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Representation and Classification of Auroral Images
Based on Convolutional Neural Networks

Qiuju Yang and Penghui Zhou

Abstract—Auroral forms are correlated with certain physical
processes in the magnetosphere and ionosphere. It is, therefore,
desirable to automatically classify the vast amount of observed au-
roral images and make large statistical studies. The key problem in
classification tasks is image representation. In this article, using the
adaptive feature learning ability of convolutional neural networks,
an end-to-end auroral image classification network is proposed,
which automatically classifies the auroral images observed at the
Chinese Yellow River Station into four classes: arc, drapery corona,
radial corona, and hotspot corona. Based on the AlexNet, our
method exploits the advanced spatial transformer network (STN)
and large margin Softmax (L-Softmax) loss function to extract
auroral features. STN is able to learn invariance to translation,
scaling, and rotation, whereas L-Softmax increases the difficulty
of auroral feature learning so that it encourages the intraclass
compactness and interclass separability between learned features.
The proposed method was validated on the auroral image datasets
by supervised classification, image retrieval, and statistical anal-
ysis of the temporal occurrence distributions of the four auroral
categories. Experimental results showed that after trained on the
winter auroral observations in 2003, the proposed model achieves
an average classification accuracy of 93.7% on the auroral data
of the following five winters (2004–2009) while maintaining high
efficiency, which is superior to the previously reported articles.

Index Terms—Auroral image classification, convolutional neural
network (CNN), large margin Softmax (L-Softmax) loss function,
spatial transformer network (STN).

I. INTRODUCTION

AURORA is a luminous glow of the upper atmosphere
caused by energetic particles that enter into the atmosphere

from the magnetosphere. Different auroral types are correlated
with specific Earth’s magnetosphere activities, and effective
auroral classification benefits the prediction of Earth’s magneto-
sphere structure and space weather. How to accurately character-
ize and reasonably classify aurora has become an indispensable
part of the study of space physics [1], [2].

Aurora is always analyzed in a “case study” way by space
scientists [3]–[6]. These studies, however, are subjective, opera-
tor dependent, and very time consuming. Syrjäsuo and Donovan
[8] first introduced the computer vision technique into auroral
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image classification and classified auroras into arcs, patchy
auroras, omega bands, and north–south structures according to
their shape information. Since then, a lot of automatic auroral
studies, including auroral image representation, classification,
retrieval, and segmentation, have been emerging [9]–[15]. Wang
et al. [16] proposed to combine the local binary pattern operator
and a delicately designed block partition scheme to characterize
auroral morphology (shape and texture). Rao et al. [17] de-
scribed the color variants of scale-invariant feature transform
features for performing the automated classification of all-sky
camera images into three mutually exclusive classes: aurora,
no aurora, and cloudy. Yang and Hu [18] utilized the Weber
local descriptor to represent and classify auroral images into
the arc, drapery corona, radial corona, and hotspot. By com-
bining multiple handcrafted features (grayscale, structural, and
textural features) extracted from auroral images, Zhong et al.
[19] proposed an auroral image classification method based on
multifeature latent Dirichlet allocation.

Above auroral image classification techniques include two
separate procedures: feature extraction and classifier design. The
extracted features represent the intensity, shape, and texture of
the aurora and play an important role in auroral image clas-
sification. Ideally, they should be distinctive and, at the same
time, robust to a variety of possible image transformations (e.g.,
rotation, scaling, and translation). However, hand designing
an effective feature is always a lengthy process that requires
considerable expertise to delicately design according to specific
data and tasks.

Recently, deep learning based algorithms have quickly domi-
nated most vision-based tasks due to their discriminative power
[21]. Image representations based on the convolutional neural
network (CNN) have attracted increasing attention in the com-
munity and demonstrated impressive performance [34], [38],
[39]. The main difference between CNNs and traditional ma-
chine learning methods is that CNNs learn features directly
from the data without an additional manual feature extraction
process. So far, several CNN models have been studied for
the applications of various computer vision tasks, including
OverFeat [28], AlexNet [32], GoogLeNet [35], VGGNet [36],
ResNet [37], Inception [20], and their variants. Razavian et al.
[29] used pretrained OverFeat to extract features and proved the
off-the-shelf features yielded better results than the handcrafted
features on various computer vision tasks.

