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Ship Velocity Estimation From Ship Wakes Detected
Using Convolutional Neural Networks

Ki-mook Kang

Abstract—Accurately tracking marine traffic considering secu-
rity and commercial activities is still challenging despite its increas-
ing global importance. Recently, space-borne synthetic aperture
radar (SAR) is being considered to accurately monitor maritime
traffic, and techniques to detect the position of ships and estimate
their velocity have become essential. Here, we investigated the
potential for automatic estimation of ship velocity using the az-
imuth offset between ships and wakes detected using convolutional
neural network (CNN) coupled with SAR imagery. We found that
azimuth offset is proportional to the Doppler shift effect of the
back-scattered signal in SAR, thus, it relates to the radial velocity
of a moving target. Consequently, we propose a method whereby a
CNN s applied to automatically detect ship wakes from TanDEM-X
data. In this method, ship velocity is calculated using the azimuthal
distance (i.e., azimuth offset) between the stern of the detected
ship and the vertex of the detected V-shape wake—determined as
the intersection of two lines obtained through edge filtering and
Radon transforms. The location and number of detected ships are
then compared with an automatic identification system (AIS), and
the calculated velocity of the ship is compared with the velocity
obtained via along-track interferometry and AIS. Results show that
our method automatically detects ships and wakes with accuracies
of 91.0% and 93.2%, respectively, and estimates the velocity of
ships with an accuracy of 0.13 m/s. This method is effective when
wind velocities are not substantially higher than 5.5 m/s and ship
velocities are not extremely low.

Index Terms—Along-track interferometry (ATI), azimuth offset,
convolutional neural network (CNN), ship velocity, synthetic
aperture radar (SAR).

1. INTRODUCTION

HE surveillance of maritime traffic is becoming an increas-
T ingly important security topic in certain parts of the world.
In recent years, an automatic identification system (AIS) has
been installed on every active ship, enabling maritime traffic
information to be monitored in real time. However, the AIS
occasionally loses functionality following maritime accidents,
making itimpossible to track the location of drifting ships. Illegal
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pair trawling by ships without an AIS is another significant
issue. Therefore, research on additional methods of spatially
monitoring ocean-going ships is of vital importance.

Moreover, even though ships have AIS installed, the number
of maritime accidents due to collision between ships is steadily
increasing. Maritime traffic monitoring data, such as ship lo-
cation and velocity, can help prevent maritime accidents. The
space-borne synthetic aperture radar (SAR) system is the most
effective tool for ocean applications and ship monitoring due
to the all-weather, day/night applicability of its sensor [1], [2].
Various algorithms based on SAR imagery are currently under
the development for ship monitoring, such as ship detection
and velocity estimation. Such algorithms include moving target
indicator (MTI) algorithms, which detect a moving target, and
wake detection algorithms, which detect the wake created by a
moving ship.

Previous studies focused exclusively on ship detection (i.e.,
rather than wake detection) have used RADARSAT-1 images
with a statistical approach considering wind speed, incidence
angle, and resolution [3]. Moreover, ships have been detected
using the thresholds of different intensity values from SeaSat
and ERS-1 images [4]. Wavelet transform has also been applied
to detect ships in SAR images [5]. However, most ship detection
studies employ the adaptive threshold of SAR backscattering
coefficient.

Frequency-based ship detection results have been compared
for C-band Sentinel-1 data and X-band TerraSAR-X data [6].
Additionally, various studies on wake detection based on fre-
quency have shown that ships and wakes are more easily imaged
in X-band SAR data than C-band data [7], [8]. One study that
utilized polarization showed that among HH, VV, and HYV,
HH polarization provides the best ship-sea contrast [9]. The
performance of ship detection using polarimetry SAR data has
also been compared with that obtained from single-channel SAR
data [10].

