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Abstract—Change detection (CD) has found a wide range of
applications in many fields. In this article, we propose a novel non-
local low-rank (NLR) based method for multitemporal synthetic
aperture radar image CD. This method jointly exploits the powerful
NLR-based despeckling and the effective cascade clustering. First,
the NLR model is used to generate the difference image (DI), which
consists of a patch grouping process and a low-rank minimizing
process. Especially, the NLR minimization model contains a data
fidelity term, which is based on the statistical distribution of speckle
noise, and a regularization term, which uses the weighted nuclear
norm. Then, the alternating direction methods of multipliers is
introduced to solve this minimization problem. Second, after DI
is generated, the principal component analysis is employed to
extract the feature and a two-level clustering method is used to
generate the final change map, which separates the intermediate
class by using the neighbor information with Gaussian weighted
distance. Experiment results demonstrate the effectiveness of
the proposed method by comparing with some state-of-the-art
methods.

Index Terms—Low-rank modeling, speckle reduction, synthetic
aperture radar (SAR) images, two-level clustering, unsupervised
change detection (CD).

I. INTRODUCTION

CHANGE detection (CD) is a process of identifying
changes of an object or phenomenon that have occurred

in the same geographical area at different times. In the field of
synthetic aperture radar (SAR) image processing, CD is a very
important topic, which has a wide range of applications in both
civil and military domains, such as disaster relief, agricultural
survey, urban planning, and military monitoring [1]–[3].

Generally, according to whether the label information is
used, CD algorithms can be divided into three categories: the
supervised [4], semisupervised [5], [6], and unsupervised [7],
[8]. Although the supervised and semisupervised approaches
can provide better performance theoretically, they usually need
the ground truth or the labeled samples for training, which are
difficult to obtain in some practical applications. Therefore,
we focus on the unsupervised CD method to discriminate the
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changed and unchanged classes without requiring any ground
reference.

The procedure of traditional unsupervised CD in SAR images
can be divided into three steps: image preprocessing, difference
image (DI) generation and analysis of the DI [9]. In the first step,
geometric correction and registration are usually implemented to
align two images into the same coordinate frame. In the second
step, a DI is generated, which can initially discern the changed
and unchanged areas. Then, the DI can be divided into two
classes in the third step. Among them, the construction of DI
has a close relationship with the result of CD. Generally, the
methods of generating DI mainly include difference operator and
ratio operator. However, the speckle noise in SAR images makes
it more difficult to generate a clean DI for CD. To overcome
this problem, the log-ratio operator [10], which can transform
the multiplicative noise into additive noise is often used for its
robustness and insensitivity to speckle noise. Furthermore, the
ratio mean detector [11] based on the ratio of local intensity
means of pixel patches can enhance the low-intensity pixels,
which is also robust to speckle noise. There are some other
works proposed recently to generate a better DI-based on the
fusion of different methods, such as the wavelet fusion technique
on both log-ratio and mean-ratio images [12]–[14], the wavelet
fusion technique on Gauss-log ratio and log-ratio images [15],
the saliency extraction guided log-ratio images [16], the shearlet
fusion technique on saliency extraction, and Gauss-log ratio im-
ages [17]. Due to the presence of the speckle noise, it is difficult
to keep tradeoff between robustness to noise and effectiveness
of preserving the detail [18]. Although the ratio-based methods
can partially reduce the impact of noise, they cannot make full
use of multitemporal remote sensing images and there will still
be some residual noise that would seriously affect the detection
performance.

Recently, the nonlocal low-rank (NLR) model has attached
much attention for its superior performance in denoising [19]–
[21]. These methods first group similar patches within a local
window, then assume that the patches in each group share similar
underlying structure, which means that the patches stacked
group matrix have a low-rank property. Then, low-rank min-
imization problem is modeled to reconstruct the clean image
patches. The NLR model has also been extended to SAR image
processing [22], [23] and brings effective performance. In this
article, we introduce the NLR model to generate the DI, which
can effectively utilize the characteristics of speckle noise, aiming
to reduce the noise and provide better DI for CD. Instead of
separately applying NLR to the original multitemporal images
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to obtain two independent denoising images, or simply applying
NLR to the log-ratio DI directly, the proposed NLR model jointly
uses the statistical distribution characteristics of the multitem-
poral images, which can avoid the loss of information in the
subtraction process and lead to a better quantity of DI.

After the DI is obtained, the CD can be treated as an image
binary segmentation problem. The clustering method is widely
used for its simplicity and effectiveness, which is a process of
grouping a set of features into meaningful clusters [24]. In order
to extract the features, principal component analysis (PCA) [25],
compressed projection [15], and Gabor wavelets [26] are often
used. Then, the clustering methods, such as K-means clustering
[27], fuzzy c-means (FCM) clustering [28], fuzzy local infor-
mation c-means [29], Markov random field FCM (MRFFCM)
[30] are often employed to obtain the final result. In this article,
we employ the PCA to extract the feature vectors and modify
the two-level clustering scheme proposed in [26] to identify the
changed and unchanged classes by implementing FCM with the
nearest neighbor rule with Gaussian weighted distance.

The main contributions of this article are twofold. First, we
propose a speckle noise distribution based NLR model for
generating DI. Especially, we modify the data fidelity term
in the traditional NLR-based methods according to the noise
characteristics of two original observed SAR images. To im-
prove the performance, the weighted nuclear norm (WNM)
[31] is employed for the rank minimization problem. Then, the
alternating direction methods (ADM) of multipliers (ADMM)
is used to solve the unconstrained optimization problem. Sec-
ond, we modify the two-level clustering scheme to classify the
PCA-extracted feature, which separates the intermediate classes
by using the neighbors information with Gaussian weighted
distance.

The remainder of this article is organized as follows.
Section II presents the proposed NLR DI model based CD
method. Section III shows the experimental results, and Section
IV provides the conclusion.

II. PROPOSED CD METHOD

We consider two coregistered SAR intensity images Y1 =
{y1(i, j)|1 ≤ i ≤ I, 1 ≤ j ≤ I} and Y2={y2(i, j)|1≤ i≤I,
1 ≤ j ≤ I}, which are acquired on the same geographical area
but at two different times. CD is aiming to generate a binary
change map to classify the changed and unchanged class. The
proposed method consists of three steps: 1) DI generation, which
includes logarithmic images generation, patch construction, and
low-rank recovery; 2) PCA feature extraction; and 3) modified
two-level clustering, which includes the FCM and Gaussian
weighted distance classification. The framework is illustrated
in Fig. 1.