These advances have been quickly brought into the field of
auroral image classification. Wang and Yang [40] introduced
AlexNet to automatically classify the dayside auroral images of
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Yellow River Station (YRS) into the arc, drapery corona, radial
corona, and hotspot. Clausen and Nickisch [30] utilized the
pretrained Inception-v4 to automatically classify auroral images
into clear/no aurora, cloudy, moon, arc, diffuse, and discrete
from the Oslo Auroral THEMIS (OATH) dataset. Niu et al. [10]
proposed a weakly supervised semantic segmentation method
to achieve joint pixel-level localization of the key local structure
and image-level classification of the auroral images. Han et al.
[25] proposed a multisize kernels CNN with eye movement
guided task-specific initialization to classify auroral images into
the arc, drapery corona, and radiation corona.

However, there is a gap between the above classification
methods and the actual application. On the one hand, the aurora
is rich in spatial variations and often lacking well-defined inter-
class boundaries. The extracted CNN features for auroral image
classification should be rotation invariant and discriminative
[42]–[44]. But as shown in [40] and [30], the auroral features
obtained by AlexNet and Inception-v4 are not satisfactory. On
the other hand, the number of auroral images is very huge and
increasing every winter. Therefore, the method for auroral image
classification must be efficient and easy-to-implement before it
has practical value. However, the training of the patch scale
model in [10] is a very time-consuming process, and obtaining
the eye movement annotation in [25] is extremely expensive.

This article aims to develop a practical method to classify the
vast amount of existing auroral images automatically. A new
auroral image classification model based on CNN architectures
is explored according to the unique characteristics of the aurora.
First, we compare the three CNN models (AlexNet, VGG16, and
Inception-v4) used in the previous automatic analysis of auroral
images [23]–[24] and [30], and the simplest AlexNet is chosen
as the backbone for auroral image classification in consideration
of accuracy and efficiency. Second, considering the large spatial
difference of auroral images (see Fig. 3), the spatial transformer
network (STN) [22] is inserted before AlexNet. STN can adap-
tively transform and align the images according to the classi-
fication task (including translation, scaling, rotation, and more
generic warping), which can make the model pay more attention
to the region of interest (ROI) and improve the classification
accuracy (such as [41]). Third, as a natural phenomenon, the
continuous evolution of the aurora gives it abundant intraclass
forms while lacking discriminative interclass boundaries. The
most frequently occurring arc auroras last a long time and exhibit
high intraclass appearance variance, whereas there is little inter-
class difference when auroras transit from one type to another
as they are always gradually changing. In view of this, the large
margin Softmax (L-Softmax) loss function [27] is adopted to
optimize the auroral image classification model. L-Softmax loss
function simultaneously maximizes the intraclass compactness
and interclass separability. We pretrain the classification model
on ImageNet and fine-tune it with our auroral image data.

The main contributions of our work can be summarized as
follows.

1) We propose an easy-to-implement yet effective CNN
model for the auroral image classification, which can help
analyze the huge auroral image datasets.

2) The proposed classification model is domain knowledge
based and its submodules, STN and L-Softmax loss func-
tion, are chosen according to the unique characteristics of
the aurora.

3) In order to meet the actual demands in auroral physics, dif-
ferent from previous experimental settings, the proposed
model is trained on one-winter auroral observations and
tested on the following five-winter observations.

4) Extensive experiments are carried out to validate the ef-
fectiveness of the proposed model, which suggests the
practical application value of our method to the automatic
classification of the huge amount of auroral images.

