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Abstract—Large-scale crop mapping is vitally important to
agriculrural monitoring and management. However, traditional
methods cannot well meet the needs of large-scale applications.
Therefore, this study proposed a method for large-scale crop map-
ping based on multisource remote sensing images. To be specific,
1) harmonic analysis was conducted on normalized difference
vegetation index time-series derived from moderate resolution
imaging spectroradiometer images and synthetic aperture radar
backscattering coefficient time-series derived from Sentinel-1 data,
respectively, extracting harmonic-derived phenological features
and harmonic-derived backscattering features, and then combined
with spectral features from Landsat-8 and Sentinel-2 images to
construct the final multisource feature set for crop classification;
2) it employed prior constraints of crop dominance and crop-
land distribution to reduce misclassifications in large scale crop
mapping; and 3) the whole process was conducted on the Google
Earth Engine online platform, which can reduce the computational
burdens caused by the spatiotemporal data. In the experimental
study, we evaluated three crops, including wheat, rapeseed, and
corn in Qinhai in 2018, based on the classification and regression
tree classifier. The results show that the Jeffries–Matusita distances
between crop samples are close to 2, and the overall accuracy is
84.25%. Furthermore, this study found that the distribution of
the crops in Qinghai is associated with climate, topography, and
cultivation habits.

Index Terms—Large-scale crop mapping, harmonic analysis,
multisource feature set construction, multisource remote sensing
images, prior constraints.

I. INTRODUCTION

ACCURATELY and efficiently mapping the major crops
is a prerequisite for precision agriculture, such as crop

condition monitoring, phenology detection, yield prediction,
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and disaster reduction, and is of great significance for macroe-
conomics, food security, agricultural policy-making, and envi-
ronmental protection [1]. Currently, with the rapid development
of earth observing techniques, abundant remote sensing images
with high spatial and temporal resolutions are available [2],
[3], which provide opportunities for comprehensive agricultural
studies over longer time-spans based on multisource remote
sensing data. However, in practical applications, traditional clas-
sification methods encounter many problems. Typically, due to
different imaging mechanisms, temporal–spatial resolutions and
various interferences, it is difficult to obtain multisource feature
sets of high quality [4]. Especially for large-scale (regularly
larger than a whole province) and long-term time-span (covering
the whole crop growth season with high temporal resolution)
crop mapping, the complex distribution of crops and insuffi-
cient training samples may lead to serious misclassification. In
addition, the spatio-temporal datasets dramatically increase the
cost of data storing and processing.

In the process of crop mapping, multisource feature set con-
struction is a vitally important preliminary work, which directly
affects the final mapping accuracy [5]. At present, many studies
have been conducted on crop mapping with various features
based on different remote sensing data. For example, Pacheco
and McNairn [6] estimated percent crop residue cover with
multispectral images based on spectral unmixing, with the root
mean square errors being 17.29% and 20.74%, respectively.
Satalino et al. [7] utilized C-band synthetic aperture radar (SAR)
to map dominated/nondominated agricultural crops in Flevoland
Netherlands by volume scattering. They used time-series of
Radarsat-2 images to assess the performance of their algorithms,
with the mean accuracy ranging from 75% to 90%. Baghdadi
et al. [8] pointed out that SAR data are valuable in sugarcane crop
monitoring by comparing different multitemporal SAR data.
Boltion and Friedl [9] developed an empirical model to predict
the distribution of corn and soybean using moderate resolution
imaging spectroradiometer (MODIS) data and concluded that
crop phenology metrics could be of significant benefit for corn
and soybean yield predicting. In recent years, with the refined
resolution of the spatiotemporal data and the improvement of
classifiers, the accuracy of crop identification is being improved
continuously [10]–[13]. However, crop mapping based on mul-
tispectral images tends to be seriously affected by weather con-
ditions, and is often complicated by the problems of different ob-
jects with similar spectral signatures. In addition, they can hardly
predict short-term crop progress stages. SAR has the advantage
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of all-day and all-weather monitoring, and verification of the
effectiveness of SAR backscattering with different wavelengths
and polarization modes in crop classification [14]–[16]. Blaes
et al. [17] compared optical imagery and SAR data and pointed
out that optical imagery has a dominant contribution to mapping
accuracy, and SAR data are capable of further improving the
accuracy to a higher level (more than 5%). On the other hand,
classification based on normalized difference vegetation index
(NDVI) time-series can be effectively enhanced by the pheno-
logical characteristics of the crop [18]–[21]. A common strategy
is to extract phenological characteristics from the time-series of
images with high-temporal resolution data (e.g., MODIS) [22]–
[24]. The phenological characteristics are helpful to improve
the classification accuracy. Some studies have shown that these
features are possible to improve the sensitivity to the phenology
evolution [25]. Moreover, the revisit period of many sensors
such as Landsat (16 days) is too long to reflect the growth of
many crops. Multisource feature sets can effectively overcome
this issue by combining the advantages of multiple data sources.
Integrating multiple datasets may also bring some compounding
errors. Therefore, further imperative studies should be focused
on the construction of multisource feature set with spectral,
backscattering, and phenological characteristics.

Misclassifications are inevitable because of various uncertain-
ties such as similar spectral and backscattering characteristics.
In addition, the data noise (induced by cloud, observational
condition, and calibration uncertainties) may also influence the
classification accuracy [26]. The characteristics of cropland and
woodland are very similar, especially when crops are around
the heading date (when the leaves are luxuriant). Some small
buildings are perpetually covered by trees, or they are close
to cropland, so the misclassifications among cropland, building,
and woodland are likely to occur. Furthermore, bare soil is easily
confused with cropland and woodland as well, because fallow
cropland and sparse woodland are similar to bare soil [27]. In
crop classification, the following factors might lead to some
errors to the classification result, such as the local cultivation
habits, which may propagate errors in agricultural production
monitoring or crop acreage calculation [28]. Unfortunately,
traditional evaluation criteria do not provide any information
regarding the spatial variability in classification [29]. Previous
studies have shown that using the cropland boundaries can
effectively reduce the classification errors due to the within-field
spectral variability and mixed-pixels on the boundaries [30],
[31].

Faced with the above problems in crop mapping, in this
study, we proposed a method for large-scale crop mapping
based on multisource remote sensing images. First, the harmonic
analysis [32] is utilized to decompose NDVI time-series and
SAR backscattering coefficient time-series with the obtained
harmonic parameters to extract the phenological features and
backscattering features, which can well describe the key charac-
terizations of different crops. Then, these features are combined
with the spectral features extracted from Landsat 8 Operational
Land Imager (OLI) and Sentinel-2 Multispectral Instrument
(MSI) multispectral signals to construct the final multisource
feature set for crop classification. Finally, some prior constraints

Fig. 1. Flow diagram of large-scale crop mapping.

of crop dominance and cropland distribution were employed to
reduce misclassifications in large-scale crop mapping including
Cropland Extent 1 km Crop Dominance, Global Food Security-
support Analysis Data (GFSAD) (GFSAD1000) and GFSAD’s
Cropland Extent 30 m (GFSAD30) which have been proved
to be effective [33]. The whole process is based on the Google
Earth Engine (GEE) to reduce the computational burdens caused
by the massive spatiotemporal data, with the classification and
regression tree (CART) tool utilized for crop classificaiton,
Finally, the proposed method is employed to evaluate the major
three crops, wheat, rapeseed, and corn in Qinghai Province in
2018.

II. MATERIALS AND METHODS

For the purpose of large-scale crop mapping, a strategy was
put forward, as shown in Fig. 1. After necessary image pre-
processing, harmonic analysis was employed to extract phe-
nological features from NDVI time-series and backscattering
features from SAR backscattering coefficient time-series; then,
combined with spectral features from multispectral signals to
construct multisource feature set; then, separability analysis of
the constructed feature set was evaluated; finally, large-scale
crop mapping was conducted with prior constrains in GEE
platform.