Typically, ship velocity estimation methods in SAR single
look complex (SLC) imagery rely almost completely on ship
wake components [11]. Ship wakes appear as dark or bright
straight lines in SAR images, and existing algorithms for wake
detection exploit linear component detection algorithms such
as Radon transforms [12]. Several researchers have developed
wake detection techniques for SAR images based on Radon
transforms [11]-[19]. In addition, localized Radon transforms
have been applied for wake detection [13]-[15] and extraction of
ship velocity information from analyzed wake components [11],
[16], [17]. Courmontagne [19] developed an improved method

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-4970-4597
https://orcid.org/0000-0001-8147-7641
mailto:mook0416@snu.ac.kr
mailto:djkim@snu.ac.kr
http://ieeexplore.ieee.org

4380

for wake detection based on Radon transforms. Kuo and Chen
[20] applied the wavelet correlator to detect wakes, and Jiaqiu
et al. [20] proposed a wake constant false alarm rate detection
algorithm based on the Hough transform. However, all of these
studies only focused on a few cases using a manually selected
subset or localized data from SAR imagery, and not the entire
SAR imagery.

Several studies for wake detection using Radon transforms
have measured ship velocity by utilizing the azimuth offset
between the ships and wakes observed in SAR images [11],
[16], [17], [22], [23]. However, wake-detection algorithms are
relatively computation-intensive and time-consuming. Another
disadvantage of this approach is that wakes are not clearly visible
in images acquired at high incidence angles. Thus, it is difficult
to estimate ship velocity with high accuracy based on a limited
range of information such as wake patterns, directions, and sizes.

Recent studies have detected ships using deep learning tech-
niques such as convolutional neural networks (CNNs) for image-
based feature extraction [24]-[27]. Deep learning techniques
calculate weighting factors by utilizing training samples in
various environments and maritime weather conditions, thereby
increasing the probability of ship detection. However, there
have been no reported cases of wake detection employing deep
learning. Most studies using deep learning techniques focus on
methods for the detection of artificial targets such as ships, in-
stead of wake components. This is because a moving ship creates
strong backscattering that is independent from sea clutter and
motionless or slow-moving ships do not create wakes. Therefore,
MTT algorithms that employ deep learning to detect ships and
wakes are scarce. Under various maritime weather conditions, it
is possible to detect wakes using deep learning based on CNN5s
with manually trained datasets. By utilizing deep learning for
wake detection, ship velocity can be estimated from a single SAR
image based on the azimuth offset between ships and wakes. Two
bright or dark linear components are the signatures of a turbulent
wake that is aligned with a ship’s longitudinal axis.

Furthermore, one method of determining the radial veloc-
ity of a moving target employs the phases of a multichannel
along-track interferometry (ATI) SAR system [28], [29]. Recent
dual SAR systems, such as TerraSAR-X and TanDEM-X, are
suitable for estimating relatively slow-moving targets, such as
sea-surface currents or ships, owing to long along-track base-
lines. However, the ATI phase only yields that of the phase
wrapped in 2pi. The relative velocity obtained using the wrapped
phase is required to resolve ambiguity and determine absolute
velocity. The most effective method for calculating absolute
velocity from a single SAR image involves using the azimuth
offset between a ship and its wake. When an SAR SLC image
is processed from raw data, azimuth compression interprets the
phase history based on the assumption of stationary targets. The
relationship between Doppler frequency and the azimuth offset
is linear, and thus, the phase record is identical to that of a similar
(albeit stationary) target located at an azimuthal distance. Thus,
this method can resolve the ambiguous velocity of a ship using
the accurate azimuthal distance between the ship and its wake.

In this article, we propose an algorithm for automatic ship
velocity estimation based on a combination of CNN for wake
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Fig. 1. Study area in the Korea Strait between Korea and Japan; blue box
shows data coverage.

detection as well as ship detection, Radon transforms, and the
azimuth offset. In addition, we compare the proposed method
with ATI and AIS data.

II. STUDY AREA AND DATA ACQUISITION

We selected the Korea Strait as the study area for estimating
ship velocity using 3-multilook TanDEM-X SLC images in
descending orbit (see Fig. 1). The Korea Strait is bounded by
the southern coast of the Korean Peninsula and the southwestern
coast of Japan. A branch of the Kuroshio Current also passes
through the strait. The surveillance of maritime traffic is an
extremely important security issue in this region.

Twelve scenes from bistatic TanDEM-X data with dates rang-
ing from 2012/02/02 to 2013/03/15 were used for estimation
(see Table I). All data were recorded in descending mode, VV
polarization, and at an incidence angle of ~21°. The average co-
herence in most images was below 0.4. We analyzed along-track
and across-track baselines for all pairs. We also noted the wind
directions and speeds at the time of TanDEM-X acquisition. The
latter were relatively low and steady, ranging from 1.4-5.5 m/s,
except on December 17, 2012 (7.9 m/s).