The remainder of this article is organized as follows. Section II
outlines the overall framework of the auroral image classifica-
tion model and briefly introduces the STN and L-Softmax loss
function. Section III presents the description of auroral image
classification mechanism and dataset setup. The experiments
and results are reported in Section IV. We conclude this article
in Section V.

II. STN AND L-SOFTMAX-BASED ALEXNET FOR AURORAL

IMAGE REPRESENTATION

Fig. 1 shows the whole network architecture of the auroral
image classification model. The spatial transformer network
(STN) is embedded in the input layer of the AlexNet for the
spatial transformation of auroral images, which enables the
network to automatically learn more effective auroral regions
in the training process. In addition, the L-Softmax loss function
is utilized to optimize the network so that the network can learn
more discriminatory auroral features. In the following, we will
abbreviate the model to STN-Lsoftmax-AlexNet.

A. Spatial Transformer Network

Although CNN is a powerful classification model, it is still
affected by the spatial diversity of data. Jaderberg et al. [22]
proposed a new learning module, spatial transformer network,
to solve this problem. STN can be trained to pay more attention to
the ROIs. STN does not require the calibration of key points and
can adaptively transform the input images according to a certain
task (including translation, scaling, rotation, and other geometric
transformations to select the most relevant regions). When the
spatial variance of the input data is large, STN can be added
to the existing CNN architecture to improve the classification
accuracy of the model. In this article, the STN is inserted in the
input layer of the AlexNet network (see Fig. 1), and the auroral
images are affine transformed into the new images with strong
characterization ability. As shown in Fig. 2, from the input U
to the output V, STN consists of the localization network, grid
generator, and sampler [22].

The first part localization network is a custom CNN architec-
ture that computes the generated two-dimensional (2-D) affine
transformation parameter θ. We define it as two convolutional
layers, a max-pooling layer, a fully connected layer, and a
regression layer. The network takes the input auroral images
U ∈ RH×W with width H and height W and outputs the 2× 3
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Fig. 1. Architecture of STN-Lsoftmax-AlexNet.

Fig. 2. STN, (1)–(4) are executed sequentially.

dimensional matrix transformation parameters θ. The second
part grid generator is used to map every coordinate (xti, y
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where Tθ is a 2-D affine transformation function that is com-
posed of the transformation parameter θ obtained in the first
part [22].Aθ is the transformation matrix, andGi is the mapping
space grid coordinates, where i represents the ith pixel point in
the target image V. The third part sampler fills the pixel value
of the coordinate (xti, y

t
i) in the target image V using both the

pixel values of the source image U and the coordinate (xsi , y
s
i )

obtained in the second part. Since some of the coordinates
mapped to the source image U may be decimals, we estimate
the pixel values according to each surrounding pixel by bilinear
interpolation.

B. L-Softmax Loss

It is important to choose an appropriate loss function for a
specific task. Softmax loss has been widely adopted by many
CNNs due to its simplicity, probabilistic interpretation, and
superior performance. Specifically, Softmax function is used to
transform the prediction of the jth class for the ith input by

σi(fyi) =
exp (fyi)∑k
j=1 exp (fyj )

, i = 1, 2, . . . , k (2)

where yi is the sample class label, and fyi is usually the activa-
tions of a fully connected layer and can be written as

fyi =WT
yi
xi + byi . (3)

Softmax turns the predictions into the nonnegative values and
normalizes them to get a probability distribution over classes.
The probability that data x belongs to class i is called likelihood.

oi = σi(fyi). (4)
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Therefore, the original Softmax loss can be written as

L = −log(oi) =
1

N

∑
i

Li =
1

N

∑
i

−log

(
efyi∑
j e
fj

)
(5)

where fj denotes the class score of the jth element (j ∈ [1, k], k
is the number of classes), and N is the number of training data.
If we omit the constant byi in fj , fj , it can also be formulated as

fj = ||Wj || ||xi|| cos(θj), 0 ≤ θj ≤ π (6)

where θj is the angular margin. Then, the Softmax loss can
further be defined as

Li = −log

(
e||Wyi

|| ||xi||ψ(θyi )∑
j e

||Wj || ||xi|| cos(θj)

)
. (7)

A standard CNN can be viewed as a convolutional feature
learning machine that is supervised by the Softmax loss [27].

