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Abstract—The constant false alarm rate with convolution and
pooling (CP-CFAR) method, which can improve the detection ef-
ficiency via GPU parallel acceleration in the airborne synthetic
aperture radar (SAR) images, is proposed in this paper. The con-
stant false alarm rate (CFAR) method is one of the most widely
used methods for target detection in airborne SAR images. How-
ever, since the CFAR is performed on a pixel-by-pixel basis, the
time consumption will increase rapidly with the expansion of im-
age scene. Even if the GPU is used for acceleration, the efficiency
improvement is still limited, which cannot meet the real-time pro-
cessing requirements. Therefore, the CP-CFAR method for the
target detection of SAR images is proposed in this paper. The
convolution layer uses the horizontal and vertical Sobel opera-
tors to improve the contrast between targets and background, and
the pooling layer can reduce the processing dimension of the im-
ages. The convolution and pooling layers are added before the two-
parameter CFAR, which can reduce the computational elements
but without losing the main feature of the original image. More
importantly, compared to the traditional CFAR, the proposed CP-
CFAR is more suitable for GPU acceleration, which can improve
the detection efficiency significantly. Experiments on the moving
and stationary target acquisition and recognition SAR images with
a size of 1478 × 1784 show that, compared with the traditional
cell-averaging CFAR, two-parameter CFAR and their CPU, multi-
thread CPU, and GPU acceleration modes, the proposed CP-CFAR
with GPU acceleration can obtain the best detection performance
with the highest acceleration ratio, and the operation time is less
than 192 ms.

Index Terms—Constant false alarm rate (CFAR), convolution
layer, GPU parallel, pooling layer, synthetic aperture radar (SAR),
target detection.

I. INTRODUCTION

A IRBORNE synthetic aperture radar (SAR) is an active
imaging sensor with all-weather, all-day, penetrating abil-

ity and other characteristics and has been widely used in military
and civilian fields [1], [2]. With the continuous enrichment of
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SAR image resources, SAR automatic target recognition (ATR)
has become an urgent need to deal with massive SAR data. A
typical ATR system of the SAR image is usually divided into
three stages: detection, identification, and classification. In the
detection stage, the region of interest (ROI) needs to be screened
out first, and the subsequent processing such as identification
and classification will be performed in the ROI. Therefore, the
performance of the detection stage will directly affect the accu-
racy and speed of subsequent processing [3], [4].

The constant false alarm rate (CFAR) target detection method
is one of the most widely used methods in SAR target detection
[5]. However, with the development of airborne SAR imaging
technology, the resolution is higher and higher, and the image
size will also increase. Due to the large amount of data in SAR
images, the calculation speed is an important indicator to eval-
uate the practicality of the algorithm for the SAR image target
detection [6]. Since the CFAR method uses the sliding windows
to detect the targets, and all the windows should be processed in
sequence, the time consumption of CFAR is positively related
to the number of pixels in the images to be processed. For air-
borne SAR images, how to improve the efficiency of algorithm
implementation and realize the real-time performance of target
detection is a challenge for researchers.

In order to improve the detection efficiency of CFAR, many
researchers have made unremitting efforts. In [7], an im-
proved superpixel-level CFAR detection method is proposed.
Compared with CFAR methods implemented with the sliding
window technique, the computational burden of the proposed
method is significantly reduced without loss of detection perfor-
mance. An improved two-parameter CFAR method is proposed
in [8]. The new two-parameter CFAR detector uses log-normal
as the statistical model. Compared with traditional CFAR de-
tectors, the parameter estimation is more accurate and does not
need iterative numerical calculation. In [9], a superpixel-based
CFAR detection method is proposed for the target detection of
high-resolution SAR images, which greatly improves the detec-
tion accuracy.

These improved methods can improve the speed of CFAR
target detection to a certain extent. However, it is still difficult
to meet the real-time requirements for the target detection of
SAR images in large scene. Since CFAR is a pixel-based target
detection method, it has high parallelism and can use GPU for
parallel computation.