It should be emphasized that GEE provides an efficient plat-
form for the processing of massive multisource remote sensing
data. It is a cloud-based platform for planetary-scale geospatial
analysis that brings Google’s massive computational capabilities
to address a variety of high-impact societal issues [34]. Because
this platform supports online processing and computing for
various remote sensing data, which overcomes the inefficiency
problem associated with the large volumes of data, it has been
widely used in many remote sensing applications [35]–[37].
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TABLE I
DESCRIPTIONS OF THE PRIMARY AND DERIVED REMOTE SENSING DATA USED IN THIS STUDY

Fig. 2. Study area, and the color reflects the elevation change.

A. Study Area and Datasets

Qinghai Province, which is adjacent to Xinjiang, Sichuan,
Gansu, and Tibet, is located in the west of China and the north-
east of the Qinghai-Tibet Plateau (see Fig. 2). Its geographic
coordinates in the longitude ranges from 89°35

′
E to 103°04

′
E,

and in the latitude ranges from 31°39
′
N to 39°19

′
N. The province

covers an area of 721 200 km2, accounting for 7.5% of the
country’s total area [38]–[40]. The three crops in this study
include corn, wheat, and rapeseed. According to the observations
of agrometeorological stations in Qinghai Province, the local
crops are cultivated during a single growing season, which is
mainly from March to October. The general sowing date of wheat
is no earlier than March, the mature stage is in late August and
early September, and the average growth period is about 140 to
170 days; the general sowing data of rapeseed is from March
to April, the mature stage is from August to September, and
the average growth period lasts for about 140 days; the general
sowing date of corn is in April, its milky ripe stage comes in
late September, and the harvest stage is around October. The
remote sensing data we used cover from March 1 to October 31.
This time-span covers the whole growth periods of the crops for
harmonic analysis.

A variety of primary and derived remote sensing data were
used in this study, which involved multispectral imagery (i.e.,
MODIS, Landsat 8, and Sentinel-2), SAR data (i.e., Sentinel-1)

and other ancillary grid data (i.e., crop dominance and cropland
distribution). All data except cropland distribution are free and
open-access in GEE platform; detailed descriptions are shown
in Table I.

1) MODIS NDVI time-series, MODIS/Terra Vegetation In-
dices 16-Day L3 Global 250 m SIN Grid (MOD13Q1)
product, with a spatial resolution of 250 m and temporal
resolution of 16 days, was mainly used for crop phenolog-
ical feature extraction.

2) Landsat 8 OLI, consists of nine spectral bands, with a
spatial resolution of 30 m and temporal resolution of 16
days. B2 to B7 bands of Landsat-8 OLI were selected for
this study.

3) Sentinel-2 MSI provides images with high spatial, spec-
tral and temporal resolutions and incorporates two new
spectral bands in the red-edge region. In particular, the
“red-edge band” is especially useful for distinguishing the
difference of different crops from foliar chlorophyll and
canopy nitrogen [41]. Previous studies pointed out that the
red-edge band in Sentinel-2 images, B5 (705 nm) band
responds better to chlorophyll than B6 (740 nm) and B7
(783 nm) [42]. Therefore, B5 band of Sentinel-2, whose
spatial resolution is 20 m and temporal resolution is 5 days,
was used in this study.

4) Sentinel-1 dual-polarization C-band SAR instrument pro-
vides three resolutions (10, 25, and 40 m), four band
combinations (corresponding to scene polarization) and
three instrument modes.

5) Crop dominance is derived from the Cropland Extent 1 km
Crop Dominance, GFSAD. It provides the spatial distribu-
tion of the major global cropland types (e.g., wheat, rice,
corn, barley, and soybeans) by overlaying these crops over
the remote sensing derived global irrigated and rainfed
cropland area.

6) Cropland distribution is derived from the GFSAD’s Crop-
land Extent 30 m. The data present the cropland distribu-
tion across the world in a nominal 30 m spatial resolution
derived primarily with Landsat images, and they are avail-
able via the website (https://web.croplands.org/app/map).

Other data this study referred to include the administrative
boundary vector, and ground surveying sample data of major
crops in Qinghai Province, 2018. Among them, the ground

https://web.croplands.org/app/map
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surveying sample data are obtained by field location-survey,
which is used for classifier training, and accuracy assessment.

GEE provides various remote sensing products with different
levels and a user interface to facilitate the preprocessing. Thus,
the following data preprocessing was conducted by programing
in GEE. MODIS NDVI time-series, Landsat 8 OLI, and Sentinel-
2 MSI used in this study were atmospherically corrected by
GEE. Each product provides quality bands for cloud removal.
We adopted the temporal compression process on Landsat-8 and
Sentinel-2 images separately to highlight the average progress
stages during the entire growth period, which involved com-
puting the median value of each pixel of selected multispectral
signals within the time span from March 1 to October 31 in GEE.
Sentinel-1 SAR GRD has been precorrected by GEE, including
GRD border noise removal, thermal noise removal, radiometric
calibration, and terrain correction. It should be pointed out that
harmonic analysis has been proven to be an effective denoising
method for time-series data [43], so the noise in NDVI time-
series and SAR backscattering coefficient time-series can be
ignored. In addition, in order to unify the spatial resolution and
meet the requirements of subsequent classification algorithms,
the multisource remote sensing data were resampled to 30 m.

B. Harmonic Analysis on Multisource Time-Series

Decomposing the time-series Y into finite cosine (harmonic)
waves superposition is the basic principle of harmonic analysis
[44]. The data sequence consisting of these cosinoidal waves
superposition is called the Fourier sequence (Ŷ ), and the math-
ematical expression is as follows:

yi = A0 +
m∑

j=1

Ajcos (kji+ θj) (1)

where A0 represents the harmonic remainder; Aj is the ampli-
tude of each harmonic; θj represents the initial phase of each
harmonic; i = 1, 2, . . . , n, where n is the number of points of
the fitted data; m is the number of harmonics; and kj represents
the harmonic frequency. The formula is as follows:

yi = a0 +
m∑

j=1

(ajsin kji+ bjsin kji) (2)

where a0 is the harmonic residual; aj and bj are the Fourier co-
efficients, which are calculated by linear fitting in this study, and
other parameters that reflect the characteristics of the time-series
(such as Aj and θj) are computed by these Fourier coefficients.

Fig. 3 illustrates the diagram of harmonic analysis on time-
series. The reconstructed curve can preserve the trend of the
original data and is much smoother and easier to describe. Mean-
while, the decomposed harmonic waves, which can be computed
by Fourier coefficients, contain most information of the recon-
structed curve. Therefore, these Fourier coefficients obtained by
harmonic analysis can represent the characteristics of time-series
to a certain extent, which is proven to be an effective approach for
data dimensionality reduction [45]. The figure also reveals that
first three harmonics after decomposition contain most informa-
tion that is capable of describing the growth change of crops. To

Fig. 3. Diagram of harmonic analysis on time-series.

be specific, the first harmonic can reflect the overall trend of the
whole curve, so its amplitude A1 is an indicator to describe the
undulation of the curve, while initial phase θ1 carries some tem-
poral information that expresses the date when the peak appears.
The second and third harmonics are related to the details of the
curve. When curve is smooth, the intensity of the fluctuation of
the second and third harmonic is weak, and the values of A2

and A3 are small. When the local details of crop growth are
revealed in the curve, which makes the curve fluctuate obviously,
the corresponding A2 and A3 to the second and third harmonics
increase as well. In summary, the following parameters are
estimated.

1) A0: is harmonic residual, which represents the average
value of the curve.

2) ymax: is the maximum value in the fitted data set Yfit,
which can be used to indicate the peak value of the curve.

3) θ1: is the initial phase of the first harmonic, which is used
to indicate the temporal discrepancies of the maximum
value.