A. NLR Modeling for DI

Very recently, the NLR model has attracted researchers’ at-
tention on the SAR image despeckling [22], [23]. Here, we
extend it to the SAR image CD. We first suppose that X1 and
X2 are the underlying backscattering coefficients corresponding
to Y1 and Y2, respectively. Then, Y is related to X by the

Fig. 1. Framework of the proposed CD method.

well-accepted multiplicative model (dropping the pixel subscript
for simplicity)

Yt = XtNt, t = 1, 2 (1)

whereN is the corresponding speckle noise. The statistical prop-
erties of speckle have been widely studied and are the topic of a
large body of literature, here we use the widely recognized and
used Gamma distribution with unit mean [32]. The probability
density function (pdf) of N is given by

pNt
(Nt) =

LLt
t NLt−1

t e−LtNt

Γ (Lt)
, Nt ≥ 0, Lt ≥ 1, t = 1, 2

(2)
where Γ(·) denotes the Gamma function, and L is the equivalent
number of looks (ENL).

Applying the logarithmic transform to (1), an additive noise
model is obtained

Ỹt = X̃t + Ñt, t = 1, 2 (3)

where Ỹt = logYt, X̃t = logXt, and Ñt = logNt. The pdf
of the random Ñt is given by [33]

pÑt

(
Ñt

)
= pNt

(
eÑt

)
eÑt =

LLt
t

Γ (Lt)
eLtÑte−Lte

Ñt
. (4)

Subtract Ỹ1 and Ỹ2, we can obtain the logarithmic DI

ỸD = Ỹ1 − Ỹ2 = X̃1 − X̃2 + Ñ1 − Ñ2. (5)

To exploit the nonlocal self-similarity, first, a logarithmic
DI is divided into a number of overlapped squared patches
with size ps × ps and sliding step sstep. Then, for each target
patch, we select (Np − 1) most similar patches in the ws × ws

search window. Unlike the traditional Euclidean distance used
in additive white Gaussian noise condition, some researchers
use the following similarity distance for multiplicative speckle
noise, which has been proved to be well suited to SAR images
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Fig. 2. Illustration of PGM construction.

[23], [34]

Sm,n =

p2
s∑

k=1

log

(√
Im(k)√
In(k)

+

√
In(k)√
Im(k)

)
(6)

where Im(k) and In(k) are the original intensity values of thekth
pixel in patchesm andn, respectively. The greater the difference
between image patches, the bigger Sm,n is. Conversely, when
the two patches are identical, Sm,n reaches the minimum as
Sn,n = p2s log 2. Inspired by their work, we use the following
equation to measure the similarity distance between the patches
m and n by substituting Ĩ(k) = log I(k) into (6)

S̃m,n =

p2
s∑

k=1

log

(√
eĨm(k)

√
eĨn(k)

+

√
eĨn(k)√
eĨm(k)

)

=

p2
s∑

k=1

log
(
eĨm(k) + eĨn(k)

)
− Ĩm(k) + Ĩn(k)

2
(7)

where Ĩm(k) and Ĩn(k) are the intensity values of the kth pixel
in patches m and n in the logarithmic DI, respectively. After
selecting the (Np − 1) most similar patches, we vectorize and
stack them (include the target one) into a patch group matrix
(PGM) with the size p2s ×Np. Fig. 2 shows the process of PGM
construction.

It is reasonable to assume that the clean PGM, denoted as
Φi, should have a low-rank property as all image patches in
PGM have a similar underlying structure. Let Ri stand for the
operation matrix that extracting the ith PGM from an image, i.e.,
Φi = Ri(X̃1 − X̃2), then we have the following NLR model
for DI:

min
∑
i

Rank (Φi)

s.t. Φi = Ri

(
X̃1 − X̃2

)
, X̃1 = Ỹ1 − Ñ1, X̃2 = Ỹ2 − Ñ2.

(8)

The corresponding unconstrained problem is

minD
(
X̃1, Ỹ1

)
+D

(
X̃2, Ỹ2

)

+ λ
∑
i

Rank
(
Ri

(
X̃1 − X̃2

))
(9)

where D(X̃, Ỹ) is the data fidelity term, and λ is a tradeoff
parameter. An intuitive requirement is that D(X̃, Ỹ) should be

proportional to conditional probability. Here, we set D(X̃, Ỹ)
be the negative logarithm of pỸ|X̃(Ỹ|X̃). By using (4), we have

D
(
X̃t, Ỹt

)
= − log p

Ỹt

∣∣X̃t

(
Ỹt

∣∣∣X̃t

)

= − log pÑt

(
Ỹt − X̃t

)

= ct + Lt

M∑
s=1

(
x̃s
t + eỹ

s
t−x̃s

t
)

(10)

where ct is a constant, M = I × J is the total number of pixels,
and x̃s

t and ỹst are the sth pixel values in X̃t and Ỹt, respectively.
As the original rank minimization problem is NP-hard, the
nuclear norm is usually applied to be the regularization term.
To improve the performance, we select the WNN [31], [35] to
replace the matrix rank. Substitute (10) and the WNN into (9),
and introduce auxiliary variables zi ∈ Rp2

s×Np , we can rewrite
the model (9) as

〈
X̂1, X̂2

〉
= arg min

X̃1,X̃2

L1

M∑
s=1

(
x̃s
1 + eỹ

s
1−x̃s

1
)

+ L2

M∑
s=1

(
x̃s
2 + eỹ

s
2−x̃s

2
)
+ λ

∑
i
‖zi‖w,∗

s.t. zi = Ri

(
X̃1 − X̃2

)
(11)

where ‖zi‖w,∗ =
∑

a waσa(zi) with σa(zi) denoting the ath
singular value of zi, and wa is the corresponding weight pa-
rameter. The augmented Lagrangian function of the objective
function (11) is

L
(
z, X̃1, X̃2,u

)

= L1

M∑
s=1

(
x̃s
1 + eỹ

s
1−x̃s

1
)
+ L2

M∑
s=1

(
x̃s
2 + eỹ

s
2−x̃s

2
)

+ λ
∑

i
‖zi‖w,∗ +

〈
ui,Ri

(
X̃1 − X̃2

)
− zi

〉

+
ρ

2

∥∥∥Ri

(
X̃1 − X̃2

)
− zi

∥∥∥
2

F
(12)

where 〈·, ·〉 denotes the inner product, ui ∈ Rp2
s×Np is the La-

grangian multiplier, and ρ > 0 is the penalty parameter, which is
selected to balance the regularization and data fidelity. Then, we
can use the ADM to solve the minimization of (12) by separating
it into z-subproblem and X̃-subproblem.