Although the Softmax loss function has been widely used,
it does not explicitly encourage discriminative learning of fea-
tures. To solve this problem, Liu et al. [27] generalized the
Softmax loss to a more general large-margin Softmax (L-
Softmax) loss in terms of angular similarity, which leads to
potentially larger angular separability between learned features
and, thus, generates more discriminative features. The intuition
behind L-Softmax is simple. Consider a binary classification
and a sample x from class 1, the original Softmax is to force
||W1|| ||x1|| cos(θ1) > ||W2|| ||x2|| cos(θ2) to classify x cor-
rectly. Instead, L-Softmax requires ||W1|| ||x1|| cos(mθ1) >
||W2|| ||x2|| cos(θ2), (0 ≤ θ1 ≤ π/m), where m is a positive
integer. Since m is a positive integer, and the cosine function is
monotonically decreasing on the intervals [0, π]; thus, cos(mx)
is less than cos(x). Therefore, the new classification criteria is a
stronger requirement to correctly classify x, producing a more
rigorous decision boundary for class 1.

Formally, the L-Softmax loss is defined as

L− Softmax

= −log

(
e||Wyi

|| ||xi||ψ(θyi )

e||Wyi
|| ||xi||ψ(θyi ) +

∑
j �=yi e

||Wj || ||xi|| cos(θj)

)
(8)

in which

ψ(θ) =

{
cos(mθ), 0 < θ ≤ π

m

D(θ), π
m < θ ≤ π

(9)

where m is an integer that controls the classification margin
[27]. With larger m, the classification margin becomes larger
and the learning objective becomes harder. Specifically, when
m = 1, the L-Softmax loss becomes identical to the original
Softmax loss. D(θ) is a monotonically decreasing function
andD(π/m) = cos(π/m). By adjusting the margin m between
classes, a relatively difficult learning objective with an adjustable
margin will be defined, which can effectively avoid overfitting.

III. AURORAL CLASSIFICATION MECHANISM

AND DATASET SETUP

So far, there is no uniform classification scheme for auroral
images. Generally, optical auroras observed on the ground can be

classified into two broad categories: discrete and diffuse auroras
with structured forms or relatively homogenous luminosity,
respectively [31]. Discrete auroras can be further classified into
arc and corona according to their spatial morphology. Based
on the observations acquired by the three-wavelength (427.8,
557.7, and 630.0 nm) all-sky imageries (ASIs) at YRS in
Ny-Ålesund, Svalbard, Hu et al. [26] further classified the day-
side coronal auroras into the radial corona, drapery corona, and
hotspot.

Considering that the auroral data used in this article were
obtained by the ASI during daytime at YRS, we classify the
auroral images according to the classification scheme proposed
in [26], which was also applied in [13], [16], and [18]. Specif-
ically, the dayside discrete auroras were classified into the arc,
drapery corona, radial corona, and hotspot categories according
to the spectral and morphological characteristics. Examples and
characteristics of each type are given in Fig. 3.

The optical instruments at YRS capture photoemissions at
427.8, 557.7, and 630.0 nm during the winter season with a
time resolution of 10 s. The ASI auroral images observed at
YRS are available at http://www.chinare.org.cn/uap/database.
In consideration of the image characteristics, we concentrated
on the dayside aurora at 557.7 nm from December 2003 to
February 2009. To better focus on the study of auroral image
classification, the images that do not contain auroral structures
or were captured under bad weather conditions (e.g., auroral
structures were severely covered by clouds) were eliminated by
human visual inspection. Specifically, the dataset consists of
three parts.

