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Abstract—This paper presents a novel framework for multilabel
classification of multispectral remote sensing images using error-
correcting output codes. Starting with a set of primary class la-
bels, the proposed framework consists in transforming the mul-
ticlass problem into multiple binary learning subtasks. The dis-
tributed output representations of these binary learners are then
transformed into primary class labels. In order to train robust bi-
nary classifiers on a reduced annotated dataset, the learning pro-
cess is iterative and involves determining most ambiguous exam-
ples, which are included in the training set at each iteration. As
part of the semantic image recognition process, two categories of
high-level image representations are proposed for the feature ex-
traction part. First, deep convolutional neural networks are used to
form high-level representations of the images. Second, we test our
classification framework with a bag-of-visual words model based
on the scale invariant feature transform, used in combination with
color descriptors. In the first case, we propose the usage of pre-
trained state-of-the-art deep learning models that cancel the need
to estimate model parameters of complex architectures, whereas,
in the second case, a dictionary of visual words must be determined
from the training set. Experiments are conducted on GeoEye-1 and
Sentinel-2 images and the results show the effectiveness of the pro-
posed approach toward a multilabel classification, when compared
to other methods.

Index Terms—Error-correcting output codes (ECOCs), mul-
tilabel image classification, pretrained convolutional neural net-
works, support vector machines (SVMs).

I. INTRODUCTION

THE technological development of the recently launched
satellites allowed the acquisition of large archives of high-

resolution (HR) and very HR images. In general, the semantic
annotation of these images is a difficult task to accomplish be-
cause of the massive volume of unlabeled data and to the fact
that the labeling process is expensive. In this context, automatic
procedures for image classification and information retrieval are
required.
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Image classification can be approached using supervised and
unsupervised methods, respectively. Unsupervised classification
methods group the data into clusters of samples with similar
characteristics and they do not require labeled data. However,
this leads to a lack of correspondence between the retrieved clus-
ters and their semantic meaning. In contrary, supervised classifi-
cation methods start with a set of labeled samples (called training
set), which provides a precise correspondence between the sam-
ples and their labels. This information is further used to derive
models for the classification system that are afterward applied
on a test set.

Among the supervised classification methods used in the re-
mote sensing domain, methods based on support vector ma-
chines (SVMs) have shown good performance results [1]–[3].
In the majority of situations, the classification of remote sensing
images involves the discrimination between multiple classes.
This problem is usually tackled by combining multiple binary
classifiers. SVMs are examples of classifiers whose algorithm
cannot deal with multiple classes directly, but they have to re-
sort to techniques that decompose the multiclass problem into
several binary classification problems. The most popular mul-
ticlass classification techniques are one-versus-rest (OVR) and
one-against-one (OAO). The OVR strategy consists in conduct-
ing one binary classification per class that discriminates between
the samples from one class against the samples from the rest of
the classes. The OAO strategy performs pairwise comparisons
between classes, yielding to a number of nc(nc − 1)/2 binary
classifiers if nc is the number of classes. Numerous experiments
have shown that the OAO method is more suitable for practi-
cal use than the OVR method [4]. One of the reasons for this
behavior is the fact that in the case of the OVR approach, the
binary problems are unbalanced and this becomes even more
problematic for an increasing number of classes. In this sense,
an optimal combination of the classes can represent a possible
solution.

Recent advances have shown that convolutional neural net-
works (CNNs) achieve high accuracy values for remote sensing
image classification [5]. Very deep CNNs, such as VGG [6], are
difficult to train and, as the network gets deeper, the performance
of the classification may get saturated and may even start to de-
grade rapidly due to vanishing gradients. As a solution to this
problem, He et al. proposed a novel neural network architecture,
called residual network (ResNet), that has achieved state-of-the-
art performance in image classification, object detection, and
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semantic segmentation tasks [7]. Inspired from the VGG archi-
tecture, ResNet introduces “shortcut connections” that perform
identity mapping and add the result to the outputs of several
stacked layers. However, the main disadvantage of these archi-
tectures is the need for learning a large number of parameters,
and, as a direct consequence, the training set has to be large.

An alternative approach for solving the multiclass learning
problem is to use Error-Correcting Output Codes (ECOCs) [8]
that reduce the multilabel classification to several binary classifi-
cation problems. There are three main steps that the ECOCs ap-
proach to multiclass learning must follow. First, following some
predefined rules, primary class labels are combined into several
binary metaclasses that are groups of primary class labels. Sec-
ond, binary classifiers are constructed with the scope of reducing
the uncertainty about the correct class of the input. Third, the
outputs of the binary classifiers are combined to determine the
primary class to which each sample pertains. The ECOC ap-
proach can make use of algebraic error-correcting codes or the
codes can be designed by the user such that they satisfy some
constraints [8]. The classification scheme presented by Diet-
terich and Bakiri [8] considered associating codewords (from
codes with error correction properties) directly to the classes so
that the misclassifications can be corrected. ECOC has proved
good performance in applications such as speech recognition
[8] and document classification [9]. In [10], it is shown that the
worst-case training error of the ECOC approach is better than
the OAO approach. One reason for this is the fact that most of
the binary classifiers encompassed in the multiclass classifica-
tion scheme decide if a sample pertains to a particular group
of classes or not rather than deciding if it pertains to a single
class or not (OAO approach). This results in a more balanced
partition between the positive and negative examples used for
learning the models of the binary classifiers.

In order to yield satisfactory classification accuracy, the size of
the training set has to be significant and this implies a large num-
ber of annotated samples that have to be provided to the classifier
in order to build the model. When dealing with the classification
of remote sensing images, the labeled data are scarce. In addi-
tion, the quality of the labeled data has a strong influence over
the classification results. For this reason, the training samples
have to be adequately selected in order to obtain a correct clas-
sification even for ambiguous examples. In the last few years,
active learning techniques have been developed as possible so-
lutions to the aforementioned issues [3], [11]–[13]. However, in
the case of ECOC-based framework, the user would be required
to provide information regarding metaclasses and not directly
about the original labels as in the case of usual active learning
techniques. Therefore, using active learning methods for train-
ing several binary classifiers of the ECOC-based framework is
difficult. For this reason, we adopt another approach that con-
siders learning from most ambiguous training examples.

