both match even better.
It is observed that DL estimation and manual estimation are
closer to each other but JTWC tracks digress when storm is
about to weaken. The slope of the latter part of Mora and
Ockhi slightly differs. JTWC tracks, otherwise, show similar
characters with minor offset. The slight difference may be due
to difference in perception of eye of the vortex by a human user
and DL algorithm. The processed flat images do not have z-axis
perception; eye of a cyclone visually appears to be a hole or
darker region surrounded by clouds rotating in spiral or circular
fashion. Sometimes, the camera of the satellite is not right on
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Tracing the cyclone path. (a) Cyclones between 2016 and 2017 by JTWC records over Indian subcontinent with traced paths. (b) Location coordinates of
cyclone in year 2016 using DL algorithm. (c) Location coordinates of cyclone in year 2014 using DL algorithm. (d) Overlay of coordinates of path of cyclone.

the top of the eye. The eye aligned according to curvature of
earth but satellite’s camera is not. Images in such conditions give
impression that there are clouds on the top of the eye hiding it. In
such situations, the only way to locate an eye is to assume that it
would be at the center of the cyclone, which may not be true. It
is observed that DL algorithm performs better identifying eye in
such conditions when compared with human user. We note that
there is a difference in JTWC data by two resources for Ockhi.
One is depicted using yellow color button and another by storm
shaped markers. Movie 2 contains time series migration of Ockhi
in detailed fashion.

IV. CONCLUSION

Several datasets are used as training and testing set for the
development of a DL algorithm. Several interpolation methods
are also tested for enhancing the performance of the DL al-
gorithm. The basic CNN model outperforms all the standard
models in the classification regime of RS images. In particular,
the YOLO model is suggested for detecting and locating the
cyclone. R-CNN model is suggested for predicting the location
of storm.

Pointwise conclusions are given as follows.

1) The FO-based approach is slightly better than Brox’s

approach for optical flow estimation for interpolation.

2) SFI optimization approaches are better as far as MDE and
NSD error estimates are used, but for slight compromise
of performance nearest neighborhood method is consid-
erably faster.
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3) If the high-frequency dataset is not available, then Reti-
naNet is a better model than LSTM.

4) Performance of DL algorithm improves with densified
dataset using interpolation and data augmentation.

5) Tracking and predicting eye of cyclone is much accurate
by DL algorithm as compared to manual process, if images
do not contain more than one cyclone.

Finally, DL algorithms for classification and prediction of
storm in near future are successfully tested. For classifying the
storm or nonstorm, an accuracy of 97% and for detection of
cyclone a confidence of greater than 84% are achieved. The
DL algorithm contains two different neural networks, one for
classification and another for locating the eye of cyclone, trained
separately. The performance of classification is expected to
affect the performance of locating the eye of the cyclone. The
flat images fail to impart effect due to curvature of the earth and
need to incorporated separately in the future, if made available.

The outcome of the presented work depicts involved math-
ematical nature of issues and highlights an approach to find
an optimal classical preprocessing candidate before employing
neural network, in the form of a complete DL algorithm. We note
that advanced post processing DL algorithm such as presented
in this article can help to predict the cyclone pathway for
early preparedness without much human intervention with more
accuracy and speed.
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