1) ASI8K contains 8000 images (2913 arc images, 1771
drapery corona images, 1640 radial corona images, and
1676 hotspot images, respectively) from December 2003
to February 2004, which is used to train the classifi-
cation network. Specifically, the ratio of training and
validation is 4:1; that is, there are 6400 training images
and 1600 validation images, respectively, in each training
epoch.

2) ASI2K contains 2184 images with class labels in which
each category has an approximately equal number of
images from December 2004 to February 2009 (different
winters from the training images). It is used in the testing
phase to evaluate the performance of the proposed method.

3) ASI399K contains 399 515 auroral images from 2004
to 2009 without the manual labels. Almost all the ob-
served images are selected except those who have no
auroral activity or only have diffuse auroras or under
cloudy weather. It is used to make a statistical study of
the temporal occurrence distributions of the four auroral
categories.

In order to facilitate the following experiments, all images in
the dataset were preprocessed in the same manner as in [16],
including subtracting system noise and cutting off the outer
regions of images, where significant wide-angle distortion hap-
pened and might contain YRS lights, and auroral images were
cropped from 512 × 512 to 440 × 440 pixels finally. To benefit
the future research work in this field, all datasets used in this
article are released at https://github.com/wszph/Aurora_data.

http://www.chinare.org.cn/uap/database
https://github.com/wszph/Aurora_data
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Fig. 3. Examples and characteristics of the four auroral types sampled from the dataset. (a) Arc. (b) Drapery Corona. (c) Radial Corona. (d) Hot-spot.

IV. EXPERIMENTS AND RESULTS

In this section, auroral image classification and retrieval
experiments were carried out on ASI8K and ASI2K. The
importance of each module of the STN-Lsoftmax-AlexNet
model was verified and the accuracy and efficiency of the
model were compared with the existing auroral image classi-
fication methods. Besides, a statistical analysis of the temporal
occurrence distribution of auroral types was further made on
ASI399K.

A. Implementation Details

In this article, the AlexNet was pretrained on the ImageNet
dataset as a feature extraction tool and all parameter settings
were obtained from the Caffe toolbox [33]. Generally, the
AlexNet consists of five convolutional layers (abbreviated as
Conv1–Conv5) and three fully connected layers (FC6–FC8).
With the increase of the layer number, the outputs represent
the higher semantic features. Specifically, the input image is
resized to 256 × 256 before fed into the AlexNet, and the output
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Fig. 4. Block diagram illustrates the feature extraction and classification of auroral images using AlexNet architecture. C represents the convolutional layer, S is
the max-pooling layer, and F refers to the fully connected layer.

of the last FC8 layer, including four nodes, can be used as the
category labels in the task of auroral image classification. Fig. 4
illustrates the diagram of the auroral image feature extraction
and classification using AlexNet architecture.

The network was trained and optimized with the L-Softmax
loss function. All weights were learned via backpropagation
and stochastic gradient descent. Each minibatch consisted of 64
semantic regions for the training dataset or 16 for the validation
dataset, which comprised the predefined four auroral categories
randomly. We used an initial learning rate of 0.00003, a momen-
tum of 0.9, and a weight decay of 0.0005. The experiments were
performed on a PC with a 3.4 GHz Intel i7-6700 CPU under a
Linux system.

Considering that the L-Softmax loss had difficulty in conver-
gence, a decay factor λ was added to the learning strategy [27],
which was expressed as

fyi =
λ||Wyi || ||xi|| cos(θyi) + ||Wyi || ||xi||ψ(θyi)

1 + λ
(10)

where λ is a large number at the beginning of gradient descent,
and it is gradually reduced during iteration. In our experiments,
the initial value of λ was set to 10000 and the minimum value
was set to 15 by visualizing the convergence performance of the
network in the training process.