In this paper, we propose a novel general solution for the
multilabel classification of remote sensing images using an
ECOC-based framework composed of multiple binary classi-
fiers for which we define the concept of metaclasses. From an
information theoretic point of view, each correct classification
made by the binary classifiers decreases the uncertainty over the
original class labels. Therefore, the binary classifiers need to

achieve a high accuracy rate. Considering SVM binary classi-
fiers, this can be obtained through a slight modification of the
training procedure that allows determining the most ambiguous
training examples for each pair of metaclasses. Starting with a
small and suboptimal part of the training set, the actual training
set is iteratively enlarged with new samples from the unused
part of the training set. The procedure is based on a criterion
(e.g., the distance with respect to the separation hyperplane [11],
[14], [15]) that facilitates the choice of the most representative
samples to iteratively update the parameters of the discrimina-
tive models. In this regard, we study the positive impact that the
modified training procedure has over the training of binary SVM
classifiers.

Assuming that the classification algorithm is established, an-
other critical step in image classification is feature extraction.
One of the widely used methods for feature extraction is the bag-
of-visual words (BOVWs) model that, in many applications, at-
tains remarkable performances [13], [16]. The BOVWs model
makes use of a dictionary of visual words that is determined in an
unsupervised manner. This additional step of building a dictio-
nary, although a bit time-consuming, is performed only during
the training step. Another option for the feature extraction mod-
ule is to use a state-of-the-art deep neural network architecture
from which we retain only the part corresponding to feature ex-
traction. The train procedure of the deep neural network can
be performed directly on the dataset being examined or on an
already existing large annotated dataset (i.e., which could have
been developed for a completely different image classification
task). The first solution is not very practical since it would re-
quire training a new deep neural network for each dataset and,
as a consequence, huge annotated datasets would be needed.
Therefore, we adopt the second solution.

The main contributions of this paper can be summarized as
follows: 1) a novel ECOC-based framework for the multilabel
classification of remote sensing images; 2) an iterative strategy
to train robust ECOC’s binary classifiers by determining most
ambiguous examples when multilabel classification is involved;
3) a reduction in the computational cost obtained with the it-
erative strategy for learning ECOC’s binary classifiers on small
annotated datasets; and 4) a high-level image description method
based on a data-independent deep CNN architecture (i.e., mod-
ified ResNet) that was pretrained on an existing large annotated
dataset designed for other classification tasks.

The rest of the paper is structured as follows. Section II
presents an overview of the proposed approach toward the mul-
tilabel classification task, whereas Sections III to V present an
in-depth analysis of the constituent steps of the classification
procedure. Section VI illustrates several experimental results
and Section VII draws the final conclusions.

II. PRELIMINARIES AND PROPOSED APPROACH

A. Problem Formulation

Let us consider a collection of unlabeled remote sensing data
X = {x1,x2, . . . ,xN} that needs to be classified. A small train-
ing set represents the starting point in solving the multilabel
classification task, whose aim is to label the remaining part of
the remote sensing data collection X .
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Fig. 1. Scheme of the proposed approach for multilabel classification of
remote sensing images.

B. Proposed Approach for Multilabel Classification

The proposed classification framework is composed of
two main parts: 1) feature extraction and 2) ECOC-based
multilabel classification using the SVM binary classifiers
optimized for most ambiguous examples. The whole classifi-
cation procedure, including the learning phase, is depicted in
Fig. 1.

The solution proposed to solve the multilabel classification
task is based on ECOC, which decomposes the multilabel prob-
lem into several binary-label problems. The approach follows
three main steps:

1) establish the code used to encode the class labels (or, class
indexes assigned to the class labels);

2) binary classifications;
3) decode the class label from the binary vector formed by

the outputs of the binary classifications;
In order to initiate the classification procedure, the first step is

to establish the ECOC encoding table, whose role is to provide
a one-to-one correspondence between the set of primary class
labels and the set of binary codewords. The one-to-one cor-
respondence can be defined using well-known algebraic error-
correction codes, random codes, or designed codes.

The encoding table generates the inclusion of the input ex-
amples into new classes called, in the following, metaclasses.
More precisely, the metaclasses and their corresponding metala-
bels are partitions of the initial classes according to the encoding
table. The role of the binary classifiers in the second step is to
decide whether an instance is part of a metaclass or not. Each
inclusion of the input examples into metaclasses leads, in fact, to
a reduction in the ambiguity regarding the corresponding class
index/label.

At decoding, all the metalabels provided by the binary classi-
fiers are collected by the decoder into vectors of binary elements.
These sequences of 0s and 1s are then corrected and decoded fol-
lowing pre-established decoding rules that depend on the choice
of error-correcting output codes. In fact, the decoding is the last
step that leads to the annotation of the input examples with the
primary class labels based on the decoder’s decision.

The binary classifiers used in this paper are SVM classifiers
that are trained in an iterative manner. The learning phase is
performed over a reduced training set volume and most am-
biguous items help to improve the performance of the classi-
fiers. This learning approach, denoted as SVM-MA, leads to an

TABLE I
EXAMPLE OF CODE

improved robustness level and decreased learning time if com-
pared to learning over larger annotated sets.

As for the feature extraction module, we consider two cat-
egories of high-level image representations. The first category
consists in fusing color statistics and BOVW high-level fea-
tures (denoted as BOVWC). The BOVW model involves com-
puting histograms over the occurrences of visual words from
an a-priori determined dictionary, whereas the computation of
high-level descriptors relies on the extraction of other low-level
features [17]. A common choice for the low-level feature ex-
traction is the scale invariant feature transform (SIFT), which
computes distinctive local features that are invariant to scale
and rotation, and are robust with respect to distortions, noise,
or changes in illumination [18]. The second category of high-
level image representations is derived using a pretrained deep
neural network architecture, designed for a different classifica-
tion task (e.g., ImageNet challenge [19]). The main advantage
of using a pretrained deep neural network architecture is that
feature extraction is performed in an unsupervised manner and
there is no cost for training the architecture. Moreover, the fea-
ture extraction module based on pretrained architectures is data
independent. In this paper, we consider using a deep pretrained
ResNet architecture that achieved state-of-the-art performance
in many visual recognition tasks [7].