4) A1: is the amplitude of the first harmonic, which is used
to indicate the overall trend of the curve.

5) Aflu = A2 +A3: is the sum of the amplitudes of the
second harmonic (A2) and third harmonic (A3), which
is used to characterize the details of the curve.

C. Feature Extraction and Feature Set Construction

As previously mentioned, spectral, backscattering, and phe-
nological features have both advantages and disadvantages for
crop mapping. Comprehensively using multisource feature set
is significantly valuable in enhancing the separability of differ-
ent kinds of crops and improving the classification accuracy.
However, due to different imaging mechanisms of different
data types and diverse factors impacting the quality of data,
the multisource feature set may contain compounded uncertain-
ties. For example, multispectral data are susceptible to weather
conditions, which inevitably leads to noise or data missing in
time-series. Backscattering coefficients are likely to be affected
by various factors, such as crop growth environment, and the
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variation characteristics of backscattering time-series are not
easy to generalize. Therefore, it is imperative to design effective
feature extraction and multisource feature set construction flow
for larger scale and longer term situations. Therefore, in this
study, phenological features and backscattering features were
extracted utilizing harmonic analysis, and then combined with
spectral features to construct a multisource feature set.

1) Harmonic-Derived Phenological Feature Extraction:
Phenology is the study of the timing of recurring biological
events, the causes of changes concerning biotic and abiotic
forces, and the interrelation among phases of the same or dif-
ferent species [46]. Different crops have unique phenological
characteristics, which can be detected from NDVI time-series.
The obtained Fourier sequence aj and bj of harmonic analysis
can be used to compute the phenological features, revealing the
crop growth implicit in the NDVI profile [47]. To be specific,
harmonic analysis of NDVI time-series is valuable in describing
changes of the start-of-season, end-of-season, duration, and
fluctuation of the crop phenology [48].

The harmonic residual A0 represents the temporal signal or
the average value in half-cycle of the sequence, so this indicator
represents the average value of the NDVI profile in a crop growth
period, which can reflect the productivity of the crop to a certain
extent; the amplitude Aj represents the fluctuation intensity of
each harmonic, so the amplitude superposition of harmonics
can represent the fluctuation of the NDVI profile; the phase
θj mathematically represents the displacement of the harmonic
peak relative to the origin point. Considering phenological
characteristics of a given crop, this parameter can indicate the
date of NDVI peak appearing, reflecting the temporal variation
of the maximum greenness and coverage of different crops.
MOD13Q1 NDVI data were used to conduct harmonic analysis
and phenological features extraction.

2) Harmonic-Derived Backscattering Feature Extraction:
SAR backscattering coefficient contains information related to
vegetation growth. Therefore, its time-series can be used to eval-
uate crop growth and changes of crops, especially given that as
they are available in all weather conditions [14], [17]. Thus, it is
reasonable to extract backscattering features through the change
of backscattering coefficient in the time-series [49], [50]. These
temporal changes are helpful in enhancing the characterizations
of the crops and improving mapping accuracy.

In this study, we used harmonic analysis to extract backscat-
tering features from SAR backscattering coefficient time-series.
Similarly to the NDVI time-series analysis, we selected har-
monic residual A′

0, maximum value y′max, initial phase θ′1, the
first harmonic A′

1 and A′
fly = A′

2 +A′
3 as harmonic-derived

backscattering features. Furthermore, we selected two linear
polarizations (VV and VH) within the study area. It must
be pointed out that the complexity of the scattering mecha-
nisms of crops might make the analysis of temporal curves
more difficult [51], and the potential uncertainty caused by
this may impact the accuracy of the classification. As for data
preprocessing, besides selecting temporal duration and spatial
extension, the modes were filtered to reduce data heterogeneity;
only “wide interference”/“derailment observation” data were
selected.

3) Multisource Feature Set Construction: In addition to
phenological features and backscattering features, we also
combined the spectral features from Landsat-8 and Sentinel-2
multispectral signals to construct a multisource feature set.
Based on the above methods of feature extraction, the dimension
of the final multisource feature set for crop classification in this
study is 22, including five phenological features, ten backscatter-
ing features, and seven spectral features. Phenological features,
as indicators for the dynamic progress of crops, can be very
useful in improving the separability of different crop types
[52]. Backscattering features have advantages in eliminating
the impacts of weather factors to a certain extent compared
with optical sensors. The multisource feature set in this study
takes advantage of all three types of features (i.e., phenological,
backscattering, and spectral) into account.

Compared with other methods of feature set construction, this
method has advantages in overcoming inconsistencies among
different datasets in the process of large-scale feature extraction,
and it is able to minimize the uncertainties of features and
summarize crop growth changes. Furthermore, if the weights of
different types of features in the constructed dataset are signif-
icantly different, the classification results will be dependent on
the features with higher weights. In this study, after construction,
the dimensions of the three types of features are nearly the
same, which resulted in relatively equal contributions from each
feature type in the final classification.

D. Separability Evaluation of Feature Set

To evaluate the effectiveness of the constructed feature set for
crop classification, separability analysis was performed on the
extracted features for different crops. Separability indices com-
monly used include divergence, transform separability, Bhat-
tacharyya distance, and Jeffries–Matusita (JM), in which JM
distance is considered to be more suitable for indicating the
separability between classes than other indices [53]. The math-
ematical expression of the JM distance is formulated as follows:

J = 2 · (1− e−B
)

(3)

where B is the Bhattacharyya distance on a certain feature
dimension. The formula for calculating the Bhattacharyya dis-
tance between two different classes whose probability density
functions p1(x) and p2(x) conform to random distribution is as
follows:

B = −ln
(
∫
√
p1 (x) p1 (x)dx

)
. (4)

Assuming that these sample classes distributed as the normal
distribution, B distance can be expressed as follows:

B =
1

8
(m1 −m2)

2 2

δ21 + δ22
+

1

2
ln

[
δ21 + δ21
2δ1δ2

]
(5)

wheremi represents the mean of feature value of a specific class;
δ2i is the variance, i = 1, 2. The range of JM distance is [0, 2],
0 means that the two categories are completely confused, and
2 means that the two categories can be completely separated
[54]. Then, the separability of the four crop types (wheat, corn,
rapeseed, and “other”) are evaluated by the JM distance.
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E. Crop Classification With Prior Constraints

This study used the CART classifier to conduct crop classifica-
tion, which has been integrated into the GEE platform. CART is a
decision tree construction algorithm proposed by Breiman [55].
It is based on subsequent binary splits of a dependent variable
according to cut-off values or classes of independent variables
[56]. The CART algorithm uses the Gini Index in economics as
the criterion for selecting the best variable [57]. Its mathematical
expression is as follows:

Gini Index = 1−
J∑

j

P 2 (j/h) , (6)

P (j/h) =
nj (h)

n (h)
,

J∑

j

P (j/h) = 1 (7)

where P (j/h) indicates the probability that the testing variable
h belongs to the jth class when the sample is randomly selected
in the sample set; nj(h) is the number of samples in which
the testing variables h belong to the jth class; n(h) is the total
number of the training samples in which the testing variables
are h; and j is the class number. CART algorithm selects one or
more attributes from a plurality of input attributes as splitting
variables, then assigns testing variables to branches. We repeated
the processing to establish a classification tree and selected
the optimal classification tree through pruning and testing. The
feature set was first normalized by mean and variance, then
the classification process was conducted and results/confusion
matrices exported.