B. Experiments and Analysis

1) Supervised Classification: The following three super-
vised classification experiments, including base model selec-
tion, component ablation studies, and comparison with existing
methods, were all trained on dataset ASI8K and tested on dataset
ASI2K. The classification rate of each auroral type was calcu-
lated by dividing the number of correctly classified images by the
total labeled number of that type, and the average classification
accuracy was equal to the number of correctly classified images
divided by the total number of testing images.

a) Base model selection: We compared the performance
of three popular CNN models, AlexNet, VGG16, and Inception-
v4, which have been used for the automatic analysis of auroral
images before. Compared with AlexNet, VGG16 and Inception-
v4 are more powerful for feature extraction because of their

TABLE I
COMPARISON OF ALEXNET, VGG16, AND INCEPTION-V4

deeper and more complex networks. However, the deeper the
network, the more likely it is to have a gradient dispersion
problem and more challenging to optimize the model. The clas-
sification accuracy and running time were compared in Table I.
The best results are highlighted with bold fonts. It is clear that
the AlexNet achieves the best performance in terms of both
average accuracy and efficiency on datasets ASI8K and ASI2K.
Therefore, the following experiments are based on AlexNet.

b) Component ablation studies: In this section, we present
the ablation studies to isolate the effect of each module (STN
and L-Softmax) of the proposed STN-Lsoftmax-AlexNet model.
Fig. 5 illustrates the comparison of the classification results ob-
tained by different methods. The dotted green line and the solid
mauve line depict the performance of the original AlexNet and
combined AlexNet with STN, respectively, the dotted blue lines
represent that of the L-Softmax loss based AlexNet, and the solid
red lines show the performance of STN-Lsoftmax-AlexNet. The
following conclusions can be drawn from Fig. 5.

1) The classification accuracy of each auroral type indicates
that almost all methods are easier to recognize the arc and
drapery corona. In contrast, the accuracy of the hotspot
aurora is relatively low. This is directly related to the
morphological complexity of these auroral types, as shown
in Fig. 3.

2) The classification accuracy shown by the solid lines is
higher than that shown by the dotted lines, which indicates
that the combination of STN and AlexNet improves the
accuracy of the classification model. The average accuracy
improvement is about 1%–2% over no STN structures,
and the improvements are up to 4.4% and 3.5% for the
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Fig. 5. Comparison of the performance of different methods.

TABLE II
COMPARISON WITH EXISTING METHODS

hotspot and drapery coronas, respectively. It also indicates
that STN is effective in the spatial transformation of the
original auroral images during the training process.

3) The red lines show a higher classification rate than the
mauve line and the dotted blue lines show a higher classifi-
cation rate than the dotted green line. The average accuracy
has been improved by about 2%, while radial coronas
get an improvement of 5.2% with m = 4. This proves
that the L-Softmax loss function can guide the network
to learn more distinctive auroral features. However, as
m increases, the model performance was not improved
continuously. From Fig. 5, we can see that with m = 3,
all categories achieve the best classification results. The
following experiments are, therefore, based on the STN-
Lsoftmax-AlexNet with m = 3.

c) Comparison with existing methods: We compare the
performance of the proposed STN-Lsoftmax-AlexNet model
(m = 3) in terms of both accuracy and time costs with those
reported in the state-of-the-art on auroral image classification
using deep learning techniques. Specifically, they are AlexNet,

Inception-v4, and a region scale model (RSM) applied to the
auroral image classification in [40], [30], and [10], respectively.
Table II depicts the comparison results. Our method achieves
much higher classification accuracy than the previous methods.
In terms of running time, our method takes 12.43 ms to predict
the class label of a testing image, which is 2.27 ms more than
the basic AlexNet. This is related to the part of the local network
of STN (see Fig. 2). And the difference of m value of the loss
function has little effect on the time cost as long as the model
structure is the same. Inception-v4 and RSM are much more
complex networks than our method, taking 40.41 and 1233.8 ms,
respectively, to predict the label of an image, which is much
slower than our method. In brief, the proposed method that
combines STN and L-Softmax loss function based AlexNet is
both effective and efficient for auroral image classification.