III. ECOC-BASED FRAMEWORK FOR MULTILABEL

CLASSIFICATION

A. Metaclasses Definition

Let us assume that class indexes are encoded following the
table shown in Table I. In this case, each class label is encoded
into codewords of three bits. Therefore, in order to determine a
class label, we first need to determine the three bits by applying
three binary classifications. The metalabels 0i and 1i, with i
being the ith binary classifier, are defined by reading on the
columns the assignment of 0 s and 1 s. More precisely, on the first
column, for the first classifier (i = 1), we consider that metaclass
11 contains class 1 and class 4, whereas metaclass 01 contains
class 2 and class 3, as shown in Fig. 2. In the same manner,
the remaining metaclasses are defined for the rest of the binary
classifiers.

B. Establishing the Encoding Scheme

Code definition represents the starting point when building
a multilabel classification scheme based on ECOC. There is a
multitude of binary codes that can be formed, but a multilabel
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TABLE II
EXAMPLE OF DESIGNED CODE

Fig. 2. Transformation of classes into metaclasses following the example
shown in Table I for the first bit in the codewords.

classification task imposes some restrictions. First, the code-
words are required to be of same length (n bits). This require-
ment comes natural because each instance is passed through n
binary classifiers, each providing a binary output. The n-bits
vector representation is then translated to a class index/label.
Second, in order to be able to decode the vector of metalabels
into the initial class index/labels, each class index/label has to
be uniquely mapped into a codeword in the encoding table.

Taking into account these restrictions, three types of codes,
along with their encoding and decoding schemes, are discussed
in the following part of the section, namely, designed codes,
random codes, and error-correcting codes.

C. Designed Codes

One possibility to assign codewords to each class is to design
a distributed code where each bit of the codeword represents a
characteristic of the class. In [8], the handwritten digit recog-
nition is performed by assigning codewords whose bits express
particular geometrical characteristics of each digit (e.g., contains
vertical lines, horizontal lines, diagonal lines, closed curves, and
so on). This approach cannot be directly applied to the classi-
fication of remote sensing images, which are characterized by
complex structural components [20]. In addition, the increased
spatial resolution of current sensors implies the existence of an
intractable number of possible geometrical shapes inside the
compound structures. Therefore, in the case of remote sensing
classification, a viable solution is to include characteristics that
focus on the texture and color of the images. An example is
shown in Table II, where 1 represents the existence and 0 the
nonexistence of the designated characteristic. The 0 and 1 bits
on each column of the encoding table can be regarded as posi-
tive and negative answers to questions regarding the properties
of each class. The high-density population class is specific for
large cities where there are many man-made structures and the

land-use varies (e.g., there are parks, buildings, residential area,
industrial area, and shops). In contrary, the classes forest and
water are characterized by repetitive textured surfaces. There-
fore, in the case of designed codes, each metaclass indicates
the presence or absence of a common property across a subset
formed by original classes.

1) Encoding: The encoding step means assigning to each
class index a codeword from the defined code.

2) Decoding: The decoding can be performed using mini-
mum distance decoding, which computes the Hamming
distances between the binary vector representing a new
instance and all the existing codewords. We recall that
the Hamming distance between two binary vectors, a =
[a0, a1, . . . , an−1] and b = [b0, b1, . . . , bn−1], is given by

dH(a,b) =

n−1∑

i=0

ai ⊕ bi (1)

where ⊕ is addition modulo 2.

D. Random Codes

Random codes are constructed by choosing each bit of the
codewords uniformly at random from {0, 1}. Once the code
assignation is established, the encoding and decoding steps are
performed as in the case of using designed codes. However, as
specified above, the generated code has to fulfill a constraint,
namely, to assign unique codewords to each class index. A so-
lution to increase the probability of having different encodings
for different class indexes is to use longer codewords, which re-
duces the probability of generating two identical strings of bits,
but increases the number of binary classifiers that have to be
trained.

E. Error-Correcting Codes—A Coding Theory Perspective

Multilabel classification can be regarded as a communication
theory problem in which the index of a class is transmitted over
a “noisy channel.” This approach follows the Shannon–Weaver
model of communication presented in the Shannon’s famous
paper [21], which considers that the communication channel
between a source and a receiver is affected by noise. In order to
diminish the effect of noise, error-correcting codes are built and
their role is to allow the transmission of information in a reliable
manner.

In the multilabel classification, the classification errors have
multiple causes. For example, because of particular information
extraction algorithms, the information may be distorted and the
receiver gets the class information corrupted. In addition, the
classification model may fit very well details or noise in the
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training data, but the model may fail to classify new data (i.e.,
overfitting). Another possible source of errors may be the poorly
selected training data, which has a negative impact on the per-
formance of the learned model.

The mission of the error correcting code is therefore to cor-
rect corrupted labels. Ideally, at the end-user, we would like to
have a perfect decoder that corrects the errors occurring dur-
ing classification and decodes exactly the message sent by the
source image. In practice, not all types of error configurations
can be corrected. The number of errors that a decoder can correct
depends on the code capabilities.

The majority of the existing error-control systems rely on
block coding that introduce controlled amounts of redundancy
into a transmitted sequence, providing the decoder the ability
to detect and possibly correct a limited number of errors. The
source delivers a k-bits length message and the encoder trans-
forms the message into a codeword c ofn > k bits by appending
control bits to the original message.

Linear block codes are widely used in practice for several rea-
sons. First, the encoding and decoding procedures are facilitated
by the linearity property of the codes. Second, the processing
time is smaller than in the case of other codes, e.g., convolu-
tional codes. Different types of linear codes can be used to de-
sign ECOC-based multilabel classifiers, e.g., linear cyclic codes
and Bose–Chaudhuri–Hocquenghem (BCH) codes. These two
codes have special properties. Linear cyclic codes are charac-
terized by the fact that any permutation of a codeword is also a
codeword, whereas BCH are powerful error-control codes used
in many communication-related applications [22]–[25].