The baselines of TanDEM-X vary depending on latitude
owing to helix orbit formation. Generally, a decrease in the
along-track baseline improves the conditions necessary to obtain
the ATI phase required to determine moving target velocity. To
evaluate the accuracy of ship velocity determination, the data
were converted to the LOS direction using ship direction and
velocity from the AIS data (in sifu data) acquired by TanDEM-X
over the same period.

III. METHODS

A CNN algorithm that learned from manually selected ship
and wake training samples was applied to the TanDEM-X SLC
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TABLE I
TanDEM-X DATA ACQUISITION

. Average AT.I Incidence Velocity .VVin.d Wind
(file name) coherence baseline angle range direction speed
[m] [l [m/s] [l [m/s]
TDM1_SAR__COS_BIST SM_S_SRA_20120202T213547_20120202T213553 0.38 141.73 21.52 2.30 3375 2.8
TDM1_SAR__COS_BIST _SM_S_SRA_20120213T213546_20120213T213553 0.37 128.38 21.53 2.55 22.5 2.6
TDM1_SAR__COS_BIST SM_S_SRA_20120224T213546_20120224T213553 0.43 127.95 21.51 2.56 22.5 5.5
TDMI1_SAR COS_BIST SM_S SRA 20120306T213546 _20120306T213553 0.39 128.05 21.51 2.56 270 1.8
TDM1_SAR__COS_BIST SM_S SRA 20120328T213547_20120328T213554 0.39 124.70 21.53 2.62 22.5 1.6
TDMI1_SAR_COS_BIST SM_S SRA 20121206T213553 20121206T213600 0.34 349.17 21.50 0.94 270 1.4
TDM1_SAR__COS_BIST SM_S SRA 20121217T213552_20121217T213559 0.34 309.39 21.50 1.06 270 79
TDM1_SAR__COS _BIST SM_S_SRA 20121228T213552_20121228T213559 0.34 337.02 21.50 0.97 3375 1.9
TDM1_SAR_COS_BIST SM_S SRA 20130108T213552_20130108T213559 0.34 335.58 21.50 0.98 270 5.1
TDM1_SAR__COS _BIST SM_S_SRA 20130130T213551_20130130T213558 0.34 311.31 21.51 1.05 315 1.7
TDM1_SAR__COS_BIST _SM_S_SRA _20130304T213551_20130304T213558 0.35 273.37 21.50 1.20 270 32
TDM1_SAR__COS _BIST SM_S_SRA 20130315T213552_20130315T213559 0.35 219.62 21.50 1.49 247.5 3.0

images. We automatically detected ships as well as wakes using
the learned CNN algorithm. Using detected wake subset data,
the precise direction and location of the intersection of linear
wake components were calculated from the Radon transforms
and edge filtering to calculate the azimuth offset at a high
resolution within a subpixel. Then, the subpixel distance of the
azimuth offset was converted to radial velocity. Furthermore,
the ship velocity extracted from the ATI phase was generated
using the TerraSAR-X and TanDEM-X pairs. Land masking
was conducted by utilizing a Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM) with a 30 m spatial res-
olution. The generated ATI phase was expressed as the wrapped
velocity within the velocity range response to the along-track
baseline. Then, ship velocity was compared to in situ data, such
as projected radial velocity, using the AIS (see Fig. 2). The
following are described in the ensuing sections:

1) the CNN algorithm;

2) azimuth offset from Radon transforms;

3) ATI algorithm.

A. Detection of Ships and Wakes Using Convolutional
Neural Network

A CNN is a deep learning technique that is frequently used
for image-based feature extraction or classification [30]. A CNN
consists of a convolution layer, a pooling layer, and a fully
connected layer (FCL). The kernel learned from the input data
from the previous layer is moved to the next layer, and the
convolution layer conducts convolution operations by consid-
ering image features and extracted features to produce a feature
map. In the process, multiple convolution layers are produced to
construct a deep network, and the dataset undergoes a pooling
process to downsize image dimensions. Pooling is a subsampling
process of pixel values that uses various dimension reduction
methods because the values of adjacent pixels can be extremely
similar. At this stage, max-pooling or average-pooling is applied
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Fig. 2. Flowchart for calculating velocity of a ship using TanDEM-X data
from 1) convolutional neural networks, 2) azimuth offset, and 3) ATI-SAR.

in most cases to improve the extraction of features. The repeated
operations of convolution and pooling automatically generate
features based on the values of filter weights, and targets are
detected based on this information.