First, suppose that we have (zk, X̃k
1 , X̃

k
2 ,u

k) at the kth iter-
ation, then the minimization of (12) with respect to z can be
formulated as

zk+1 = argmin
z

∑
i

‖zi‖w,∗

+
ρ

2

∥∥∥∥Ri

(
X̃k

1 − X̃k
2

)
− z+

uk
i

ρ

∥∥∥∥
2

F

. (13)

Then, we can update zk+1 as

zk+1
i = Usoft

(
Σ,

1

ρ
diag (w)

)
VT (14)
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where UΣVT is the singular value decomposition (SVD)

of [Ri(X̃
k
1 − X̃k

2) +
uk

i

ρ ] and the soft threshold here is de-
fined as soft(x, t) = max{x− t, 0}. According to [31], the
ath element of w is set to be inversely proportional to

σa(Ri(X̃
k
1 − X̃k

2) +
uk

i

ρ ). Here, we set wa =
√

Np
Σa+ε with ε =

10−16 to avoid dividing by zero.
With the fixed (zk+1, X̃k

2 ,u
k), the minimization of (12) with

respect to X̃1 can be formulated as

X̃k+1
1 = argmin

X̃1

L1

M∑
s=1

(
x̃s
1 + eỹ

s
1−x̃s

1
)

+ λ
∑
i

ρ

2

∥∥∥∥Ri

(
X̃1 − X̃k

2

)
− zk+1 +

uk
i

ρ

∥∥∥∥
2

F

(15)

which is a convex problem. Taking derivation on the objective
function of (15) with respect to X̃1 and forcing the result to zero,
we can obtain

L1 − L1e
Ỹ1−X̃1

= −λρ
∑
i

RT
i

(
Ri

(
X̃1 − X̃k

2

)
− zk+1 +

uk
i

ρ

)
. (16)

It is not easy to obtain the closed-form solution even with
the Lambert W function. To avoid this difficult computational
process, we use the linearize inexact approximation technique

and modify 1
2‖Ri(X̃1 − X̃k

2)− zk+1 +
uk

i

ρ ‖2F as

1

2

∥∥∥∥Ri

(
X̃1 − X̃k

2

)
− zk+1 +

uk
i

ρ

∥∥∥∥
2

F

≈ 1

2

∥∥∥∥Ri

(
X̃k

1 − X̃k
2

)
− zk+1 +

uk
i

ρ

∥∥∥∥
2

F

+

〈
RT

i

(
Ri

(
X̃k

1 − X̃k
2

)
− zk+1 +

uk
i

ρ

)
, X̃1 − X̃k

1

〉

+
1

2τi

∥∥∥X̃1 − X̃k
1

∥∥∥
2

F
(17)

where τi > 0 is the step size. Substitute (17) into (15), and
rewrite the derivation equation as

L1 − L1e
Ỹ1−X̃1 = − λρ

∑
i

RT
i

(
Ri

(
X̃k

1 − X̃k
2

)

− zk+1 +
uk
i

ρ

)
+

X̃1 − X̃k
1

τi
. (18)

Although its closed-form solution can be obtained by using the
Lambert W function, here we apply the Newton method as it

can yield a fast and accurate solution by a few iterations (in
general, five iterations in our problem are enough to obtain an
approximate exact solution). The update formula for Newton
method is given by (19), shown at the bottom of this page. In
(19), the point division sign ./ is defined as the elementwise
division (A./B)ij = (aij/bij)

Similarly, with the fixed (zk+1, X̃k+1
1 ,uk), the minimization

of (12) with respect to X̃2 can be formulated as

X̃k+1
2 = argmin

X̃2

L2

M∑
s=1

(
x̃s
2 + eỹ

s
2−x̃s

2
)

+ λ
∑
i

ρ

2

∥∥∥∥Ri

(
X̃2 − X̃k+1

1

)
+ zk+1 − uk

i

ρ

∥∥∥∥
2

F

.

(20)

Taking the same processing steps as X̃1, we can update X̃2 by
using the linearize inexact approximation and Newton iteration
as (21) shown at the bottom of this page.

Finally, we update the Lagrangian multipliers and penalty
parameter ρ as

uk+1
i = uk

i + ρ
(
Ri

(
X̃k+1

1 − X̃k+1
2

)
− zk+1

i

)
(22)

ρ← μ× ρ (23)

where μ > 1.
It should be noticed that the NLR model for DI is not equal

to the denoising operation on the log-ratio image ỸD, which
constructs the NLR model as

min
X̃1−X̃2

D
(
X̃1 − X̃2

∣∣∣Ỹ1 − Ỹ2

)

+ λ
∑
i

Rank
(
Ri

(
X̃1 − X̃2

))
. (24)

Although this model is easier to be solved than (9), it loses
data information in the process of subtraction as can be seen
by comparing it with model (9), where the data fidelity terms
D(X̃1, Ỹ1) and D(X̃2, Ỹ2) are both used. This means that the
proposed NLR model makes fuller use of the information of the
original images, and, thus, leads to a better performance.

Our algorithm, named NLR-driven ADMMs for DI genera-
tion (NLR-ADMM for short), is summarized in Table I. Briefly,
the ADMM algorithm for NLR model of DI (12) makes full
use of the separable structure of the objective function and
iteratively solve the z-subproblem and X̃-subproblem. One sub-
problem can be solved by the weighted singular value threshold
method, and the other can be solved by the efficient inexact
linearization technique and Newton method. Since calculating

X̃1 ← X̃1 −
(
L1 − L1e

Ỹ1−X̃1 + λρ
∑
i

RT
i

(
Ri

(
X̃k

1 − X̃k
2

)
− zk+1 +

uk
i

ρ

)
+
X̃1 − X̃k

1

τi

)
.