The purpose of adding prior constraints to the classification
process is to control the spatial extent of classification. It is
based on the assumption that the crops distribute within the
cropland extent. However, the conventional evaluation methods
only focus on the classification accuracy based on testing sam-
ples and ignore the discrepancies between classification results
and real cropland distribution, which will influence the practical
application of these methods. To solve this problem, this study
developed a classification method with prior constraints. The
advantages of the prior constraints are: 1) the prior constraint
can control the distribution of the crop type of the classification
result. When the classification result has a significant deviation
from the distribution indicated by the prior constraint, the result
is in a high probability deviating from the local cultivation habits;
and 2) the prior constraint controls the spatial extent of the
classification, reducing the probability of noncrop objects par-
ticipating in the classification, some training samples away from
where the crop concentrating are also eliminated. A global food
support analysis product published by USGS, GDFAD1000,
records the spatial distribution of the major crops, and GS-
FAD30 records the cropland distribution around the world,
which are suitable to be used as the prior constraints. In this
study, we overlapped the two products within the study area to
generate a mask to produce images with only those areas laid in
the overlapped area selected.

III. RESULTS AND DISCUSSIONS

In order to verify the effectiveness of the proposed method
on large-scale crop mapping, the separability of the feature set

was analyzed and classification accuracy was evaluated. Addi-
tionally, crop characteristics and spatial distribution in Qinghai
Province are discussed.

In the separability analysis of the feature set, pure pixels
(those that are in the middle of the cropland and are not affected
by non-crop objects) were selected from the ground surveying
samples of the crops and plotted to compare different features
to analyze the differences; then evaluated the separability of the
feature set by calculating the JM distances between the samples.
In this study, the proposed full-feature set, which combines
spectral features, harmonic-derived backscattering features, and
harmonic-derived phenological features, was compared with the
following five features, including spectral features; compressed
backscattering features; harmonic-derived backscattering fea-
tures; harmonic-derived phenological features; combination of
spectral features and harmonic-derived backscattering features.
The compressed backscattering feature went through the process
of compression, which was similar to that of spectral feature,
computing the mean of the backscattering coefficient in each
pixel during the whole growth period.

In the comparative experiments of classification, we evalu-
ated the multisource feature set through the overall accuracy
(OA) of classification results. When conducting the hold-out
accuracy assessment, 70% of the ground samples were selected
for training and the remaining for testing. We set six comparative
experiments to verify the influence of feature extraction on
classification accuracy:

1) using spectral features with prior constraints, hereafter,
MC;

2) using compressed backscattering features with prior con-
straints, hereafter, CC;

3) using harmonic-derived backscattering features with prior
constraints, hereafter, BC;

4) using the combination of harmonic-derived phenological
features with prior constraints, hereafter, PC;

5) using the combination of spectral features and harmonic-
derived backscattering features with prior constraints,
hereafter, MBC;

6) using the combination of spectral features, harmonic-
derived backscattering features and harmonic-derived
phenological features without prior constraints, hereafter,
MBP.

The method proposed in this study, which uses the com-
bination of spectral features, harmonic-derived backscattering
features, and harmonic-derived phenological features with prior
constraints, is abbreviated as MBPC.

A. Separability Analysis of Feature Set

The samples that the JM distance analyses conducted on
are pure pixels selected from the ground surveying samples.
Therefore, they are relatively less affected by noise, and the
results can better reflect the separability of the feature set. As
shown in Table II, it is clear that except for compressed backscat-
tering features, all cases of features show good separability. The
distances of spectral features are all larger than 1.5, and the
distances between corn and rapeseed, corn and “other,” rapeseed
and “other” even exceed 1.9, indicating strong separability.
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TABLE II
DISTANCE BETWEEN SAMPLES

The JM distances of compressed backscattering features are all
less than 0.7, which means the separability is very poor. For
harmonic-derived backscattering features, the distance between
wheat and corn is 1.3794, and the rest exceed 1.6. This indicates
that the backscattering based on harmonic analysis effectively
enhances the separability of the samples. The distances of the
harmonic-derived phenological features are generally around
1.5, only the distance between wheat and “other” types is 1.1596.

The JM distances of combined feature sets are further com-
pared with the single-source features, indicating that multi-
source feature sets have considerable potential for improving
classification accuracy. When the spectral features are combined
with harmonic-derived backscattering features, the JM distances
are larger than 1.98, which means the feature set has great
separability. The distances of the full-feature set are very close
to 2, meaning the samples can be completely separated. It is
concluded that the full-feature set constructed in this study can
effectively enhance the separability of crops for classification.

B. Comparison and Analysis of the Classification Results

The classification result of the whole Qinghai Province is
shown in Fig. 4. Fig. 5 shows a close-up view of the northeastern
area of Qinghai Province, and its spatial extent corresponds to
the range of red boxes in Fig. 2. The confusion matrix and OA
are shown in Table III.

1) Spatial Distribution: Fig. 4 shows the spatial distribution
of classification results of the crops, i.e., corn, wheat, rapeseed,
and “other classes.” It is clear that, after adopting the prior
constraints, the spatial distribution of the major crops classi-
fied by the classifier is consistent with the local cultivation

Fig. 4. Spatial distribution of classification results of the whole Qinghai
Province, (a) to (g) are MC, CC, BC, PC, MBC, MBP, and MBPC, respectively.
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Fig. 5. Crop distribution in major agricultural region and valley region of
Qinghai Province. (a) to (g) are MC, CC, BC, PC, MBC, MBP, and MBPC,
respectively.

habits. As major crops in Qinghai Province, the three crops are
distributed around the east to Qinghai Lake and southwest to
Qilian Mountain, where the local natural conditions are suitable
for cultivation, this region is the major agricultural region.
Furthermore, valleys which are situated southwest to Xining
are also the main region where the crops are present. When the
classification is conducted without prior constraints, the areas
identified as the distribution of the crops are much larger than
the actual distribution, which is unrealistic [see Fig. 4(f)].

Fig. 5 reveals the detail of crop distribution in major agricul-
tural region and valley region of Qinghai Province. For different
combinations of features with prior constraints, the results are
different. For MC [see Fig. 5(a)], it shows that the three crops are
concentrated in the northern, southern, and western parts of the
major agricultural region, and there is also large distribution in
the valley region. The rapeseeds are concentrated in the southern
part of the major agricultural region and the northern part of the
valley region, and the cultivated area of corn in the central part
of the major agricultural region is relatively larger than other
regions. MC responded poorly to corn samples, the planning
area of corn is small in the classification result. SAR data are
severely noisy and its influencing factors are complex, thus the
data processed by temporal compression is unable to reflect the

distribution correctly. It can be seen from Fig. 5(b), for CC, most
of the study area is identified as “other classes,” the crops are only
sporadically distributed in the major agricultural region. The
classification result of BC is better than that of CC. However, as
described previously, the characteristics of SAR backscattering
coefficient time-series of crops are still complicated. The mixed
distribution of various crops is still obvious in the classification
result.

In Fig. 5(c), large areas are identified as wheat, and rapeseed
in the north, while the response of BC to corn is still poor.
As for the result of PC [see Fig. 5(d)], it is more likely to
identify the samples as rapeseed. In the figure, rapeseeds are
mainly distributed in the northern part of the major agricultural
region and the valley region, and the cultivated area is large
and concentrated. Corn and wheat are mainly distributed in the
northern and central parts of the major agricultural region, which
are relatively mixed. Furthermore, large areas of the central and
southern major agricultural regions are identified as other types
of crops. The spatial distribution of the classification result of
MBC is similar to that of MC, while the cultivated area of corn
and wheat is relatively larger. For MBPC, the three crops are also
concentrated in the northern, central, and southern parts of the
major agricultural region, and they are distributed in the valley
region as well. Among them, rapeseeds are mainly distributed
in the northern and western parts of the major agricultural
region and in the northern part of the valley. The corn is mainly
distributed in the central part of the major agricultural region,
and the southern part is dominated by wheat. The distribution
of the three crops is scattered in general.