1) Encoding: A block error control code C consists of a set
of M codewords {C0, C1, . . . , CM−1} of length n, each repre-
senting a distinct message that can be transmitted by the source.
The codewords c = [c0, c1, . . . , cn−1] ∈ C are transmitted over
the noisy channel. The decoder receives the distorted codeword
and tries to reconstruct the message in a reliable manner.

The ability of a code to detect and correct errors is strictly
linked to the concept of minimum Hamming distance, computed
between all distinct pairs of codewords in C. A code with mini-
mum distance dmin can detect dmin − 1 errors and can correct up
to �(dmin − 1)/2� errors, where �x� is the upper bound integer
of x [23].

Linear block codes are error-correction codes with special
mathematical properties (i.e., the linearity of the codes). The
codeword of n bits contains the k bits of the message (called
information bits) and n− k control bits, where each control bit
is a linear combination of the information bits. In this paper,
we consider that the k bits of information come from the binary
representation of the class index using the most significant bit
first rule. For example, the class index 2 represented on four bits
is 0010.

Each linear code has a corresponding parity check matrix H
with the following property [22]

HcT = 0 (2)

for all codewords c in code C. The parity check matrix H is
fixed and characterizes each code in part. Relation (2) provides
the encoding rules, namely, the relations between the control

bits and the information bits. Being linear codes and taking into
account that all the elements (including the elements of the parity
check matrix) are 0 or 1, all the computations involve linear
operations, more precisely, additions modulo 2.

Linear cyclic codes are special linear codes that can be defined
using a generator polynomial g(X), which is chosen from the set
of divisors of polynomial Xn − 1. We say that the cyclic codes
are ideals in the algebra of polynomials modulo Xn − 1. One
of the properties of the generator polynomials is that it divides
the polynomial associated to each codeword

g(X)|c(X) (3)

where c(X) = c0 + c1X + · · ·+ cn−1X
n−1 is the polynomial

associated to codeword c ∈ C. Due to this property, in the case of
cyclic codes, if c(X) is a codeword, then Xqc(X), with q ≥ 0 is
also a codeword. From this, any right circular shift of a codeword
is still a codeword.

An equally important polynomial is the parity check polyno-
mial, denoted by h(X)

h(X) =
Xn − 1

g(X)
(4)

which gives the corresponding parity check matrix

H =

⎡

⎢⎢⎢⎣

0 0 . . . 0 hk hk−1 . . . h1 h0

0 0 . . . hk hk−1 hk−2 . . . h0 0
...

...
. . .

...
...

...
. . .

...
...

hk hk−1 . . . h1 h0 0 . . . 0 0

⎤

⎥⎥⎥⎦.

(5)
The degree of the generator polynomial m = degree(g(X))
gives the number of control bits, whereas the degree of the parity
check polynomial k = degree(h(X)) represents the number of
information bits.

2) Syndrome Decoding: In the case of error-correcting linear
codes, syndrome decoding is considered to achieve good perfor-
mance in terms of computational time and correction properties
of the code [22]–[25].

Assuming that codeword c ∈ C encodes a certain class label
and that e = [e0, e1, . . . , en−1] is the error vector (i.e., ei = 1 if
an error occurs on the ith position and ei = 0, otherwise), the
vector of binary classifiers’ outputs r is given by

r = c+ e. (6)

A syndrome vector can be computed for each possible vector r

S(r) = HrT . (7)

Using (2) and (6), yields that the syndrome corresponding to r
is equal to the syndrome corresponding to the error vector e

S(r) = HeT = S(e). (8)

In order to perform error correction, there must be a one-to-
one correspondence between each configuration of errors (i.e.,
errors made by one or more classifiers) and the syndromes.
Therefore, a lookup table of all the possible pairs of form
(e, S(e)) can be computed and stored. When a vector r is re-
ceived, the corresponding syndrome is computed. The error vec-
tor can be retrieved by looking at the corresponding line in the
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lookup table. This tells the error-correcting system where the
classification errors occurred and allows the correction of the re-
ceived vector. Finally, if the syndrome equals 0, then the decoder
decides that no error occurred and maps the received codeword
to the index of the corresponding class.

Using the syndrome decoding algorithm saves storage and
computational time. The lookup table contains only error-
syndrome pairs, resulting in a fast correction of errors and de-
coding. For these reasons, in this paper, this decoding strategy is
used to transform the vector of binary classifiers’ outputs r back
into codewords, and, then, into corresponding class indexes.

IV. BINARY CLASSIFIERS IN THE ECOC-BASED FRAMEWORK

The strategy based on error-correcting codes combines the
outputs of several binary classifiers to produce a label that rep-
resents a semantic class. The role of each binary classifier is
to decide upon the membership of an instance to a particular
metaclass. In what follows, we present two ways of building
binary classifiers. The first option consists in training the well-
known SVM binary classifiers, whereas the second one aims at
improving the SVM binary classifiers by determining the most
representative examples, for each pair of metalabels, which lead
to an optimal hyperplane with respect to a given criterion.

A. SVM-Based Classification

SVM classifiers are originally designed for binary classifica-
tion [26]. The SVM problem can be stated as follows: Given a
set of labeled data T = {(x1, y1), (x2, y2), . . . , (xl, yl)}, where
xj is the data sample and yj ∈ {−1, 1} is its corresponding la-
bel, the optimal hyperplane P is determined by optimizing the
following expression:

max
w,b,ε

1

2
wTw + C

l∑

j=1

εj

subject to yj(w
Txj + b) ≥ 1− εj , with εj ≥ 0. (9)

In the above expression, the hyperplane P is defined as

wTx+ b = 0 (10)

where x is a sample point in the feature space and C > 0 is a
regularization parameter. Please note that, above, label yj = −1
corresponds to metalabel 0i, whereas label yj = 1 corresponds
to meta-label 1i for the ith binary classifier.