With respect to scaled-up architectures based on CNNs,
Inception v3 by Google is a representative model of image
classification and object detection [31]. This model can detect,
classify, and learn targets from images and is currently available
to users as an open source platform. Even though its function is
difficult to perform owing to its highly complicated architecture,
it performs tasks in TensorFlow via the Python programming
language, and the results can be modified based on various ob-
jectives. This architecture emphasizes the importance of mem-
ory management and restrictions on computational capacity.



4382 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 11, NOVEMBER 2019

TABLE II
ARCHITECTURE OF GOOGLE INCEPTION V3 MODEL

Input data

Training samples

SAR Images

# Ship

Type Input size Output size Kernel size
Convolution 299,299.,3 149,149,32 33
Convolution 149,149,32 147,147,32 33
Convolution 147,147,32 147,147,64 33

Max-pool 147,147,64 73,73,64 3,3
Convolution 73,73,64 73,73,80 33
Convolution 73,73,80 73,73,80 3,3
Convolution 73,73,80 71,71,192 3,3

Max-pool 71,71,192 35,35,192 33
Inception-A 35,35,192 35,35,256
Inception-A 35,35,256 35,35,288
Inception-A 35,35,288 35,35,288

Reduction 35,35,288 17,17,768
Inception-B 17,17,768 17,17,768
Inception-B 17,17,768 17,17,768
Inception-B 17,17,768 17,17,768
Inception-B 17,17,768 17,17,768
Inception-B 17,17,768 17,17,768

Reduction 17,17,768 8,8,1280
Inception-C 8,8,1280 8,8,2048
Inception-C 8,8,2048 8,8,2048
Average-pool 8,8,2048 1,1,2048 7,7

FCL 1,1,2048 1,1,1000

softmax 1,1,1000 1,1,1000

sl

|

Grid size reduction .
Inception-C

s/ \ P
Inception-A )

ABiE

This implies that Inception v3 could be more suitable for object
detection (such as ships and wakes) in SAR imagery than other
more computationally expensive architectures [32].

In this article, radiometric and geometric calibrations for
SAR preprocessing were performed to assume all SAR images
for normalization. Preprocessed TanDEM-X amplitude images
were used as input data, and trained samples of both ship and
wake data were generated for learning purposes. Although the
number of training samples was insufficient, approximately 200
ships and wake samples were used, respectively. Because the
total number of ships in the acquired 12 TanDEM-X SLC images
was limited, augmentation (i.e., resizing, shifting, flipping, and
rotating) was effectively employed to compensate for insuffi-
cient training samples. Since the size and shape of ships and
wakes vary, the training samples were accordingly selected in
various sizes and shapes. A data subset in GeoTIFF file format
contained location and size data, and a text file containing x and
y coordinates (i.e., pixel location), w (width), and & (height) was
used as sample training data. This data were used as input to the
convolutional layer, resized to 299 x 299.

The input data were applied to the Google inception v3 model
(see Table II) based on the inception module for calculating
output data. The general Inception module consists of four
operations (1 x 1 convolution, 3 x 3 convolution after 1 x
1 convolution, 5 X 5 convolution after 1 x 1 convolution,
and 1 x 1 convolution after 3 x 3 max-pooling) to decrease
computational complexity and improve calculation precision.
The convolutional layers were used immediately before a larger

C Convolution I Fully connected A-C-C-I-l
B Maxpooting B sottmax Auxiliary Classifier
A Avgpooling I Dropout
H concat Google inception v3 model
Output data
# Ship
Start X E 129 08 04.994
StartY N 3503 28.349
EndX E1290751.107
EndY N350318422
# Wake

Start X E 129 07 57.643
StartY N 3503 23.793
End X E1290729.472
EndY N350307.357

Fig. 3. Schematic diagram of the Inception v3 model based on convolutional
neural networks.