/(
L1e

Ỹ1−X̃1 + λρ
∑
i

1

τi

)

(19)

X̃2 ← X̃2 −
(
L2 − L2e

Ỹ2−X̃2 + λρ
∑
i

RT
i

(
Ri

(
X̃k

2 − X̃k
1

)
+ zk+1 − uk

i

ρ

)
+
X̃2 − X̃k

2

τi

)
.

/(
L2e

Ỹ2−X̃2 + λρ
∑
i

1

τi

)

(21)
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TABLE I
IMPLEMENTATION STEPS OF NLR-ADMM FOR DI GENERATION

the similarity metric for each patch and constructing the patch
group extracting matrix {Ri} are time-consuming, moreover, it
is not updated much in two adjacent iterations, this step is only
carried out once every IR iterations to reduce computational
complexity.

As shown in Table I, theNiter is the max number of reconstruc-
tion iterations, ξk+1 is the minimum �2-distance between two
iterative results. The exit criterion ξk+1 < ξ0 means that there
is no longer any appreciate changes in the iteration and NLR-
ADMM runs into convergence. Meanwhile, the ENL parameters
L1 and L2 can be obtained according to prior knowledge, or can
be estimated from the homogeneous region of Ỹ1 and Ỹ2 as
[36], respectively

ENL = SC

(
μHR

σHR

)2

,

SC =

{
1, intensity image

4/π − 1, amplitude image
(25)

where μHR is the mean value of the selected homogeneous
region and σ2

HR is the corresponding variance.

B. PCA Feature Extraction

Although there are many methods to extract the features from
the DI, such as Gabor wavelets [26], compressed projection
[15], here we use the PCA to extract the eigen-vectors as in
[25] for its simplicity and efficiency. PCA uses a subset of the
principle components to represent the original signal so that
most of the energy is preserved, while the energy of noise will
evenly spread over the whole dataset. Compared with the direct
usage of PCA on the log-ratio DI, the NLR model based DI can
enhance the low-rank property of the DI and reduce the speckle
noise, which can help the PCA to extract more effective features
and make up for the deficiency of PCA in despeckling, as PCA is
more suitable for the data which follows Gaussian distribution.

Thus, combining NLR-ADMM for DI with PCA feature extract-
ing can improve the CD performance.

First, the h× h (h ≥ 2) nonoverlapping image blocks are
partitioned from the DI X̃D obtained by using the above
NLR-ADMM. For each block, we vectorize it and arrange
them into a matrix. Second, by calculating the mean vector
and the covariance matrix, the eigenvector space is obtained
by applying the PCA. Third, by projecting the overlapping
h× h data block around each pixel onto eigenvector space,
the corresponding feature vector q with s dimension can be
extracted, where 1 ≤ s ≤ h2. Then, we can obtain the feature
matrix Q = [q1, . . . ,qI×J ]T over the entire DI with the size
(I × J)× s to represent the I × J pixels in the DI X̃D.

C. Modified Two-Level Clustering

Once the features of DI have been extracted, clustering meth-
ods are often employed to obtain the classification result, such
as the K-means clustering, FCM clustering, and their variants.
Due to the overlap of the changed and unchanged classes, the
commonly used one-step clustering algorithm sometimes fails
to make a reliable decision. To addresses this challenge, Li et al.
have proposed a two-level clustering method [26], where they
have designed a cascade structure with two simple clustering
algorithms to implement a coarse-to-fine discrimination. Es-
pecially, in the first level clustering, FCM is employed on the
feature matrix Q to partition X̃D into three clusters. By using
the FCM, we can obtain the matrix μμμ = [μmn]3×IJ with μmn

representing the membership grade of nth pixel in cluster m,
and centroid matrix ννν = [ν1, ν2, ν3] with νm ∈ Rs representing
the centroid of cluster m. First, we divide each pixel into an
initial class Ωm by the maximum membership principle from
μμμ, and, then, calculate the mean value of X̃D in cluster Ωm as
MΩm

= (1/|Ωm|)
∑

n∈Ωm
x̃n
D. Then, we can determine, which

cluster Ωm corresponds to the changed, unchanged, and inde-
terminate class by comparing the values of MΩm

, which are
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defined as wc, wu, and wi, respectively

Ωm =

⎧
⎪⎪⎨
⎪⎪⎩

wc, m = arg max
m=1,2,3

MΩm

wu, m = arg min
m=1,2,3

MΩm

wi, otherwise.

(26)

In the second-level clustering, the centroids of wc and wu are
recalculated by

νwc
=

∑
n∈wc

μ2
mnqn∑

n∈wc
μ2
mn

, m→ label (wc) (27)

νwu
=

∑
n∈wu

μ2
mnqn∑

n∈wu
μ2
mn

, m→ label (wu) . (28)

Unlike in [26], where the nearest neighbor rule is simply em-
ployed to separate wi into two class as

n ∈
{
wc,

∥∥qn − νwc

∥∥
2
≤ ∥∥qn − νwu

∥∥
wu,

∥∥qn − νwc

∥∥
2
>
∥∥qn − νwu

∥∥ , n ∈ wi. (29)

Here, we separate the intermediate class by using the neighbor
information with Gaussian weighted distance. As the interme-
diate class wi is between the highly pure changed class wc and
unchanged class wu, thus most of errors will be concentrated in
this reclassification process. Considering that each changed or
unchanged pixel is not isolated, and by using this homogeneity
of the changed and unchanged portions, the Gaussian weighted
distance classification rule is proposed. After centroids of wc

and wu are obtained by (27) and (28), we calculate two distance
maps dc = [dci,j ]I×J and du = [dui,j ]I×J to these two centroids

for each pixel x̃D(i, j) in X̃D as

dci,j =
∥∥qi,j − νwc

∥∥
2
, dui,j =

∥∥qi,j − νwu

∥∥
2

(30)

where qi,j is the feature vector of pixel x̃D(i, j), i.e., qi,j =
q(i−1)×I+j in feature matrix Q. Then, for each pixel x̃D(i, j)
in wi, we calculate its weighted distances to the centroids of wc

and wu as

d̃ci,j =

1∑
h=−1

1∑
t=−1

gh,td
c
i+h,j+t

d̃ui,j =

1∑
h=−1

1∑
t=−1

gh,td
u
i+h,j+t (31)

where gh,t is the element of the rotationally symmetric Gaussian
low-pass filter G of size 3× 3 with standard deviation 0.5 as
follows:

G =

⎡
⎢⎣
g−1,−1 g−1,0 g−1,1
g0,−1 g0,0 g0,1

g1,−1 g1,0 g1,1

⎤
⎥⎦

=

⎡
⎢⎣
0.0113 0.0838 0.0113

0.0838 0.6193 0.0838

0.0113 0.0838 0.0113

⎤
⎥⎦ . (32)

Then, we can dividewi into changed or unchanged class accord-
ing to nearest distance criterion as

n ∈
{
wc, d̃ci,j ≤ d̃ui,j
wu, d̃ci,j > d̃ui,j

, with n ∈ wi, n = (i− 1)× I + j.