B. Training SVM-MA With Most Ambiguous Examples

Training accurate binary classifiers requires an important
number of annotated examples. We aim to build robust binary
classifiers with a small training set. In order to achieve this goal,
the proposed learning procedure involves the evaluation of the
informativeness of the examples. At first iteration, we start train-
ing with a small annotated training set T0, selected uniformly
at random from the available dataset. In addition, we consider
having access to another small set L of randomly chosen exam-
ples. We perform several iterations and, at each iteration ni, we

Fig. 3. Two-class SVM linear classification. The ambiguous examples are
placed close to the boundary line because they are the ones for which the clas-
sifier’s uncertainty is highest (i.e., crossed points in the figure are classified
incorrectly).

augment the training dataset with the most informative exam-
ples from L, which were not included in the previous training
set, along with their corresponding metalabels.

The majority of the errors produced by an SVM classifier
appear when the examples are close to the separation hyperplane,
as shown in Fig. 3. If these ambiguous examples receive correct
metalabels and a new train set is formed by adding them to the
previous train set, an optimal separation hyperplane is better
identified and the classification error is diminished [27]. Taking
advantage of the geometrical characteristics of linear SVMs, the
selection of the closest examples with respect to the separation
hyperplane reduces to simple computations of distances from a
point in space, x, to a hyperplane P

d(x, P ) =
|wTx+ b|

‖w‖ . (11)

The distances with respect to the hyperplane are rearranged in
ascending order with the scope of prioritizing the most ambigu-
ous examples which most likely received wrong labels. This se-
lection criteria was initially introduced in [14] and [15] for text
classification or retrieval of top-k most relevant images. In this
paper, this selection criteria is applied in an iterative manner. At
each iteration, new examples that were wrongly classified using
the hyperplane determined at previous iteration, receive correct
metalabels and they are added to the train set. Next, a new SVM
separation hyperplane is determined based on the newly formed
training dataset. The algorithm is detailed in Fig. 4.

The final decision regarding the membership of an instance x
from a metaclass 0i or 1i is taken using the SVM model param-
eters determined before, namely

y = sign(wTx+ b) =

{
1 if wTx+ b > 0

−1 otherwise
(12)

and mapping the result to a bit following the rule: −1 → 0,
1 → 1.

V. FEATURE EXTRACTION

The ECOC-based classification framework is tested on
two category of features: 1) BOVW model-based descrip-
tors (BOVWC features) combined with color statistics; and
2) high-level image representations derived from pretrained deep
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Fig. 4. Proposed training algorithm of binary classifiers with most ambiguous
examples.

neural networks. We start by briefly presenting BOVWC features
and, then, discuss over the advantages of using deep CNNs such
as ResNet for feature extraction.

A. Representations Based on BOVW Models

In this setup, feature extraction consists in fusing color statis-
tics with high-level BOVW model-based representations of the
patches. This representation is denoted as BOVWC. The BOVW
approach implies building a dictionary ofD visual words, which
are, in general, determined by applying unsupervised clustering
methods (e.g., K-means) on low-level features extracted from
the training set [17]. The low-level feature vectors are extracted
using a dense variant of the SIFT introduced by Lowe in [18].
This makes the approach slightly different than the original SIFT
extraction method, which first determines particular keypoints
in the image [18]. A SIFT descriptor is essentially a histogram
over surrounding subregions and orientations of image gradients
that characterize a particular location.

Assuming that the dictionary is already determined, each
SIFT descriptor is mapped to the closest visual word in l2-norm.
Afterward, the high-level features are just histograms register-
ing the occurrences of visual words contained by the dictionary.
The described feature extraction method is robust in the sense
that is invariant with respect to scale, orientation, changes in illu-
mination and modifications of objects’ positions inside patches
[17], [18].

B. Pretrained Deep Neural Networks for Feature Extraction

In this paper, we propose the usage of a pretrained deep neu-
ral network architecture, for generating a set of high-level rep-
resentations with a fixed architecture, same set of weights, and
no class-dependency across all datasets. This approach avoids
a major drawback that BOVW model-based representations

encounter, namely, the need to determine a dictionary of visual
words that are specific to a particular dataset. A similar approach
was investigated in [28], where an Overfeat model, derived for
the ImageNet classification task [29], is used to generate image
representations, which are then inserted in a trainable custom
CNN to produce the desired semantic labels. However, learning
the custom CNN architecture requires a considerable amount of
training data. In this paper, we avoid this problem by using an
iterative learning procedure, with limited amount of annotated
data, to train the ECOC-based multilabel classifier.

The deep neural network architecture chosen for the feature
extractor is ResNet50, an architecture that achieved state-of-the-
art performance in image classification, object detection, and
semantic segmentation tasks [7]. The original ResNet50 archi-
tecture contains, apart from two pooling layers, 49 convolutional
layers and one fully connected layer, that amount to 25.6 mil-
lion of parameters. This architecture is trained on the ImageNet
challenge dataset [19] consisting of 1.2 million HR training im-
ages and 1000 corresponding labels designed for visual object
recognition. The main advantages of using a pretrained archi-
tecture are as follows: 1) the training of the deep neural network
is performed only once (i.e., using an open and large annotated
dataset); 2) once the parameters are determined, the architecture
is used as a general purpose feature extractor for any classifica-
tion task; and 3) the feature extraction technique is data inde-
pendent. In order to build a feature extractor from the original
ResNet architecture, we exclude the last fully connected layer,
which was performing the actual classification task in the Ima-
geNet challenge. We call the resulting features, ResNet features.

VI. EXPERIMENTS

A. Datasets

We tested the proposed algorithms on two scenes with multi-
ple complex classes. The first one is a Sentinel-2 MSI image
(10-m spatial resolution) acquired over Bucharest, Romania,
and another smaller city, on December 23th, 2015. The second
one is a GeoEye-1 image (1.65-m spatial resolution) acquired
over Hobart, Tasmania, Australia, on February 5th, 2009. The
first scene contains 3999× 7802 pixels, whereas the second one
3759× 3188 pixels. The number of spectral bands considered
is four in both cases (red, green, blue, and near-infrared).