kernel convolutional filter to decrease the number of parameters
to be determined during the pooling feature process. Fully con-
nected layers utilized the nodes in the previous average pooling
layer [31], [33]. In the Google Inception v3 model, the inception
module is changed as inception-A where each 5 x 5 convolu-
tion is replaced by two 3 x 3 convolutions, Inception-B after
the factorization of n x n convolutions, and Inception-C with
expanded high dimensional representations [31]. The object of
factorizing convolutions is to reduce the number of connections
or parameters without decreasing the network efficiency. And
auxiliary classifier and grid size reduction process are employed
in Inception v3 architecture (see Fig. 3).
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TABLE III
HYPERPARAMETERS OF GOOGLE INCEPTION V3 MODEL IN THIS STUDY

Hyperparameters Value
Learning rate 0.01
Training batch size 28
Activation function ReLU
Optimization Adam
Number of epochs 1000

Most hyperparameters were set to their default values in the
Inception v3 architecture (see Table III). We attempt to directly
adjust the Google Inception v3 model for object detection of
SAR SLC image without any modification of the architecture.
Finally, ships and wakes were detected from each of the 12 SAR
scenes based on the data learned from the training samples. The
various sizes of detected ships and wakes were obtained as output
data. The output data is set to be stored as a text file containing
the position and size of the ship or wake, respectively.

B. Estimation of Ship Velocity Using Azimuth Offset From
Radon Transforms

Using the subset data of wakes from the CNN, edge filtering
and Radon transforms were applied to determine the accurate
wake location. This technique conducts line integrals on two-
dimensional (2-D) images and accumulates points integrated on
the Radon transform space. Linear components were detected
using the parameters (¢, x”) derived from the peaks in the Radon
domain [4], [5], [34]. This is an effective method for highlighting
and detecting linear features such as ship wakes. It is also
extremely effective for feature extraction from images in which
relevant features cannot be easily distinguished from clutter
owing to the unique integral function. The Radon transform
conversion equation for f{x, y) of a 2-D image is given as follows:

// f(x,y)0 (xcosf + ysinb) dedy

— 0 <Tr<o0
—00 <Yy <0
—00 < p <00

0<0<m. (D

Linear components were defined by locating two peaks in
the Radon transform domain. It was possible to define the
linear component generated by the wake in the SAR amplitude
image using the minimum distance and rotation angle. The
intersection point of the V-wake pattern was estimated using
the azimuthal distance of the subpixel from the starting point
of image x” and direction €. Then, the minimum distance was
defined by the azimuth offset. The azimuth offset was utilized for
the intersection of the two linear components generated by
the wake and the location of the subpixel corresponding to
the latitude and longitude of the ship. Then, it was possible
to estimate the subpixel distance along the azimuth direction
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Fig. 4. Processing workflow for wake detection. (a) Wake detected from
TanDEM-X amplitude image (DN value). (b) Edge detection from amplitude
image. (c) Wake features expressed in the Radon domain. (d) Linear component
(L) of the detected wake after the edge filter and Radon transform.

between the starting point of the intersection from wake and the
end point of the ship. Fig. 4 shows the processing workflow of
edge filtering and radon transform.

According to the equations given in [35] and [36], ship veloc-
ity can be calculated using the azimuth offset as follows:

Vvship _ V;‘atAoffset (2)
COSQ] Rslant
where Vg,; denotes the satellite velocity, Aogset denotes the
azimuth offset, 03, denotes the local incidence angle, and Rgjant
denotes the slant range distance. The velocity of a ship can be
estimated by calculating the distance of the azimuth offset.

C. Estimation of Ship Velocity Using Along-Track
Interferometry (ATI) SAR

ATT techniques are based on the simultaneous acquisition
of two SAR images from separate antennas. The ATI phase is
proportional to the Doppler shift effect of a backscattered signal,
and thus, it is related to the radial velocity of a moving target.
Following the initial publication of this technique, ATI-SAR
was demonstrated with SRTM [37]. The TanDEM-X mission
was launched in 2010, after which several studies applied inter-
ferometry to the data obtained from the mission. The primary
goal of the mission was acquisition of a high-precision DEM
from across-track interferometry (XTI). The two satellites of
the formation, i.e., TerraSAR-X and TanDEM-X, were flown
in a helix orbit, which allowed for flexible XTI/ATI baselines.
Thus, the sensitivities to elevation changes and moving targets
were selected over a wide range [38], [39]. The TanDEM-X
mission provided extremely sensitive measurements of moving
targets, such as ships and tidal currents, owing to the relatively
longer along-track baseline between TerraSAR-X and TanDEM-
X. This is advantageous over other methods owing to its high
sensitivity to moving targets and flexible along-track baseline.