(33)
As a result, we can obtain the final binary change map
CM = {cm(i, j)|1 ≤ i ≤ I, 1 ≤ j ≤ I}, in which cm(i, j) =
1 indicates that the changed location with n ∈ wc, whereas
cm(i, j) = 0 involving unchanged location with n ∈ wu, with
n = (i− 1)× I + j.

III. EXPERIMENTAL ANALYSIS

In this section, simulations are performed to demonstrate
the proposed conclusions and evaluate the performance of the
proposed NLR-PCATLC based CD method. We apply six meth-
ods in comparison: PCA with k-means clustering (PCA-KM)
[25], modified Markov random field with FCMs (MRFFCM)
[30], neighborhood-based ratio and extreme learning machine
method (NR-ELM) [37], Gabor feature with two-level cluster-
ing (GaborTLC) [26], PCANet [38], and convolutional-wavelet
neural network (CWNN) [39].

In order to evaluate the performance of different methods,
we use some quantitative parameters to evaluate the final map:
false negatives (FN), false positives (FP), the overall error (OE),
the percentage correct classification (PCC) and the Kappa co-
efficient (Kappa). All experiments are performed in MATLAB
2015b running on personal ASUS laptop with Intel Core i7-
8550 U CPU, 8 GB of RAM, and 64 bit Windows 10 operating
system.

A. Effectiveness of the DI Generation and Clustering Process

In the first experiment, we test the proposed method on the
Carabas dataset to verify the effectiveness of the NLR-ADMM
and the modified two-level clustering, respectively. Fig. 3 shows
the Carabas II VHF dataset, which contains vehicles concealed
under foliage obtained from a Sabreliner aircraft with a resolu-
tion of 3 m in northern Sweden 2002. From Fig. 3(c), we can find
that there are few but strong changes with relatively small area.
Fig. 3(d) and (e) show the DIs generated by log-ratio operation
and NLR-ADMM, respectively. Fig. 3(f) and (g) shows the
CD results by using the PCA-KM with log-ratio based DI of
Fig. 3(d) and NLR-ADMM based DI of Fig. 3(e), respectively.
By comparing these pictures separately, we can find that the
NLR model can generate a better DI than the traditional log-ratio
operator, especially in the feature extraction by PCA operation.
This is because that the NLR can help the PCA to extract more
effective features and make up for the shortcomings of PCA
under non-Gaussian distribution, as the NLR model can enhance
the low-rank property and reduce the speckle noise. Fig. 3(h)
and (i) shows the CD results by using the original two-level
clustering in [26] and the Gaussian weighted two-level clustering
after the PCA extracting operation on the NLR-ADMM obtained
DI of Fig. 3(e), respectively. As pointed in Section II, the
modified two-level clustering can use the neighbor information
of the intermediate class pixels, then it can reduce the number of
isolated points, which may be caused by speckle noise. As can be
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Fig. 3. Test on Carabas dataset: (a) image acquired in time 1; (b) im-
age acquired in time 2; (c) ground truth image; (d) log-ratio generated DI;
(e) NLR-ADMM generated DI; (f) PCA-KM with log-ratio based DI, where
FN = 77, FP = 798 and Kappa = 0.8171; (g) PCA-KM with NLR-ADMM
based DI, where FN = 69, FP = 605 and Kappa = 0.8535; (h) NLR-PCATLC
without using the modified Gaussian weighted two-level clustering, where FN
= 147, FP = 162 and Kappa = 0.9244; and (i) proposed NLR-PCATLC result,
where FN=170, FP = 15 and Kappa = 0.9528.

seen from Fig. 3(h) and (i), the isolated error classification points
are well suppressed by using the homogeneity of the changed
and unchanged classes, for example, the points marked by the
red arrow and the red circle in Fig. 3(h).

B. Test on Other Datasets

Here, we test the proposed NLP-PCATLC with other compar-
ing methods on seven datasets, which include four flood mapping
datasets, one farmland change dataset, and two urban building
change datasets.

1) Description of the Experimental Data: The first dataset
of SAR images is from Bern, Switzerland, in April and May
1999 acquired by ERS-2 SAR sensor with the size 301× 301
pixels. Fig. 4(a) and (b) show the two multitemporal SAR
images, respectively. Fig. 4(c) shows the ground truth of the
CD map, which represents that River Aare inundated parts of
Bern, Thun and the whole airport in Bern. The second dataset
is from Ottawa, Canada, in May and August 1997, acquired
by Radarsat-1 SAR sensor with the size of 290× 350 pixels,
as shown in Fig. 5(a) and (b), respectively. Fig. 5(c) shows
the ground truth of the CD map, which represents a rise in
the surface of lakes on the rainy season. The third dataset is
from San Francisco, in August 2003 and May 2004, acquired
by ERS-2 SAR sensor with the size 256× 256 pixels, as shown

Fig. 4. Bern dataset: (a) image acquired in April 1999; (b) image acquired in
May 1999; and (c) ground truth image.

Fig. 5. Ottawa dataset: (a) image acquired in May 1997; (b) image acquired
in August 1997; and (c) ground truth image.

Fig. 6. San Francisco dataset: (a) image acquired in August 2003; (b) image
acquired in May 2004; and (c) ground truth image.