The reference ground truth for the Sentinel-2 scene contains
six semantic classes, whereas the ground truth for the GeoEye-1
scene contains nine classes, as it can be observed in Figs. 5 and 6.

B. Experimental Results

The scenes are divided into patches of p× p pixels. Consider-
ing the spatial resolutions of the two scenes and an appropriate
spatial coverage for the classes of interest, the chosen patch size
is 30× 30 pixels for Sentinel-2 and 40× 40 pixels for GeoEye-
1, which corresponds to a spatial coverage of 300× 300 m2 and
66× 66 m2, respectively.

Two types of features are extracted for each image patch.
First, we consider BOVWC features comprised of statistical de-
scriptors (e.g., the mean and dispersion values per each band
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Fig. 5. Sentinel-2 scene and its corresponding ground truth. (a) Image. (b) Ground truth. (c) Legend.

Fig. 6. GeoEye-1 and its corresponding ground truth. (a) Image. (b) Ground truth. (c) Legend.
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TABLE III
DESIGNED CODE FOR SENTINEL-2 IMAGE

TABLE IV
DESIGNED CODE FOR GEOEYE-1 IMAGE

TABLE V
LEGEND FOR DESIGNED CODE

of the multispectral domain) and BOVW model-based repre-
sentations. The BOVW features are histograms over a learned
dictionary of D visual words. The SIFT low-level descriptors
are extracted over a dense grid of locations and each location is
characterized by 4× 4 neighboring subregions and 8 orientation
levels, yielding 128-dimensional feature vectors per each pixel.
In the second case, the features are extracted using a pretrained
ResNet50 deep architecture, from which we removed the last
fully connected layer. The length of the ResNet feature vectors
is 2048. The following experiments are performed for both types
of features described above.

1) Code Selection: The experiments were performed using
all three types of codes detailed in Section III-B, namely, de-
signed, random, and linear cyclic codes.

The encoding tables used for designed codes are shown
in Table III for the Sentinel-2 scene and in Table IV for the
GeoEye-1 scene, whereas the corresponding legend of the
considered properties is presented in Table V. The properties
of the images that are taken into account for code construction
are correlated to the spatial resolution of the images and to the
capability of the codewords to provide a discriminative behavior
across classes. We report, in the case of BOVWC features, an

overall accuracy level of 90.88% for the Sentinel-2 scene and
78.21% for the GeoEye-1 scene, respectively, whereas, in the
case of ResNet features, an overall accuracy level of 93.45%
for the Sentinel-2 scene and 90.53% for the GeoEye-1 scene,
respectively. Although, a smaller number of binary classifiers
are used for the designed-based encoding, the obvious disad-
vantage of using this type of encoding tables is the subjectivity
in determining the shared properties across different land-cover
classes.

In the case of random codes, the probability of repeating the
same codeword in a code should be as small as possible. For this
reason, using a small codeword length is not useful. However,
using too many bits to represent each semantic class would yield
a large number of binary classifiers to be trained. We vary the
codeword lengths between 5 and 21 bits and measured the overall
accuracy in each case. For these codes, we report best overall
accuracies of ±1% around the accuracies obtained for designed
codes.

In the case of error-correcting codes, the six semantic labels
of the Sentinel-2 scene can be represented on k = 3 bits of in-
formation, whereas the nine semantic labels of the GeoEye-1
scene is represented on k = 4 bits of information. A mention is
to be made here: no special rule was followed when assigning
the class indexes (e.g., 1, 2, 3, and so on) to the class seman-
tic labels (e.g., forest, water, agriculture and so on). Following
the results that we obtained in [30], we consider using only lin-
ear cyclic codes because of their superior performance and less
restrictions imposed to the generator polynomials if compared
to BCH codes. As in the case of random codes, we vary the
codeword length between 5 and 21 bits and, for each case, we
measure the performance level.

The performance results measured for different codeword
lengths n are shown in Fig. 7. In the case of random codes, the
overall accuracy value increases with n, but it oscillates around
the maximum value after reaching it. It is interesting to observe
that the maximum overall accuracy is achieved quite fast. The
missing bars on the graph correspond to the cyclic codes (n, k)
for which no generator polynomial g(X) of degree m = n− k
can be formed from the divisors of Xn − 1. In the case of linear
cyclic codes, the best choices for codeword lengths are n = 7
bits for the Sentinel-2 scene and n = 15 bits for the GeoEye-1
scene. The first code (7, 3) is able to correct 1 bit-error, whereas
the second one (15, 4) can correct configurations of up to 4 bit-
errors. In the case of GeoEye-1 scene, we observe also a peak of
the overall accuracy for the well-known Hamming code (7, 4),
which also corrects 1 bit-error. Another remark is related to the
fact that one needs more bits to check possible errors when the
number of information bits representing the semantic labels is
larger. It is worth mentioning that no constraints were imposed
when selecting the generator polynomial for a given (n, k) pair.
In fact, multiple experiments carried in the same conditions re-
vealed that similar results are obtained for different generator
polynomials and fixed (n, k) pair. Compared to random codes,
the linear cyclic codes achieve a greater performance with a
smaller number of binary classifiers and are more stable. In what
follows, we use the linear cyclic codes (7, 3) for the Sentinel-2
scene and (15, 4) for the GeoEye-1 scene.
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Fig. 7. Choice of the codeword length n for random and linear cyclic codes. Two categories of features are considered, namely BOVWC and ResNet features.
(a) Sentinel-2. (b) GeoEye-1.

Fig. 8. Variation of the classification accuracy with the number of iterations, Niter, for different number of corrected meta-labels per iteration, Ncorr and for
both categories of features considered (i.e., BOVWC and ResNet features). (a) Sentinel-2. (b) GeoEye-1.