In this article, the ship velocity on the sea surface was es-
timated using this technique by converting the interferometry
phase of ATI-SAR to velocity after coregistration, resampling,
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removing the flat earth phase, phase unwrapping, and abso-
lute phase calibration. However, a baseline of TanDEM-X data
consists of along-track and across-track directions, and the in-
formation in the across-track direction must be eliminated for
obtaining appropriate interpretation. This should be considered
for the acquisition of moving target velocity from TanDEM-X
data [40]. The contributions of the along-track and across-track
components to the interferometry phase are as follows:

ViatD a1
Vapp = — 27827 3
AT ok Barsind;’ 3)
VaatOx1
Hypy = ——SXTL 4
X QkEBXTISiHGI ( )

where Varr and Hxtr denote the moving target velocity and
elevation change, respectively, Vg, denotes the satellite velocity,
¢ aT1 denotes the phase of ATI-SAR, ¢x1 denotes the phase of
XTI-SAR, BaTr denotes the along-track baseline, BxTr denotes
the across-track baseline, and 6 denotes the angle of incidence.
The extracted velocity of ATI-SAR should be projected in the
LOS direction.

The wrapped velocity of ships was acquired using ATI, as
follows:

Vatt = Oat1 + Namb Vean + error (5)

where V1 represents the moving target velocity obtained using
ATI, ¢arr denotes the ship velocity acquired from the ATI
phase, N1 denotes the ambiguity velocity, V.., denotes the
velocity range based on the ATI baseline of TanDEM-X, and
error denotes the error according to the XTI phase. Additionally,
the fixed land phase was eliminated from the image to obtain the
relative velocity, as compensation for the topography.

IV. RESULTS

In this article, we automatically detected ships and wakes from
SAR images using deep learning based on the CNN technique.
By automatically selecting a wake’s subset data, the linear
component of the wake was used to identify an accurate azimuth
offset between ships and wakes using Radon transforms and
edge filtering. Finally, we compared ship and wake detection
rates with AIS data and validated the estimated ship velocity
using ATI and AIS data.

The CNN-processed TanDEM-X scenes of the Korea Strait
acquired on March 28, 2012 and their respective ship and wake
detection results are shown in Fig. 5. The detection performance
was sufficient to clearly distinguish between ships and wakes.
In a quantitative accuracy test, the results of the 12 TanDEM-X
scenes were compared with the AIS data acquired in the same
period as the SAR images (see Table IV). Compared to the AIS
data, ship and wake detection accuracies were 91.0% and 93.2%,
respectively.

Even though the automatic detection rate was high in general,
the data collected on December 17, 2012 produced considerably
lower ship and wake detection rates of 68.4% and 60.0%,
respectively. This was because of weather conditions. Wind
speed was higher than usual (specifically, 7.9 m/s), and thus, the
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Results of ship and wake detection from the Inception model v3 based

backscattering coefficient increased owing to the rough ocean
surface.

The result of calculating the azimuth offset between a detected
ship and its wake in an SAR image is shown in Fig. 6. The ve-
locity of ship #3 obtained from the azimuth offset was —779 m/s.
Additionally, Fig. 7 shows the processing result of the amplitude
images of TerraSAR-X, the coherence of TanDEM-X pairs, the
wrapped phase and ship velocity obtained using ATI phase from
TanDEM-X pairs, respectively. The velocity of ship #3 acquired
from the ATI phase was —8.69 m/s.

Table V compares the ship velocity obtained from the azimuth
offset, ATI, and AIS for five ships in a SAR SLC image (see
Fig.5). The mean difference between the azimuth offset and AIS
was less than 0.13 m/s. Even though the number of comparison
points was limited, an R? of 0.99 and a root mean square error
(RMSE) of 0.16 m/s demonstrate that the two were strongly
correlated. The comparison of the ship velocity calculated from
the ATI phase and AIS data produced an R? of 0.98 and an RMSE
of 0.55 m/s.