Fig. 7. Italy dataset: (a) image acquired in October 20, 2010; (b) image
acquired in October 28, 2010; and (c) ground truth image.

in Fig. 6(a) and (b), respectively. Fig. 6(c) shows the reference
image generated by integrating prior information with photo-
graph interpretation. The fourth dataset is from Italy, in October
20 and 28, 2010, acquired by ERS-2 SAR sensor with VV
polarization and 256× 256 pixels, as shown in Fig. 7(a) and
(b). Fig. 7(c) shows the reference image, which represents the
changes in the flood event. The fifth dataset is from Yellow
River Estuary, China, in June 2008 and June 2009, acquired
by Radarsat-2 SAR sensor with the size 257× 289 pixels, as
shown in Fig. 8(a) and 8(b). Fig. 8(c) shows the reference
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Fig. 8. Yellow River dataset: (a) image acquired in June 2008; (b) image
acquired in June 2009; and (c) ground truth image.

Fig. 9. Yichun dataset: (a) image acquired in August 22, 2017; (b) image
acquired in August 24, 2019; and (c) ground truth image.

Fig. 10. Wuhan dataset: (a) image acquired in October 14, 2015; (b) image
acquired in February 1, 2016; and (c) the ground truth image.

image, which is created by integrating prior information with
photo interpretation based on the input images in Fig. 8(a) and
(b). The sixth dataset is from the Yichun, China, in 22 August
2017 and 24 August 2019 by Sentinel-1 SAR sensor with VH
polarization and 299× 282 pixels, as shown in Fig. 9(a) and (b).
Fig. 9(c) shows the reference image, which represents the new
buildings. The last dataset is from Wuhan, China, in 14 October
2015 and 1 February 2016 by Terra SAR sensor with HH po-
larization and 870× 779 pixels, as shown in Fig. 10(a) and (b).
Fig. 10(c) shows the reference image, which represents the new
and demolished factories, some changes in waters and other
changes like vehicle targets. It should be noted that we adopt two
different strategies to label the ground truth maps of the building
changes for Yichun dataset and Wuhan dataset. In Fig. 9(c), we
label the ground truth mainly based on SAR scattered images,
so it has some structures reflecting SAR imaging characteristics.
However, we label Fig. 10(c) mainly based on the corresponding
optical images, so it can visually reflect the changes of the
building area. These two different labeling strategies can fully
reflect the performance of all comparison methods in terms of
visual effect and parameter evaluation indexes.

Fig. 11. Final CD maps of Bern dataset generated by: (a) PCA-KM;
(b) MRFFCM; (c) NR-ELM; (d) GaborTLC; (e) PCANet; (f) CWNN; and
(g) proposed NLR-PCATLC.

TABLE II
QUANTITATIVE MEASURES ON THE BERN DATASET

2) Parameter Setting: Results of PCA-KM, MRFFCM, NR-
ELM, GaborTLC, PCANet, and CWNN (http://summitgao.
github.io) are implemented by using the authors’ public available
codes. Therefore, some parameters we used in these methods are
the recommended parameters provided in their source codes.
Especially, in MRFFCM, the number of subintervals is set to 30
as mentioned in [30]. In GaborTLC, we implement the Gabor
wavelet transform withU = 8,V = 5,kmax = 2π, andf =

√
2,

and leave σ to be tuned from 2π to 3π with ten equally spaced.
In PCANet, the size of the neighborhood is set as 5× 5, while
in NR-ELM, the neighborhood size of the NR operator and
the feature extraction are set to be 3 and 5 as recommended,
respectively. In PCA-KM and NLR-PCATLC, the image blocks
size and PCA feature vector size are set to be h = 5 and
s = 5 for San Francisco and Yellow River datasets, and h = 3
and s = 3 other datasets, respectively. The other parameters
for NLR-PCATLC are set as Niter = 40, IR = 4, ξ0 = 10−5,
ps = 5, ws = 25, sstep = 3, and Np = 10 in the NLR-ADMM
to generate the DI for all these seven datasets.

3) Result Analysis: We first test these methods on the Bern
dataset. Fig. 11 shows the final maps of PCA-KM, MRFFCM,
NR-ELM, GaborTLC, PCANet, CWNN, and the proposed
NLR-PCATLC, and Table II lists the values of the evaluation
criteria with the optimal two values written in bold for each
criterion. As shown in Fig. 11, the CD maps generated by
NLR-PCATLC has little speckles, and the small changes isolated
from the main changed area are also well detected. PCA-KM,
MRFFCM, and GaborTLC work well on the CD, while they
fail on the antispeckle noise and bring more false alarm. The
PCANet has the minimum FP, but it is overly smoothing, which

http://summitgao.github.io


SUN et al.: SAR IMAGE CHANGE DETECTION BASED ON NONLOCAL LOW-RANK MODEL AND TWO-LEVEL CLUSTERING 301

Fig. 12. Final CD maps of Ottawa dataset generated by: (a) PCA-KM;
(b) MRFFCM; (c) NR-ELM; (d) GaborTLC; (e) PCANet; (f) CWNN; and
(g) proposed NLR-PCATLC.

TABLE III
QUANTITATIVE MEASURES ON THE OTTAWA DATASET

makes many of the changed pixel undetected. Even though the
FN and FP of NLR-PCATLC and GaborTLC are not the least,
they could provide an acceptable detection results, which work
well on both the denoising and edge preserving, thus they bring
a higher Kappa coefficient, as shown in Table II.

The result of the second experiment on the Ottawa dataset
are shown in Fig. 12 and listed in Table III, respectively. As
shown in Fig. 12(g), the CD map produced by NLR-PCATLC
is closer to the reference image and preserves more details than
other methods, thus leads to the least FN as 608, which is much
less than GaborTLC, PCA-KM, and other methods except the
CWNN. This mainly due to that NLR model can well preserve
the image details and edges, as pointed out by the red rectangle
box in Fig. 12. Meanwhile, because the speckle noise level in
the two original multitemporal images is relatively low as can
be seen from Fig. 5(a) and (b), the denoising effect of NLR-
PCATLC is not so obvious. However, NLR-PCATLC is still
optimal in terms of both OE, PCC, and Kappa coefficient, which
demonstrates the effectiveness of the proposed method again.

The CD maps generated by different methods on the San
Francisco dataset are shown in Fig. 13 with their values of
evaluation criteria listed in Table IV. There are many isolated
white spots in GaborTLC, PCA-KM, and MRFFCM, which
bring more false alarm and cause the high value of FP as 763,
701, and 523 in Table IV. The PCANet have the least FP, but
it fails on the detection of some details and leads to highest
FN. Comparing to other methods, the OE, PCC, and Kappa
coefficients of NLR-PCATLC and CWNN are superior to those
of others, which indicates that they will perform better when a
more accurate result is required.