2) Iterative Training of SVM-MA: In this paper, we use SVM
as binary classifiers to discriminate between metalabels and
propose an iterative training procedure to learn the correspond-
ing parameters. We consider that the initial training set is 5% of
each dataset, with examples that are randomly selected from all
classes. In addition, 20% of each dataset (randomly selected) is
used for the iterative learning procedure, whereas the rest is used
solely for testing. The initial training set is increased at each it-
eration with Ncorr most informative examples, whose predicted
metalabels need to be corrected. In this experiment, we vary the
number of iterationsNiter between 0 (i.e., corresponds to training
an SVM classifier with a limited amount of data and no itera-
tions) and 15, and consider the number of corrected meta-labels
Ncorr ∈ {5, 10, 15}. As shown in Fig. 8, the accuracy increases
with the number of iterations and rapidly attains a maximum
value for Niter = 10 and Ncorr = 10. We observe, in the case
of BOVWC features, an increase in accuracy of 7% (GeoEye-1)
to 11% (Sentinel-2), whereas, in the case of ResNet features, an
increase of 10% is achieved in a small number of iterations.

3) Learning SVM Binary Classifiers With a Large Training
Set: In this experiment, we use a large training set (25% of the

data), the same for all n binary classifiers, and no iterations.
From our experiments, the SVM binary classifiers trained with
a larger training set do not perform as well as SVM-MA ones.
In some cases, they might even fail in discriminating well be-
tween different classes. For example, in the case of GeoEye-1
with BOVWC features, the accuracy is almost 75%. In contrary,
when using SVM-MA, the position of the hyperplanes is grad-
ually modified based on the most informative examples with
respect to the distance criterion. Moreover, selecting most am-
biguous examples leads to customly defining training sets for
each binary classifier in part. This yields a better discrimination
across different meta-labels. In addition, the time spent to train
the binary SVM classifiers with a large training set is consid-
erable, e.g., in the case of Sentinel-2 scene, the same number
of classifiers of ECOC are trained in 96 s with SVM-MA tech-
nique (ten iterations), whereas, it takes almost 10 min to train
them with a larger training set and no iterations.

4) Feature Extraction: The feature extraction is an impor-
tant step in any classification framework. In this experiment,
we tested four types of features: 1) color descriptors (first-
and second-order statistics per patch); 2) BOVW; 3) color
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Fig. 9. Choice of the dictionary size for the BOVW model of representation. (a) Sentinel-2. (b) GeoEye-1.

TABLE VI
FEATURE CHOICE

descriptors and BOVW (BOVWC); and 4) features extracted
using a pretrained ResNet architecture.

Although the water, grass, forest, and empty terrain are easy to
be identified through their color, not the same happens when we
want to distinguish man-made structures. For this reason, com-
plementing the color information with BOVW representations
of local descriptors proves beneficial in terms of recognizing
land-cover classes. This aspect can be observed from the re-
sults shown in Table VI. In order to determine the best BOVW
model, we performed experiments for various dictionary sizes
D ∈ {50, 100, 150, . . . , 500}. As shown in Fig. 9, Sentinel-2
patches can be represented with a smaller number of visual
words (D = 100) compared to the GeoEye-1 scene (D = 450).
This is mainly due to the greater level of detail of the GeoEye-1
scene if compared to the Sentinel-2 scene (i.e., the spatial reso-
lution of GeoEye-1 is 1.65 m, whereas the spatial resolution for
Sentinel-2 is 10 m).

As it can be depicted in Table VI, the performances achieved
when using deep CNNs (in our case ResNet features) for fea-
ture extraction are better than the ones obtained in the case of
BOVWC representations. In the case of the GeoEye-1 scene, the
increase in accuracy is important, almost 12%, achieving over
92% overall accuracy for the ResNet-based features. In the case
of the Sentinel-2 scene, the accuracy is just a bit higher than for
BOVWC (i.e., only with 2.47%). This difference is explained by
the higher spatial resolution of the GeoEye-1 sensor and by the
fact that the original ResNet architecture was pretrained on the
ImageNet dataset and can be used to detect even small objects.

5) Other Performance Measures and Comparisons With
Other Methods: For best cases in terms of overall classification
accuracy (OA), the classification performance was also evalu-
ated in terms of per-class accuracies (PC) and Kappa index (K).
These measures are computed starting from the confusion ma-
trix C, which has the number of predicted labels on the rows

and the ground truth on the columns

OA =

nc∑

i=1

Cii

N
(13)

PCj =
Cjj

C+j
∀j ∈ {1, . . . , nc} (14)

K =
1
N

∑nc
i=1 Cii − 1

N2

∑nc
i=1 Ci+C+i

1− 1
N2

∑nc
i=1 Ci+C+i

(15)

whereN represents the total number of classified instances, nc is
the number of classes, Cij is the number of instances in ground
truth class j and classified as class i, and the values Ci+ and
C+j are computed as

Ci+ =

nc∑

j=1

Cij (16)

C+j =

nc∑

i=1

Cij . (17)

The corresponding results are shown in Tables VII and VIII.
Looking at the per-class accuracies, the best performance is

obtained for the agriculture, forest, and high-density population
classes in the case of Sentinel-2 scene and for the residential
area, water, and empty terrain classes in the case of GeoEye-1
scene. These results are somehow expected taking into account
the spatial coverage of these classes in the ground survey and the
fact that the BOVWC and ResNet representations describe pre-
cisely the local appearance of each patch, which is beneficial for
classes characterized by a certain structural pattern. Moreover,
compared to BOVWC, ResNet features prove to be more dis-
criminant in the case of low-density population class (Sentinel-2
scene) and industrial area, grass, empty terrain, and vegetation
classes (GeoEye-1 scene).