V. DISCUSSION

Deep learning has produced state-of-the-art results in nu-
merous computer vision and speech recognition tasks. It is a
useful tool for obtaining results with high accuracy when a large
number of training samples is available. Unfortunately, there is
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TABLE IV
ACCURACY OF SHIP AND WAKE DETECTION COMPARED WITH AIS DATA

Time UTC AIS (ship) CNN (ship) Man (wake)  CNN (wake) Accuracy (ship) ﬁiﬁ:l::;y
2012-02-02T21:35:46 12 11 6 5 91.7 83.3
2012-02-13T21:35:46 25 24 22 20 96 90.9
2012-02-24T21:35:46 13 13 11 11 100 100
2012-03-06T21:35:46 14 13 7 7 100 100
2012-03-28T21:35:47 22 18 17 15 81.8 88.2
2012-12-06T21:35:53 15 15 11 10 100 90.9
2012-12-17T21:35:52 19 13 5 3 68.4 60
2012-12-28T21:35:52 8 8 7 7 100 100
2013-01-08T21:35:52 14 14 8 8 100 100
2013-01-19T21:35:51 19 18 16 15 94.7 93.75
2013-03-04T21:35:51 12 12 11 11 100 100
2013-03-15T21:35:52 16 13 12 12 81.25 100

Total 189 172 133 124 91 93.2
TABLE V
ACCURACY OF SHIP VELOCITY FROM AZIMUTH OFFSET COMPARED TO AIS
# of Ship Azimuth offset from Ship velocity from Ship velocity from Ship velocity from
Radon transform (m) azimuth offset (m/s) ATI phase (m/s) AIS (m/s)
Ship #1 90 -2.68 -2.37 -2.79
Ship #2 210 -6.27 -7.64 -6.37
Ship #3 261 -7.79 -8.69 -7.69
Ship #4 157 -4.69 -4.51 -4.91
Ship #5 162 -4.83 -4.55 -5.19
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Fig. 6. Result of calculating the ship velocity using azimuth offset between
the detected ship and wake.

only alimited number of SAR images, which limits the available
training samples for ship and wake from SAR images. In fact,
there are only 189 ships in 12 SAR images in the AIS. Thus, itis
impossible to select massive training samples, such as possible
in the field of computer vision.

This is considered to be because a limited number of training
samples is not sufficient to accurately detect a vague target.

Azimuth (lines)
Azimuth (lines)
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Fig.7. Results of ATI-SAR. (a) Amplitude image. (b) Coherence of TanDEM-

10 15 20 25

X pairs. (c) Wrapped phase (radians) of detected ship. (d) Calculated ship
velocity (m/s) using ATI phase.

However, if a feature is distinct owing to strong backscatter, such
asaship, it can be accurately detected with only a limited number
of training samples. In fact, in a recent study, Wang et al. applied
a small number of training samples using the COSMO-SkyMed
data from the Google inception v3 model [41].

We evaluated the accuracy obtained with a CNN algorithm by
comparing the results with those obtained from a conventional
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TABLE VI
ACCURACIES OF SHIP DETECTION USING CONVENTIONAL METHOD AND CNN

Method  # of ships from AIS# of ships detectedAccuracy (%)

K-distribution 189 168 89

CNN 189 172 91
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Fig. 8.  False alarm results of ship and wake detection by SAR and AIS data.

method of ship detection using a K-distribution for the image pdf
[1]. Both methods were applied to the same SAR data. Prepro-
cessing of the SAR data was carried out, and ships were detected
using the K-distribution technique and target grouping. The ship
detection rate using the CNN was found to be 89%, which is
similar to the ship detection rate of 91% obtained using the CNN
algorithm in this article (see Table VI). However, a few cases of
false alarm and misdetection occurred and wake detection was
almost impossible using only the conventional method. Thus,
deep learning techniques such as CNN are essential to detect
wake based on wake features.