2) Quantitative Comparative Analysis: The accuracies of
different classification strategies are shown in Table III. The
OA of MC is 78.67%, and the Kappa coefficient is 0.6867.
It can be seen from the confusion matrix that the accuracy of
corn is higher, and the separability between wheat, rape and
“others” is slightly worse. The misclassification between wheat
and “others” is relatively higher (4.43% testing samples of wheat
are misclassified into “others” and 3.57% testing samples of
“others” are misclassified into “wheat”). The OA of CC is only
58.36%, and the Kappa coefficient is 0.3643, which is almost
valueless. Meanwhile, The OA of BC was improved compared to
CC, reaching 64.71%, and the Kappa coefficient is 0.4727. The
accuracy of the crops increases with 1.04 for corn, 2.6 for wheat,
and 3.97 for rapeseed. Only the accuracy of the “other” decreases
with 1.26. Considering the previous analysis, it is concluded that
backscattering features based on harmonic analysis effectively
enhances the separability of samples and has considerable po-
tential to improve the accuracy of crop identification compared
to conventional methods. Phenological features are capable of
predicting crop progress stages, which is a good indicator of the
accurate identification of crops. From the classification results,
the OA of harmonic-derived phenological features is the highest
among all single-source features, which is 81.52%, and the
Kappa coefficient is 0.7268. Among the crops, only 2.41%
testing samples of wheat were misclassified into rapeseed, whose
value is larger than 1%. It is noticeable that compared with
BC, when the backscattering features are combined with the
spectral features (MBC), the OA is slightly improved to 79.08%,
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TABLE III
CLASSIFICATION ACCURACY FOR DIFFERENT METHODS AND DIFFERENT CROPS

1Ground truth of in situ survey; 2classified results; 3spectral features with prior constraints; 4compressed
backscattering features with prior constraints; 5harmonic-derived backscattering features with prior constraints;
6harmonic-derived phenological features with prior constraints; 7combination of spectral features and harmonic-
derived backscattering features with prior constraints; 8combination of spectral features, harmonic-derived
backscattering features and harmonic-derived phenological features without prior constraints; 9combination
of spectral features, harmonic-derived backscattering features and harmonic-derived phenological features with
prior constraints.

indicating that the harmonic-derived backscattering features are
significant for enhancing the separability of spectral features.

The classification by using constructed full-feature set and
prior constraints in this study (i.e., MBPC) obtains the best
accuracy, the OA reaches 84.25%, and the Kappa coefficient
is 0.7651. It overcomes the defects of all the single-source
features at the same time. Moreover, when the prior constraints
are unconsidered, some sample data in poor quality are brought
for classifier training, which leads to a decrease in classification
result. The OA of MBP drops to 81.73%. It proves the necessity
of using prior constraints of crop dominance and cropland distri-
bution for crop classification. It should also be pointed out that
in this study, the training samples of “others” can from different
ground object types, which seriously influences the separability.
From Table III, it is clear that the misclassification between
“others” and specific crop types are mostly heavier than those
between crops. Taking MC as example, the misclassification
between “others” and crops are all larger than 1%, there are
even 4.43% of the pixels in testing which belong to wheat are
misclassified to “others.” Similar phenomenon also appears in
other features.

From the results of separability analysis and classifica-
tion experiments, it can be concluded that the comprehensive
utilization of the multisource feature set is better than only

utilizing single-source features. By containing the information
on crop characteristics, environmental changes, and manual
management, the phenological features can provide abundant
information. The backscattering features can make up for the
obstacles of spectral features, such as data missing and noise.
Compared with the traditional feature extraction method, the
proposed method takes into account the characteristics of dif-
ferent sources of features to compensate for the deficiencies of
single-source features. The reconstructed multisource feature
set is more separable and more recapitulative, which reduces
the uncertainty of time-series and highlights its overall trend of
crop growth. From the experimental results, it can be found that
the proposed method can obtain the best classification accuracy.
Moreover, the prior constraints are added in the classification
process to control the spatial range, and eliminate the unreliable
training data to further improve the accuracy of crop mapping.

C. Crop Mapping Analysis

The multisource remote sensing data used in this study for
crop mapping spans the whole growth season of the selected
crops, and the spatial extent of the study area is the Qinghai
Province, the spatial resolution after resampling is 30 m. From
the experimental results, it is concluded that the fitting curves
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Fig. 6. NDVI time-series of (a) corn, (b) wheat, and (c) rapeseed and (d) their
comparison of fitted data.

themselves are important for analyzing the growth trends of local
crops, and the distribution of the crops in the experimental result
is consistent with local farming habits. Therefore, it is valuable
for us to analyze the factors impacting local farming habits.

1) Characteristics of Crops: The NDVI time-series of the
selected crops in growing period shows unimodal trends. It is
consistent with the growth changes recorded by agrometeoro-
logical stations that the crops have only one growing season
per annum. The geometric characteristics, the maximum value,
and the time when the key phenological stages appear in the
NDVI profile are significantly different [58], [59]. In Fig. 6(a),
the entire growth period of corn lasts from the end of March to
October. The growing rate keeps increasing during the seeding
stage; after that, the growing rate remains stable. In middle and
late July, the NDVI curve reaches the maximum, which is about
0.8, then the NDVI gradually decreases after the crops enter ma-
turity; the sowing date of wheat is the earliest among the crops,
the growing period is the longest, and the maximum of the NDVI
curve is the smallest (only about 0.6). In Fig. 6(b), the sowing
date is in March, and the growing rate increases obviously during
the seeding stage, then the growing rate decreases a bit. The
NDVI curve reaches peak in the end of June, then values start
decreasing. In mid-July, the crops enter maturity; by contrast,
the growing period of rapeseed is shorter, the duration of growth
and maturity is shorter as well. In Fig. 6(c), the rapeseeds are
sown in mid-to-late April, and the seeding stage is in May. The
florescence is in mid-to-late June, which is followed by reaching
maximum in July, the value is about 0.85. Then, NDVI begins
to decline and crops gradually enter maturity.

The harmonic analysis also has a good effect on restoring
the temporal characteristics of the backscattering coefficient
curves. In Fig. 7, the fitting backscattering coefficient curves
after harmonic analysis eliminate the influences of noise well,
and the curve is smoother. In general, the temporal character-
istics of crop backscattering features are more complicated,

Fig. 7. SAR time-series of corn (a), wheat (b) and rapeseed (c) and their
comparison of fitted data [VV is shown in (d) and VH is in (e)].

and the uncertainty is more serious. For crop identification,
the cross-polarized band was found to be more sensitive to
crop growth that the co-polarized band [50]. VH polarization
has a better response to crop growth changes than VV, and
the characteristics of VH are more prominent. The change of
the backscattering coefficient curves has correlations with the
growth of the crops [60].

Specifically, in Fig. 7(a), the curve of VV of corn is rela-
tively flat. There are three smaller peaks in the seeding stage
in early April, the elongation stage in mid-June and the mid-
September which is in maturity. The VH polarization curve is
relatively steep. The backscattering coefficient increases before
the elongation stage, then the first peak appeared in early June,
followed by a slight decrease. The second peak appeared at the
end of August, and then continued to decrease as crops enter
maturity; the curve of wheat is stable, and the trend of the
two polarization modes of VV and VH are same. In Fig. 7(b),
small peaks appear in the seedling stage in the middle and late
March, and then the backscattering coefficient slowly increases.
The curve keeps stable until maturity in September, when the
backscattering coefficient begins to decrease; it is interesting
that there were significant differences in the VV and VH curves
of rapeseed. In Fig. 7(c), the first peak of VV curve appears
in mid-May, then decreasing a little bit as the result of the
increasing of plant height and density. The crops enter maturity
in late August, when the variation of canopy increases and
reflecting signal the sensor receiving enhances, where the second
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Fig. 8. Comparison of spectral features of corn, wheat, and rapeseed.

peak appears in the curve. By contrast, the VH curve shows
unimodal characteristic, and the backscattering coefficient con-
tinues to increase before the maturity period, then it drops
dramatically. Furthermore, it can be seen from the figures that the
backscatter coefficient curves of the crop confront serious noise
effects, so the uncertainty of the backscattering features is much
heavier.