Fig. 13. Final CD maps of San Francisco dataset generated by: (a) PCA-
KM; (b) MRFFCM; (c) NR-ELM; (d) GaborTLC; (e) PCANet; (f) CWNN; and
(g) proposed NLR-PCATLC.

TABLE IV
QUANTITATIVE MEASURES ON THE SAN FRANCISCO DATASET

Fig. 14. Final CD maps of Italy dataset generated by: (a) PCA-KM;
(b) MRFFCM; (c) NR-ELM; (d) GaborTLC; (e) PCANet; (f) CWNN; and
(g) proposed NLR-PCATLC.

Fig. 14 shows the CD maps of different methods on the Italy
dataset, and Table V lists the corresponding values of evaluation
criteria. From these, we can find that the GaborTLC and NLR-
PCATLC can provide better results when comparing with other
methods. By comparing Figs. 14(g) with 14(a), we can see that
the NLR-PCATLC can effectively reduce isolated error points
that are caused by the speckle noise, which once again validates
the advantages of the NLR model.

Fig. 15 shows the CD maps of different methods on the
Yellow River dataset, and Table VI lists the corresponding
values of evaluation criteria. It should be noted that the noise
level of the original multitemporal images is quite different.
The image acquired in 2008 is a four-look image, while the
image acquired in 2009 is single-look image. This means that
the influence of speckle noise on the latter is much greater
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TABLE V
QUANTITATIVE MEASURES ON THE ITALY DATASET

Fig. 15. Final CD maps of Yellow River dataset generated by: (a) PCA-KM;
(b) MRFFCM; (c) NR-ELM; (d) GaborTLC; (e) PCANet; (f) CWNN; and
(g) proposed NLR-PCATLC.

TABLE VI
QUANTITATIVE MEASURES ON THE YELLOW RIVER DATASET

than the former. The huge different speckle noise level between
the two multitemporal images makes the CD more complicate
and difficult. According to this priori knowledge of the speckle
noise, we set L1/L2 = 4 for the NLR-PCATLC. As shown in
Fig. 15, the spots in NLR-PCATLC is much less than that in
PCA-KM, which means that the proposed NLR-ADMM model
can reduce the influence of speckle noise with different levels.
On the other hand, the image details are also preserved better
in the NLR-PCATLC than MRFFCM and NR-ELM. By com-
paring with PCA-KM, MRFFCM, NR-ELM, and GaborTLC,
the NLR-PCATLC can suppress the impact of speckle noise
and at the same time preserve the details that are not easy to
detect. Meanwhile, it is worth noting that CWNN and PCANet
on this dataset can achieve better PCC and Kappa coefficient than
NLR-PCATLC, respectively. However, the time consumption
of CWNN and PCANet are 832.79 and 2304.88 s for network
training, respectively, which are much greater than NLR-
PCATLC with 42.86 s.

Next, we test these methods on the urban building change
datasets of Yichun dataset and Wuhan dataset. Their experimen-
tal results are shown in Figs. 16 and 17, and listed in Tables VII

Fig. 16. Final CD maps of Yichun dataset generated by: (a) PCA-KM;
(b) MRFFCM; (c) NR-ELM; (d) GaborTLC; (e) PCANet; (f) CWNN; and
(g) proposed NLR-PCATLC.

Fig. 17. Final CD maps of Wuhan dataset generated by: (a) PCA-KM;
(b) MRFFCM; (c) NR-ELM; (d) GaborTLC; (e) PCANet; (f) CWNN; and
(g) proposed NLR-PCATLC.

TABLE VII
QUANTITATIVE MEASURES ON THE YICHUN DATASET

and VIII, respectively. As can be seen from the results of these
comparison algorithms, their performances on the building CD
are not as good as those on flood mapping tasks. This is mainly
because SAR images have a lot of strong scattering points in
urban areas. By comparing NLR-PCATLC with PCA-KM and
GaborTLC, we can find that the proposed NLR-PCATLC can
obtain cleaner results with fewer isolated error points, which can
be shown in Fig. 17(a), (d), and (g). This is mainly due to its
adoption of the NLR model for DI and the modified two-level
clustering for classification. However, we can also find that
these two steps also lead to higher false negatives, as shown
in Tables VII and VIII. As can be seen from Fig. 16(f) and
Table VII, the deep learning-based CWNN can achieve the best
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TABLE VIII
QUANTITATIVE MEASURES ON THE WUHAN DATASET

Fig. 18. CD performance comparison with different patch sizes ps.

performance in terms of visual effect and the optimal Kappa
coefficient 0.6277 on Yichun dataset, which is better than 0.6264
of NLR-PCATLC. From the above experiments, we can find that
NLR-PCATLC is a quite competitive methods for SAR image
CD.

4) Parameter Analysis: The last experiment is a test of pa-
rameters used in the NLR-PCATLC, which consists of two
main categories: the parameters used in NLR-ADMM and PCA
feature extraction. The main parameters of NLR-ADMM are the
patch size ps, the search window sizews, and the number of most
similar patches Np. To measure the impact of these parameters,
we analyze the influence of them using the above datasets. The
Kappa coefficient is adopted to evaluate the detection results,
which can describe the global performance of the CD. In Fig. 18,
we vary the patch size ps from 3 to 9 with step one and keep other
parameters fixed as ws = 25 and Np = 10. It can be found that
the patch size has an important impact on the CD performance.
As the ps increases, the Kappa value first grows and then drops,
which is because that a too small ps is not robust to the speckle
noise, whereas a too large ps makes it very hard to find enough
similar patches. Obviously, setting ps = 5 is a good choice. In
Fig. 19, we vary the search window size ws from 15 to 45 and
keep other parameters fixed as ps = 5 and Np = 10. It can be
observed that the NLR-ADMM is not quite sensitive to ws,
because the Kappa value changes only slightly as shown in
Fig. 19. There are two main reasons for this: first, due to the
spatial correlation of pixels and local similarity of patches, most
patches can find enough similar patches to satisfy the low-rank
property for the denoising within a suitable local search window,
whose size ws does not need to be very large, although a larger

Fig. 19. CD performance comparison with different search window sizes ws.