In the same tables, we compare the proposed ECOC-based
classification procedure with other methods, i.e., OAO-based
SVM multiclass (SVM OAO), semisupervised classification
with active queries (SSC AQ) [3], and original ResNet classi-
fier (i.e., with the last fully connected layer included to perform
the actual classification) [7] trained directly on the GeoEye-1
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TABLE VII
PER-CLASS ACCURACY RATES (PC), OVERALL ACCURACY (OA), AND KAPPA INDEX (K) OF CLASSIFICATIONS ON SENTINEL-2 SCENE

TABLE VIII
PER-CLASS ACCURACY RATES (PC), OVERALL ACCURACY (OA), AND KAPPA INDEX (K) OF CLASSIFICATIONS ON GEOEYE-1 SCENE

TABLE IX
NUMBER OF BINARY CLASSIFIERS NEEDED FOR MULTICLASS ANNOTATION (BEST CASES FOR

RESNET FEATURES AND BOVWC FEATURES IN THE PARENTHESIS)

and Sentinel-2 data, respectively. The ECOC-based classifica-
tion procedure proposed in this paper considers the most am-
biguous examples to improve the performance achieved by the
binary classifiers. A different semisupervised approach is SSC
AQ [3]. The SSC AQ algorithm aims at building an hierarchical
clustering tree and determining the most coherent examples to
be included in the active queries with the goal of reducing the
global estimated classification error. In order to train the SVM
OAO and ResNet classifiers, we use 25% of the dataset as train-
ing sets. SSC AQ is trained with an initial set of labeled examples
that amounts to 5% of the datasets (i.e., same amount as for ini-
tial train set of ECOC-SVM-MA) and 100 active queries. In the
case of OAO-based SVM methods, we tested linear and radial
basis function kernels, but the later ones reported a decrease in
accuracy of up to 40%.

The first observation is related to the improvement brought
by the ECOC-based classification framework over the SVM-
OAO. This is explained by the fact that ECOC produces more
balanced training sets (positive and negative) than in the case of
SVM-OAO. The improvement is also maintained even when the
binary SVM classifiers are not learned in an iterative manner—
in this case, the overall accuracy is 81.60% (BOVWC)/84.85%
(ResNet features) for Sentinel-2 and 75.19% (BOVWC)/82.97%

(ResNet features) for GeoEye-1, which are higher than the re-
sults reported for SVM-OAO. Second, SSC AQ performs quite
well for classes that appear most frequently, but fails when the
number of examples in a class is small. Third, we observe that the
ECOC-based classifier outperforms the ResNet classifier. This
is somehow expected because training a deep neural network
with millions of parameters requires a large set of annotated
data (e.g., ImageNet contains 1.2 million HR training images).
In fact, this is the main drawback that many deep neural networks
encounter.

6) Final Remarks: An OAO-based SVM classifier needs t1o
train nc(nc − 1)/2 binary classifiers to discriminate between
nc semantic classes. The proposed approach employs a smaller
number of classifiers, which is determined by the length of the
codewords that are used to encode the semantic labels. The num-
bers of classifiers are synthesized in Table IX.

As expected, a smaller number of binary classifiers is a
major advantage for fast training and testing the ECOC-based
classification framework. Once the ResNet or BOVWC features
computed, we measured the computational time spent for
training all the classifiers. In the case of the original ResNet
classifier, we measured the time spent for learning the parame-
ters through Stochastic Gradient Descent with backpropagation.
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Fig. 10. Performance evaluation for different patch sizes. (a) Sentinel-2. (b) GeoEye-1.

TABLE X
AVERAGE COMPUTATIONAL TIME [s]

The average results are provided in Table X for Sentinel-2 and
GeoEye-1 datasets. We mention that the computational times
are measured on Intel Xeon E5-1680v3, 8 cores @3.2 GHz,
equipped with NVIDIA QUADRO M4000 GPU with 8 GB
RAM. As expected, in the ECOC-based framework, the com-
putational time is considerably smaller than the time required
for training the entire ResNet classification architecture.

We also performed classifications for other windows sizes
p ∈ {10, 20, 30, 40} and the results are shown in Fig. 10. These
results confirm the proper selection of the patch size at the be-
ginning of our experiments.

VII. CONCLUSION

In this paper, we proposed a multilabel classification frame-
work based on block-coding schemes and learning over most
ambiguous examples. The multilabel classification problem is
decomposed into multiple binary subclassifications following a
set of encoding rules established before the training. The clas-
sification framework represents a solution for the multi-label
annotation of remote sensing images for which manually an-
notated training samples are hard to obtain. In this sense, the
system is conceived to work in the context of a limited amount
of annotated data.

The multilabel classification using ECOC encoding and de-
coding steps has a threefold benefit. First, the reorganization of
the classes into metaclasses results into more balanced training
sets and thus to a better training of the binary classifiers. Second,
if the code has error-correction capabilities, part of the misclassi-
fications caused by the binary classifier can be corrected. Third,
the number of binary classifiers to be trained is smaller than in
the SVM OAO case.

Experiments using different encoding schemes (i.e., linear
cyclic, designed, and random codes) prove the generality of
the proposed approach in the sense that any other encoding

strategies can be plugged in the existing framework. Designed
codes are tailored to represent several attributes of the analyzed
classes, whereas random codes lead to an arbitrary organization
of classes into metaclasses. One of the main challenges of the
designed code approach is to define the discriminant character-
istics of the analyzed classes such that each class is uniquely
mapped into a codeword. In this context, the metaclasses for a
designed code have to be defined by an expert before starting the
training of the whole classification system. This makes designed
codes rather difficult to use.

Furthermore, the choice of the binary classifiers can also be
modified, but the advantage of using SVMs resides in the special
geometrical properties that help us establish the examples that
might bring the most useful information during training (i.e.,
SVM-MA method). This has a direct positive impact on the
performance of the whole system. In this regard, the role of the
iterations is to correct the behavior of binary classifiers. Even if
the classification models might fail at the first round of iterations
due to ill-chosen initial training set, the models are corrected in
the next rounds. An interesting aspect is the fact that the number
of corrected metalabels per iteration is rather small.

Finally, we tested our ECOC-based classification framework
for two categories of high-level features, namely, features ex-
tracted with a pretrained deep CNN architecture (i.e., ResNet
features) and BOVW features combined with color informa-
tion. In the case of Sentinel-2 data, similar performance scores
are obtained, whereas, in the case of GeoEye-1 data, the increase
in performance is considerable when ResNet features are used.
Nevertheless, ResNet feature extractor comes with the advan-
tage of using the same pretrained architecture for all datasets,
with no need to learn a specific dictionary for each dataset.
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