Furthermore, our experimental setting is different from the
previous automatic auroral image classification works (e.g.,
[13], [16], [19], and [30]). The training and testing data in these
articles came from the same year(s), which were obtained by
shuffling and randomly dividing the auroral data from one or
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TABLE III
CONFUSION MATRIX OF SUPERVISED CLASSIFICATION ON TESTING IMAGES WITH STN-LSOFTMAX-ALEXNET MODEL (M = 3)

Fig. 6. Retrieval results of four types of auroral images. Query images are in the first column, where the red, green, yellow, and blue boxes denote the arc, drapery,
radial, and hotspot auroras, respectively. The second–eighth columns are the returned retrieved images (ranks 1, 3, 5, 8, 10, 15, and 20, respectively.).
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Fig. 7. Temporal occurrence distributions of dayside auroral categories.

several years. The model in this study is trained on one-year
auroral data and then tested on the following five-year auro-
ral data according to the practical needs of auroral physics.
In addition, although some advanced issues, such as weakly
supervised semantic segmentation, have been developed [10],
the task of automatic aurora classification is more significant
and practical in auroral physics. Some auroral types, such as the
drapery and radial coronas, have no distinct shape boundaries to
be segmented. Actually, one of the uses of aurora segmentation
is to improve the accuracy of aurora classification [7], [10].

d) Classification confusion matrix: In order to quantita-
tively evaluate the classification effectiveness of our proposed
STN-Lsoftmax-AlexNet model (m = 3) on each auroral type,
we calculated the classification rate of each auroral type and the
average classification accuracy of all testing images and depicted
the confusion matrix of the classification results in Table III. The

classification accuracy of the four auroral categories indicates
that the arc and drapery coronas are more easily recognized, and
radial coronas might be classified as drapery coronas or hotspot.
The classification accuracy of hotspot auroras is somewhat low
and they are likely to be classified as auroral arcs or radial
coronas. The reason is that there are many complex auroral
structures in the hotspot displays, such as rays, beams, spots,
and irregular patches, as shown in Fig. 3(d).

2) Image Retrieval: In recent decades, with the increasing
number of auroral images, it is urgent to retrieve the images of in-
terest quickly and effectively from massive auroral observations.
In this section, the F7 layer of AlexNet was extracted from the
trained STN-Lsoftmax-AlexNet model as the feature vector to
represent each image, and the Euclidean distance between two
features was used to measure the similarity between the two
images. The representation ability of the proposed model is
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verified by image retrieval experiments. Dataset ASI8K from
2003 to 2004 was used as the query images, and the retrieval
experiments were carried out on dataset ASI2K from 2004 to
2009. We chose ASI2K, instead of ASI399K, as the retrieved
dataset, because all images in it have class labels that could help
to evaluate the retrieval results.

Fig. 6 shows examples of the query and retrieved images. The
first column shows the query images, and the second–eighth
columns are the most similar (ranks 1, 3, 5, 8, 10, 15, and 20,
respectively) retrieved images by the trained model, respectively.
In the query images, (a) and (b) with red boxes are auroral arcs,
(c) and (d) with green boxes are drapery coronas, (e) and (f) with
yellow boxes are radial coronas, and (g) and (h) with blue boxes
are hotspot auroras. From the perspective of human vision, the
query images and their retrieved results are very similar. Except
for a few images marked with color boxes [that is, rank 3 and rank
20 in row (c) and rank 15 in row (f)], the retrieved images have the
same category labels (manually labeled) as their query images.
This proves that the proposed model is able to characterize the
key features of auroral images. As a result, we can utilize this
model to select the interested auroral images from the massive
auroral observations. For the drapery and radial coronas, some
retrieved images have different category labels (manual labels)
from their query images, such as the images marked with yellow
and green boxes in Fig. 6(c) and (f), respectively. This indicates
that extracting only one layer (F7 layer) from the classification
model is not enough to distinguish the two coronal auroras.