Fig. 8 shows the spectral signatures of the three crops from
Landsat-8 OLI and Sentinel-2 MSI sensors. In general, the
typical “square root” shape of the crops is consistent overall.
It is noticeable that the reflectivity of corn and wheat in every
band is relatively close. As a result, it shows that the effect of crop
identification with single-phase multispectral data is limited to
some extent. Specifically, the red band has a higher reflectivity
for rapeseed, and the reflectivity for corn and wheat in that
band is very similar. The reflectivity of rapeseed is lower in
near-infrared (NIR) band (850–880 nm) and higher in two short
wave infrared (SWIR) bands (1.57–1.65 and 2.11–2.29 nm). In
contrast, the trend of reflectivity of wheat in NIR and SWIR
bands is similar to that of corn while the reflectance value is
lower.

2) Characteristics of Crop Distribution in Qinghai Province:
From the experimental results, the spatial distribution of the local
crops in Qinghai is relatively complicated and fragmented. This
distribution characteristic is mainly caused by various natural
and human conditions such as topographic conditions, climates,
and the small-holder agricultural production. As the result, the
crop classification is susceptible to the spectral variability and
impure training sample. Therefore, it is necessary to improve the
classification accuracy with prior constraints of crop dominance
and cropland distribution.

The spatial distribution of crops is related to the terrain of
Qinghai Province. For cropland distribution, the major agricul-
tural region is located in south of Daban Mountain, which is the
branch of Qilian Mountain, and east of Riyue Mountain. This
area is the overlaid zone of the Loess Plateau to Qinghai-Tibet
Plateau. Our experimental result also shows that the terrain of
this area is rugged, and the croplands are distributed mostly along
the rivers and valleys. Therefore, the distribution of croplands
is relatively fragmented, which is not conducive to large scale
centralized agriculture. Furthermore, the local agricultural eco-
nomic structure is dominated by small scale peasant economy,
the process of agricultural industrialization is lagging behind,
and agricultural production is still carried out mainly by families
or collectives, making the types of crop complicated and the
cultivated acreage of a certain type of crop small.

Fig. 9. Local maps of eastern major agricultural region in Qinghai, (a) is the
northern part, (b) is the middle part, and (c) is the southern valleys.

The climatic conditions are the most important factors affect-
ing the distribution of crops. In the northern and northeastern
parts of the major agricultural region [shown in Fig. 9(a)], mainly
covering the valleys of Datong County and Huzhu County, the
climate is warm and humid, with an annual average precipitation
of 400 mm or more, the warmest monthly average temperature
of ∼11.5–13.5 °C and the accumulated temperature (AT, an
indicator reflecting local thermal conditions [61]) of ∼1500–
2000 °C. The water conditions are abundant but the thermal
conditions are common, so the chimonophilous crops such as
rapeseed are concentrated in the colder area. In central part [see
Fig. 9(b)], covering north of Xining, the climate is characterized
as warm and semi-arid, where the annual average temperature
is above 3 °C, the warmest monthly average temperature is
higher than 15 °C, and AT is ∼2000–3000 °C. The thermal
conditions in this area are better, but the precipitation is relatively
poor, the average precipitation is less than 400 mm. Thus, the
type of cultivation in this area is mainly irrigation agriculture.
The climate conditions can meet the requirements of spring
wheat, rapeseed, and other crops’ cultivation. The result of our
classification shows that the distribution of wheat in this area is
concentrated, and there is a small amount of corn distribution
in the south of this area. Although the southern valley area [see
Fig. 9(c)] is small, the climatic conditions are the best. In some
areas, the annual average temperature is above 19 °C, and the AT
is over 3500 °C. The annual average precipitation is relatively
low, below 360 mm, but concentrated in the crop growing season.
Meanwhile, as the result of many rivers flowing through this
area, the irrigation conditions in this area are good. Therefore,
the area is suitable for a variety of crop growth, and yields are
higher. It can be seen from the experimental results that there
are a large number of distributions of the three selected crops in
the area. Overall, the classification results of this study reflect
the local crop cultivation habits.

IV. CONCLUSION

For large-scale crop mapping, with the increasing temporal
and spatial resolution of remote sensing images, traditional data
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processing and analyzing methods are confronted with several
challenges, such as unstable multisource feature sets, serious
misclassification, and large computational complexity, which
greatly limits the practical ability of these methods in crop
mapping at large scale. Therefore, this study proposed a new crop
mapping method with prior constrains and used the proposed
method for three main crops classification in Qinghai in 2018.
Compared with the classification results from single-source
features, we found that the classification accuracy of multisource
feature set is considerably better, and the proposed feature ex-
traction method performs well in eliminating noise and restoring
the temporal trend. The JM distance between the samples is close
to 2, and the OA is 84.25%, which means that the proposed
method is effective in enhancing separability and improving
the classification accuracy. The prior constraints can effectively
control the classification area and eliminate some training sam-
ples of low quality, so it can reduce the misclassification to
some degree. Finally, the GEE platform is helpful to improve
computing efficiency and make large-scale crop mapping more
practical. The multisource feature set construction and crop
mapping method proposed in this study has a high application
value in crop mapping in a complex terrain and crop distribution
environment. It is able to provide aid for many fields such as
agricultural management, yield prediction, and environmental
monitoring.

ACKNOWLEDGMENT

The authors would like to thank Prof. P. Lewis from the
Department of Geography at University College London, who
provided general advice on the review. Acknowledgement for
“The 1st Smart Agricultural Remote Sensing Application Com-
petition of Sentinels of Wheat” sponsored by China Agricultural
University, University College London, and Chinese Academy
of Agricultural Sciences.

REFERENCES

[1] M. Ozdogan, “The spatial distribution of crop types from MODIS data:
Temporal unmixing using independent component analysis,” Remote Sens.
Environ., vol. 114, pp. 1190–1204, 2010.

[2] Z. Chen et al., “Progress and perspectives on agricultural remote sensing
research and applications in China,” J. Remote Sens., vol. 748–767, 2016.

[3] M. Wang, “Comparison of spatial interpolation and regression analysis
models for an estimation of monthly near surface air temperature in China,”
Remote Sens., vol. 9, 2017, Art. no. 1278.

[4] Z. Liu and W. Zong, “Image classification optimization algorithm based
on SVM,” J. Multimedia, vol. 8, pp. 496–502, 2013.

[5] Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based feature
selection for remote sensing scene classification,” IEEE Geosci. Remote
Sens. Lett., vol. 12, no. 11, pp. 2321–2325, Nov. 2015.

[6] A. Pacheco and H. McNairn, “Evaluating multispectral remote sensing
and spectral unmixing analysis for crop residue mapping,” Remote Sens.
Environ., vol. 114, pp. 2219–2228, 2010.

[7] G. Satalino, A. Balenzano, F. Mattia, and M. Davidson, “Sentinel-1 SAR
data for mapping agricultural crops not dominated by volume scattering,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2012, pp. 6801–6804.

[8] N. Baghdadi, N. Boyer, P. Todoroff, M. E. Hajj, and A. Bégué, “Potential
of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for
monitoring sugarcane crops on reunion island,” Remote Sens. Environ.,
vol. 113, pp. 1724–1738, 2009.

[9] D. K. Boltion and M. Friedl, “Forecasting crop yield using remotely
sensed vegetation indices and crop phenology metrics,” Agricultural Forest
Meteorol., vol. 173, pp. 74–84, 2013.

[10] A. Mathur and G. M. Foody, “Crop classification by support vector
machine with intelligently selected training data for an operational ap-
plication,” Int. J. Remote Sens., vol. 29, pp. 2227–2240, 2008.