Fig. 20. CD performance comparison with different numbers of most similar
patches Np.

ws may bring more similar patches; second, this NLR recovery
process for DI generation is one step of the whole CD algorithm,
a very small change in the DI may have little effect on the whole
detection algorithm. Then, we can set ws = 25 as a compromise
choice, which can ensure that we can select enough similar
patches. At last, we vary the number of most similar patches
Np from 5 to 35 with step 5 and keep other parameters fixed as
ps = 5 and ws = 25 in Fig. 20. We can find that it can achieve
a stable enough good result when Np = 10. Although a large
Np can bring a better performance than a small Np in terms of
Kappa, it requires a higher computational complexity for a large
Np. Considering the CD performance and the computational
costs, we empirically set Np = 10. On the other hand, the main
parameters of PCA feature extraction are the feature vector size
s and image block size h. As stated in [25], there is no significant
change in CD performance with respect to s when 3 ≤ s ≤ h2.
Then, we set s equal to h for convenience in PCA feature ex-
traction. The parameter h defines the local neighborhood size so
that it affects the contribution of spatial contextual information
on the feature extraction. Obviously, a large h will smoothen
the effect of noise and reduce the false detections, but it will
bring more miss detections, and vice versa, which has also been
demonstrated by many experiments in [25]. Meanwhile, we use a
rotationally symmetric Gaussian low-pass filter G of size 3× 3
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with standard deviation 0.5 in the modified two-level clustering
for calculating the weighted distance maps dc and du. We can
also choose other rotationally symmetric Gaussian low-pass
filter G with different sizes gs × gs and standard deviations
σ. Intuitively, this Gaussian weighted distance can be seen as a
Gaussian smoothing process, which can reduce the isolated error
points. The first parameter gs, which determines the size of the
neighborhood, should be considered, and the second parameter
σ determines the smoothness of the matrix G: the larger the
σ, the smoother the result. In our algorithm, we empirically set
gs = 3 and σ = 0.5.

C. Complexity Analysis

The main computational complexity of NLR-PCATLC is
concentrating on the process of NLR-ADMM (Algorithm 1).

1) Calculating the similarity metric and grouping similar
patches. For each target patch, calculating the similar-
ity S̃m,n in (7) requires O(p2sw2

s). Thus, locating the
similar nonlocal neighbors for all target patches requires
O(p2sw2

sM), where M stands for the pixel number in the
image.

2) Updating zk+1. Since SVD is required to compute (14),
the complexity of updating each zk+1

i is O(rp2sNp),
where r represents the rank of matrix [Ri(X̃

k
1 − X̃k

2)

+
uk

i

ρ ]. Then, updating zk+1 requires O(rp2sNpM).

3) Applying the Newton method to update X̃k+1
1 and X̃k+1

2 .
As the linearize inexact approximation is employed in the
X̃k+1

1 and X̃k+1
2 updating process, the Newton iteration

in (19) and (21) only require a pointwise division, which
greatly reduces the computational complexity. Therefore,
updating X̃k+1

1 and X̃k+1
2 requires O(2iNM), where iN

is the iteration number of the Newton method (it is set to
be five in the experiment).

In our experiment, the computational time of NLR-PCATLC
on Bern, Ottawa, San Francisco, Italy, Yellow River, Yichun,
and Wuhan datasets are 53.02, 59.82, 36.44 38.55, 42.86, 52.45,
and 596.28 s, respectively. Although this method is obviously
faster than the deep learning-based PCANet and CWNN, it
is still slower than other four comparing methods. However,
the NLR-PCATLC can be accelerated by several strategies.
The low-rank matrix recovery can be speeded up by using the
fast randomized singular value thresholding algorithm [40]. In
addition, grouping similar patches and updating zk+1 can be
implemented in parallel as they are independently carried out
for each target patch.

D. Discussion

From the algorithmic flow of the proposed NLR-PCATLC
and the experiment results, we can find that there are still some
shortcomings in this algorithm. The first is its high complexity as
we analyzed above, the second is that it faces great difficulties
in urban CD, as shown in Figs. 16 and 17. The main reason
is that it ignores the strong scattering properties of buildings,
vehicles, and other objects in urban areas, which means that
it still only treats the SAR image as a general natural image

with multiplicative speckle noise. Therefore, the algorithm can
achieve good results in the relatively easy flood detection tasks,
but not so good in urban area CD. In the future, we will
consider incorporating scattering information into the process
of CD to improve the detection efficiency, such as the scattering
characteristics of built-up areas [41], so that the application of
the algorithm will be more extensive. In addition, it can be
found that the DI generation process (NLR-ADMM) and the
change map generation process (PCATLC) are separated from
each other, which means that they are executed sequentially and
performed only once. Inspired by the recently proposed method
in [42], which introduces an iterative feedback-based process in
the CD for flood mapping in SAR images and obtains effective
performance, we can also employ the iterative feedback idea
in NLR-PCATLC to fuse the DI generation and change map
generation. For example, after the initial classΩm is obtained by
FCM in (26), we can use this to update the model (9) by replacing
λ with λi according to the clustering information, which is also
our next work.

IV. CONCLUSION

In this article, we present a new SAR image CD method
named as NLR-PCATLC for short. First, this proposed method
uses the NLR model to generate the DI, which constructs a PGM
for each pixel with some similar patches based on the similarity
metric for the logarithmic SAR image. Then, a new low-rank
minimization model based on the statistical distribution of
speckle noise in two original multitemporal images is proposed,
which contains a data fidelity term and a regularization term. To
solve this minimization problem, the NLR-ADMM is developed
by employing the ADMM framework to separate it into two
subproblems, one can be solved by the WNN method, the
other can be efficiently solved by the linearize approximation
and Newton method. Second, with the NLR-ADMM produced
DI, the PCATLC is used to extract the feature and obtain the
classification result. To efficiently identify the changed class
from the unchanged class, a modified two-level clustering
method is proposed. It implements the FCM as the first-level
clustering and uses the nearest distance criterion as the
second-level clustering, which utilizes the neighbor information
with Gaussian weighting to reduce the outliers. Experiments
with different datasets demonstrate the effective performance of
the proposed NLR-PCATLC. It can reduce the speckle influence
and at the same time preserve the details. However, there are
two drawbacks of proposed method that it is time-consuming
on the NLR-ADMM and not so satisfactory in urban area CD.
Our future work is to develop the fast algorithm of this method
and integrate scattering information into the process of CD.
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