Even though the ship and wake detection performance using
the CNN was excellent, the number of detected wakes was
relatively small (see Table IV) because slow-moving ships do not
always appear clearly on SAR images. Furthermore, very small
ships (above 15 m in this article) or weak SAR backscattering
were difficult to detect with the CNN. Even though it was not
a ship, there was a false alarm on the ship by strong SAR
backscattering (see Fig. 8).

The performance of wake detection mainly depends on ship
velocity. For example, the bottommost ship in Fig. 8 was de-
tected via AIS and CNN, but no wake occurred because the
velocity of the ship was too low. A ship with a velocity of less
than approximately 1 m/s is not detectable because it does not
generate a wake. In other words, the proposed method cannot
be applied if the ship velocity is low and a wake does not occur,
the wake is insufficiently visible (or there is no wake), or there
is interaction among wakes. However, most ships in offshore
areas are less prone to wake interaction as they are operated at
a sufficient distance to avoid collision. Therefore, this approach
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can be applied to offshore areas because it can detect ships and
wakes that are moving at relatively high velocity.

Wake visibility in SAR images depends on several parameters
related to radar backscatter characteristics, ship motion, and
weather conditions [17]. The strong backscatter of ships can
cause ghosts in SAR images and Doppler ambiguity problems
beyond pulse repetition frequency. This may include errors in the
estimation of ship velocity because strong backscatter may be
included between ships and wakes. A turbulent wake is observed
as adark line surrounded by two bright lines, which represent the
V-shape wakes due to radar backscatter [17]. Marine environ-
ment conditions may prevent turbulent wakes from appearing
clearly, even for ships moving with high velocity. In addition,
as a V-shape wake appears as a spiral rather than a line when
on the move to redirect the ship, it results in an error when
automatically estimating ship velocity.

We applied the proposed method to SAR imagery of an
offshore area without complex imagery such as crowded harbors,
rainy conditions, or oil spills. However, the 12 SAR images con-
tained variable combinations of ship and wake interactions. The
proposed method cannot be applied in cases with interference
caused by linear components of different wakes. Hence, it is
limited to detecting a single ship’s wake without interaction
with another wake. However, as most ships have AIS and/or
radar systems, their movements are planned to prevent close
interaction with other ships. Therefore, we expect the possibility
of wake interaction to be quite low in most offshore settings
(unlike crowded ports, where there are numerous ships). Given
this focus on offshore areas, the proposed automatic velocity
extraction method has the requirement that ship velocities should
be high in such areas (and thus wakes should be visible and
detectable). In addition, we found that ships and wakes could
be efficiently detected in areas where an image appears dark.
Thus, the method may be applied to areas with look-alike oil
slicks. This could be tested by applying further training samples
in future research.

In this article, an error also occurred in the velocity estima-
tion from the ATI phase because of the use of TerraSAR-X
and TanDEM-X, which included along-track and across-track
baselines. While calculating sea surface current, across-track
effects are negligible because the ocean surface is flat and wave
height-induced phase variations are low [40]. However, tall ships
may induce errors in the phase because remaining XTI compo-
nents exist, and thus, the XTI baseline is still present. If the
XTI phase of a ship can be estimated by a model that calculates
ship heights, then it is possible to estimate ship velocity with
increased accuracy by utilizing TanDEM-X ATT data.

VI. CONCLUSION

To date, no research has specifically focused on the develop-
ment of wake detection technologies via deep learning. In this
article, we automatically detected wakes as well as ships from
SAR images using deep learning based on CNN. By automati-
cally detecting a wake’s subset data, the linear component of the
wake was used to identify an accurate reference point between
the ship and its wake using Radon transforms and edge filtering.
Despite the limited sample set, the ship velocity determined
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using the azimuth offset of the subpixel was strongly correlated
with the ship velocity calculated from AIS data (R* of 0.99 and
RMSE of 0.16 m/s). Furthermore, the velocity calculated from
the ATT phase using TanDEM-X was compared to the velocity
obtained from AIS (R? 0.98 and RMSE of 0.55 m/s). Despite
the small sample set, the velocity estimated from the azimuth
offset was slightly more accurate than that obtained from the
ATT phase. Finally, the wakes detection using deep learning and
the ship velocity calculation using azimuth offsets between ships
and wakes can lead to effective estimation of ship velocity. The
proposed method is effective in low wind conditions in the open
sea (i.e., without ports).
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