[11] P. Hao, W. Li, and N. Zheng, “Potential of multitemporal Gaofen-1
panchromatic/multispectral images for crop classification: Case study in
Xinjiang Uygur Autonomous Region, China,” J. Appl. Remote Sens., vol. 9,
2015, Art. no. 096035.

[12] C. Yang, J. H. Everitt, and D. Murden, “Evaluating high resolution SPOT
5 satellite imagery for crop identification,” Comput. Electron. Agriculture,
vol. 75, pp. 347–354, 2011.

[13] P. Upadhyay, A. Kumar, P. S. Roy, S. K. Ghosh, and I. Gilbert, “Effect
on specific crop mapping using WorldView-2 multispectral add-on bands:
Soft classification approach,” J. Appl. Remote Sens., vol. 6, 2012, Art. no.
063524.

[14] H. Skriver, “Crop classification by multitemporal C- and L-band single
and dual-polarization and fully polarimetric SAR,” IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 6, pp. 2138–2149, Jun. 2012.

[15] K. Jia, Q. Li, Y. Tian, B. Wu, F. Zhang, and J. Meng, “Crop classification
using multi-configuration SAR data in the North China Plain,” Int. J.
Remote Sens., vol. 33, pp. 170–183, 2012.

[16] H. Skriver et al., “Crop classification using short-revisit multitemporal
SAR data,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 2, pp. 423–431, Jun. 2011.

[17] X. Blaes, L. Vanhalle, and P. Defourny, “Efficiency of crop identification
based on optical and SAR image time series,” Remote Sens. Environ.,
vol. 96, pp. 352–365, 2005.

[18] D. Bargiel, “A new method for crop classification combining time series
of radar images and crop phenology information,” Remote Sens. Environ.,
vol. 198, pp. 369–383, 2017.

[19] S. Hariharan, D. Mandal, S. Tirodkar, V. Kumar, A. Bhattacharya, and
J. M. Lopez-Sanchez, “A novel phenology based feature subset selection
technique using random forest for multitemporal PolSAR crop classifi-
cation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11,
no. 11, pp. 4244–4258, Nov. 2018.

[20] M. Boschetti, “PhenoRice: A method for automatic extraction of spatio-
temporal information on rice crops using satellite data time series,” Remote
Sens. Environ., vol. 194, pp. 347–365, 2017.

[21] Y. Pan, L. E. Li, J. Zhang, S. Liang, X. Zhu, and D. Sulla-Menashe, “Winter
wheat area estimation from MODIS-EVI time series data using the crop
proportion phenology index,” Remote Sens. Environ., vol. 119, pp. 232–
242, 2012.

[22] B. D. Wardlow, S. L. Egbert, and J. H. Kastens, “Analysis of time-series
MODIS 250 m vegetation index data for crop classification in the U.S.
Central Great Plains,” Remote Sens. Environ., vol. 108, pp. 290–310, 2007.

[23] C. Conrad, R. R. Colditz, S. Dech, D. Klein, and P. L. G. Vlek, “Temporal
segmentation of MODIS time series for improving crop classification in
Central Asian irrigation systems,” Int. J. Remote Sens., vol. 32, pp. 8763–
8778, 2011.

[24] P. Hao, Y. Zhan, W. Li, N. Zheng, and M. Shakir, “Feature selection of
time series MODIS data for early crop classification using random forest:
A case study in Kansas, USA,” Remote Sens., vol. 7, pp. 5347–5369, 2015.

[25] C. D. Bernardis, F. Vicente-Guijalba, T. Martinez-Marin, and J. M. Lopez-
Sanchez, “Contribution to real-time estimation of crop phenological states
in a dynamical framework based on NDVI time series: Data fusion with
SAR and temperature,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 9, no. 8, pp. 3512–3523, Aug. 2016.

[26] Z. Wu, L. Yi, and G. Zhang, “Uncertainty analysis of object location in
multi-source remote sensing imagery classification,” Int. J. Remote Sens.,
vol. 30, pp. 5473–5487, 2009.

[27] L. Ma, L. Cheng, M. Li, Y. Liu, and X. Ma, “Training set size, scale, and
features in geographic object-based image analysis of very high resolution
unmanned aerial vehicle imagery,” ISPRS J. Photogrammetry Remote
Sens., vol. 102, pp. 14–27, 2015.

[28] F. Löw, P. Knöfel, and C. Conrad, “Analysis of uncertainty in multi-
temporal object-based classification,” ISPRS J. Photogrammetry Remote
Sens., vol. 105, pp. 91–106, 2015.

[29] L. Loosvelt et al., “Random Forests as a tool for estimating uncertainty
at pixel-level in SAR image classification,” Int. J. Appl. Earth Observ.
Geoinf., vol. 19, pp. 173–184, 2012.

[30] A. J. W. De Wit and J. G. P. W. Clevers, “Efficiency and accuracy of
per-field classification for operational crop mapping,” Int. J. Remote Sens.,
vol. 25, pp. 4091–4122, 2004.

[31] M. Turker and M. Arikan, “Sequential masking classification of multi-
temporal Landsat7 ETM+ images for field-based crop mapping in Kara-
cabey, Turkey,” Int. J. Remote Sens., vol. 26, pp. 3813–3830, 2005.



426 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

[32] J. Zhou, J. Li, and M. Menenti, “Reconstruction of global MODIS NDVI
time series: Performance of harmonic analysis of time series (HANTS),”
Remote Sens. Environ., vol. 163, pp. 217–228, 2015.

[33] K. Yadav and R. G. Congalton, “Accuracy assessment of global food
security-support analysis data (GFSAD) cropland extent maps produced
at three different spatial resolutions,” Remote Sens., vol. 10, 2018,
Art. no. 1800.

[34] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore, “Google earth engine: Planetary-scale geospatial analysis for
everyone,” Remote Sens. Environ., vol. 202, pp. 18–27, 2017.

[35] J. Dong et al., “Mapping paddy rice planting area in northeastern Asia with
Landsat 8 images, phenology-based algorithm and Google Earth Engine,”
Remote Sens. Environ., vol. 185, pp. 142–154, 2016.

[36] D. Mandal, V. Kumar, A. Bhattacharya, Y. S. Rao, P. Siqueira, and S.
Bera, “Sen4Rice: A processing chain for differentiating early and late
transplanted rice using time-series Sentinel-1 SAR data with Google Earth
Engine,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 12, pp. 1947–1951,
Dec. 2018.

[37] A. Shelestov, M. Lavreniuk, N. Kussul, A. Novikov, and S. Skakun,
“Exploring Google Earth Engine platform for big data processing: Classi-
fication of multi-temporal satellite imagery for crop mapping,” Frontiers
Earth Sci., vol. 5, pp. 1–10, 2017.

[38] J. Zhao and J. Peng, “Spatiotemporal variation of the vegetation coverage
in Qinghai Plateau based on MODIS NDVI data,” J. Arid Land Resources
Environ., vol. 30, pp. 67–73, 2016.

[39] L. Wang, Y. Wei, and Z. Niu, “Analysis of vegetation spatial and temporal
variations in Qinghai Province based on remote sensing,” Environ. Sci.,
vol. 29, pp. 1754–1760, 2008.

[40] P. Wu and X. Zhang, “Estimation methods of reference crop evapotran-
spiration in eastern agricultural region of Qinghai Province,” J. Irrigation
Drainage, vol. 34, pp. 97–101, 2015.

[41] A. Ramoelo, A. K. Skidmore, M. A. Cho, M. Schlerf, R. Mathieu, and
I. M. A. Heitkönig, “Regional estimation of savanna grass nitrogen using
the red-edge band of the spaceborne RapidEye sensor,” Int. J. Appl. Earth
Observ. Geoinf., vol. 19, pp. 151–162, 2012.