3) Occurrence Distributions: The auroral events caused by
similar or repeatable physical processes share the same funda-
mental morphology; thus, a statistical study of the occurrence
time of auroral types is important to our understanding of
magnetospheric dynamics. In this section, the images in dataset
ASI399K from 2004 to 2009 were predicted by the trained
STN-Lsoftmax-AlexNet model, and the temporal distribution
of the four auroral types was drawn in Fig. 7. The temporal
axis between 6 and 18 MLT was divided into 240 bins of 3 min
duration. At the top of these panels, four active regions proposed
in [26] were denoted and partitioned by bold dashed lines, while
the two states of the midday gap region were indicated by a
thin dashed line. From top to bottom, the first panel shows the
frame number of all predicted images occurring in each time
period. The second–fifth panels show the occurrence ratio of
each category, which is the result of dividing the number of
images of each type within 3 min by the total number of images
in that time period, respectively.

As shown in Fig. 7, dayside auroras mainly occur before noon,
followed by the afternoon, and rarely occurs at noon. More arcs
and drapery coronas were observed than radial coronas and
hotspot auroras from 2004 to 2009 in YRS. The auroral arc
has a double-peak distribution around noon and the forenoon
peak is weaker than the postnoon peak. Both drapery coronas
and radial coronas predominantly occur before 13 MLT but
with different peak positions. The occurrence of these auroral
categories dominates the different regions of the dayside oval.
The drapery coronas occur more often in region G, whereas
the radial coronas occupy in region R, and the hotspot auroras
dominate region H. Their global distributions approximately
coincide with the multiple-wavelength intensity distribution of

the dayside aurora presented in [26]. This proves that our method
can be used for the automatic classification of a huge amount of
auroral images in practical applications.

V. CONCLUSION

We developed an automatic representation and classification
method based on CNNs to extract auroral features and classify
the auroral images into the arc, drapery corona, radial corona,
and hotspot. Aurora is a natural phenomenon whose morphol-
ogy continuously changes over time, and there is no obvious
boundary when it gradually transits from one type to another.
Therefore, a major challenge for auroral image classification is to
maximize the intraclass compactness and interclass separability
of auroral features. To tackle this problem, this article combines
the STN and AlexNet and optimizes the network by using the
L-Softmax loss function. The classification results show the
following.

1) AlexNet is a good choice for the auroral image classifica-
tion in terms of both accuracy and efficiency.

2) L-Softmax loss function can guide the network to learn
more discriminative auroral features and, thus, improves
the classification accuracy, especially that of some subcat-
egories (e.g., radial coronas get an improvement of 5.2%
with m = 4).

3) STN is able to actively spatially transform the input images
and simplify the subsequent classification task, and thus
lead to superior classification performance (the improve-
ments are up to 4.4% and 3.5% for the hotspot and drapery
coronas, respectively, as compared with no STN modules).

Auroral image retrieval experiments were also carried out
to visually evaluate the representation ability of the proposed
model. The retrieval results are basically in accordance with
human visual judgments. In addition, to verify the generalization
performance of the proposed model, a larger dataset containing
nearly 0.4 million auroral images from 2004 to 2009 was tested
and the category of each image was predicted. The tempo-
ral occurrence distributions of the dayside auroral types were
in accordance with the empirical rules of auroral physics. In
summary, the proposed model has the advantages of excellent
classification accuracy, high efficiency, good generalization, and
simple implementation, and thus can be truly and widely applied
for aurora classification.

The proposed classification model is data-driven and does
not rely on handcrafted designs, so it can also be applied to
the classification of auroral images from other stations or with
different classification schemes. Just providing a set of labeled
data from these new stations according to a specific classification
scheme, the model will be retrained and its performance can be
assessed with these data. Once the vast amounts of the existing
ground-based auroral data are classified, we will be able to make
large statistical studies to analyze the physical mechanisms of
each auroral type.
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