[42] J. Ú. Delegido, J. Verrelst, L. Alonso, and J. É. Moreno, “Evaluation
of sentinel-2 red-edge bands for empirical estimation of green LAI and
chlorophyll content,” Sensors, vol. 11, pp. 7063–7081, 2011.

[43] Y. Gang, H. Shen, L. Zhang, Z. He, and X. Li, “A moving weighted
harmonic analysis method for reconstructing high-quality spot vegetation
NDVI time-series data,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11,
pp. 6008–6021, Nov. 2015.

[44] R. De Jong, S. De Bruin, A. De Wit, M. E. Schaepman, and D. L. Dent,
“Analysis of monotonic greening and browning trends from global NDVI
time-series,” Remote Sens. Environ., vol. 115, pp. 692–702, 2011.

[45] J. J. Benedetto and W. Czaja, “Dimension reduction and remote sensing us-
ing modern harmonic analysis,” in Handbook of Geomathematics. Berlin,
Germany: Springer, 2013, pp. 1–22.

[46] D. Lloyd, “A phenological classification of terrestrial vegetation cover
using shortwave vegetation index imagery,” Int. J. Remote Sens., vol. 11,
pp. 2269–2279, 1990.

[47] G. J. Roerink, M. H. G. I. Danes, O. G. Prieto, A. J. W. De Wit, and A.
J. H. Van Vliet, “In deriving plant phenology from remote sensing,” Anal.
Multi-Temporal Remote Sens. Images, vol. 1, pp. 261–264, 2011.

[48] L. Andres, W. A. Salas, and D. Skole, “Fourier analysis of multi-temporal
AVHRR data applied to a land cover classification,” Int. J. Remote Sens.,
vol. 15, pp. 1115–1121, 1994.

[49] H. Joerg, M. Pardini, I. Hajnsek, and K. Papathanassiou, “Sensitivity of
SAR tomography to the phenological cycle of agricultural crops at X-,
C- and L-band,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 11, no. 9, pp. 3014–3029, Sep. 2018.

[50] H. Li, C. Zhang, S. Zhang, and P. M. Atkinson, “Full year crop monitoring
and separability assessment with fully-polarimetric L-band UAVSAR: A
case study in the Sacramento Valley, California,” Int. J. Appl. Earth Observ.
Geoinf., vol. 74, pp. 45–46, 2018.

[51] J. M. Lopez-Sanchez and J. D. Ballester-Berman, “Potentials of polarimet-
ric SAR interferometry for agriculture monitoring,” Radio Sci., vol. 44,
no. 2, pp. 1–20, Apr. 2009.

[52] Y. Gu, J. F. Brown, T. Miura, W. J. D.V. Leeuwen, and B. C. Reed,
“Phenological classification of the united states: A geographic framework
for extending multi-sensor time-series data,” Remote Sens., vol. 2, pp. 526–
544, 2010.

[53] S. Ullah, T. A. Groen, M. Schlerf, A. K. Skidmore, W. Nieuwenhuis, and
C. Vaiphasa, “Using a genetic algorithm as an optimal band selector in the
mid and thermal infrared (2.5–14 µm) to discriminate vegetation species,”
Sensors, vol. 12, pp. 8755–8769, 2012.

[54] A. M. O. Sousa, J. M. C. Pereira, and J. M. N. Silva, “Evaluating the
performance of multitemporal image compositing algorithms for burned
area analysis,” Int. J. Remote Sens., vol. 24, pp. 1219–1236, 2003.

[55] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Boca Raton, FL, USA: Chapman & Hall/CRC, 1984.

[56] S. D’Alisa, G. Miscio, S. Baudo, A. Simone, L. Tesio, and A. Mauro,
“Depression is the main determinant of quality of life in multiple sclerosis:
A classification-regression (CART) study,” Disability Rehabil., vol. 28,
pp. 307–314, 2006.

[57] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “The cart decision
tree for mining data streams,” Inf. Sci., vol. 266, pp. 1–15, 2014.

[58] V. Chandola, D. Hui, L. Gu, B. Bhaduri, and R. R. Vatsavai, “In Using
time series segmentation for deriving vegetation phenology indices from
MODIS NDVI data,” in Proc. IEEE Int. Conf. Data Mining Workshops,
2011, pp. 202–208.

[59] S. Testa, K. Soudani, L. Boschetti, and E. B. Mondino, “MODIS-derived
EVI, NDVI and WDRVI time series to estimate phenological metrics in
French deciduous forests,” Int. J. Appl. Earth Observ. Geoinf., vol. 64,
pp. 132–144, 2018.

[60] F. Canisius et al., “Tracking crop phenological development using multi-
temporal polarimetric Radarsat-2 data,” Remote Sens. Environ., vol. 210,
pp. 508–518, 2017.

[61] S. H. Hallett and R. J. A. Jones, “Compilation of an accumulated temper-
ature database for use in an environmental information system,” Agricul-
tural Forest Meteorol., vol. 63, pp. 21–34, 1993.

Xinkai Liu received the B.Sc. degree from the Col-
lege of Information Science and Engineering, Shan-
dong Agricultural University, Taian, China, in 2016.
He is currently working toward the M.Sc. degree in
remote sensing of environment and natural resources
from China University of Geosciences.

His research interests include remote sensing ap-
plications in agriculture and vegetation.

Han Zhai received the B.Sc. degree from the School
of Surveying and Mapping, Shandong Universtiy of
Science and Technology, Qingdao, China, in 2014,
and the Ph.D. degree from the State Key Laboratory
of Information Engineering in Surverying, Mapping,
and Remote Sensing, Wuhan University, Wuhan,
China, in 2019.

He is an Associate Professor with the China Uni-
versity of Geosciences, Wuhan. His research in-
terests include remote sensing image processing,
remote sensing information extraction, and sparse
representation.

Yonglin Shen received the B.Sc. degree in geography
information system from the Wuhan University of
Technology, Wuhan, China, in 2006, the M.Sc. degree
from Nanjing Normal Universtiy, Nanjing, China, in
2009, and the Ph.D. degree from Beijing Normal Uni-
verstiy, Beijing, China, in 2013, both in cartography
and geography information system.

During 2011–2013, he worked as a joint Ph.D. stu-
dent with the Center for Spatial Information Science
and Systems, George Mason University, Fairfax, VA,
USA. He is currently an Associate Professor with the

China University of Geosciences, Wuhan. His research interests include remote
sensing applications in agriculture and atmospheric environment.



LIU et al.: LARGE-SCALE CROP MAPPING FROM MULTISOURCE REMOTE SENSING IMAGES IN GOOGLE EARTH ENGINE 427

Benke Lou received the B.Sc. degree from the Col-
lege of Central South University of Forestry and
Technology, Changsha, China, in 2018. He is cur-
rently working toward the M.Sc. degree in surveying
and mapping engineering from China University of
Geosciences, Wuhan, China.

Changmin Jiang received the B.Sc. degree from the
School of Geography and Information Engineering,
China University of Geosciences, Wuhan, China, in
2018. He is currently working toward the M.Sc.
degree in surveying and mapping engineering from
China University of Geosciences.

Tianqi Li received the B.Sc. degree from the School
of Geography and Information Engineering, China
University of Geosciences, Wuhan, China, in 2019.
She is currently working toward the M.Sc. degree in
remote sensing of environment and natural resources
from China University of Geosciences.

Sayed Bilal Hussain received the Bachelor of Com-
puter Science degree from the University of Peshawar,
Peshawar, Pakistan, in 2012. He is currently working
toward the M.Sc. degree in software engineering from
the China University of Geosciences, Wuhan, China.

Guoling Shen received the B.Sc. degree from the
School of Geography and Information Engineering,
China University of Geosciences, Wuhan, China, in
2019. He is currently working toward the M.Sc. de-
gree in remote sensing of environment and natural
resources from the China University of Geosciences.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