NVIDIA provides a parallel computing architecture called
Compute Unified Device Architecture (CUDA). GPUs are more
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efficient than multicore processors for parallel computing be-
cause they have thousands of computing cores and high memory
bandwidth [10], [11]. Actually, GPU general-purpose comput-
ing is relatively mature and has been a powerful tool to improve
the speed of target detection methods [12].

To further increase the computational efficiency of the CFAR-
based method, the NVIDIA CUDA is used for parallel imple-
mentations in [13]. In [14], the research shows that the op-
eration performance of CFAR based on GPU with CUDA is
better than that based on CPU. A Parzen-window-kernel-based
CFAR algorithm for SAR ship detection is proposed in [15] and
implemented via CUDA. The speedup can reach to 112× as
compared to the algorithm implemented sequentially on CPU.
However, the operation of the above-mentioned CFAR methods
with GPU acceleration is still via pixel by pixel, so the efficiency
improvement is also limited.

This paper proposes a novel CFAR method called CFAR with
convolution and pooling (CP-CFAR), which is based on the anal-
ysis of CFAR, GPU acceleration, and dimensionality reduction.
The CP-CFAR method consists of three stages: feature extrac-
tion, target detection, and follow-up processing. In the feature
extraction stage, the image is processed by the convolution layer
and the pooling layer. The convolution layer extracts the main
features of the image, and the pooling layer reduces the number
of image pixels. In the detection stage, the two-parameter CFAR
method is used for target detection. In the follow-up processing
stage, erosion operation, dilation operation, and median filter-
ing operation are performed on the detected image. The three
stages are all suitable for GPU acceleration, which can improve
the detection efficiency significantly.

The remainder of this paper is organized as follows.
Section II describes the related three different CFAR target
detection methods: CA-CFAR, two-parameter CFAR, and CP-
CFAR. In Section III, the CP-CFAR method is parallel com-
puted, and the parallel processes are described in detail. In
Section IV, the performance of different CFAR methods is tested
on the public dataset of moving and stationary target acquisi-
tion and recognition (MSTAR). Conclusions are presented in
Section V.

II. RELATED CFAR METHODS

The CFAR detection method is a pixel-level target detection
algorithm, which requires that the target has strong contrast with
respect to the background. The target detection is achieved by
determining whether the gray level of each pixel exceeds a cer-
tain threshold. In this section, the CA-CFAR and two-parameter
CFAR are introduced, and the CP-CFAR method is proposed
based on the analysis of convolution and pooling operation.

A. CA-CFAR Method

For most of the CFAR methods, the clutter background dis-
tribution of the image needs to be determined before detection.
In order to adapt to different clutter scenarios and simplify per-
formance analysis, the basic CFAR detector divides the clutter
background into three typical scenarios for target detection: uni-
form clutter background, clutter edges, and multiple targets. The

Fig. 1. Window configuration of the CA-CFAR method.

CA-CFAR is proposed to deal with the uniform clutter area. It
uses all the pixels of the clutter area within the sliding window to
estimate the parameters of the corresponding clutter statistical
model.

Typically, the local statistics of the ROI and its background
are computed and compared against the selected threshold to
determine if the ROI is target or not. In the CA-CFAR, different
thresholds are assigned to each pixel and used in conjunction
with the ROI’s statistics to determine if the pixel is bright or
not [16].

The window configuration of the CA-CFAR detector is shown
in Fig. 1.

The ROI is the pixel to be detected, the guard ring is set
to reduce the influence of the target pixel on clutter parameter
estimation, and the clutter ring is used to estimate clutter model
parameters.

The strategies for choosing the size of window are as
follows [17].

1) The size of the ROI should be 1 × 1, which means there
is only one pixel in the ROI.

2) The size of the guard ring should be twice the size of
the target, accurately; if the size of the target is width ×
height, the size of guard ring should be (2 ∗ max(width,
height) + 1) × (2 ∗ max(width, height) + 1).

3) In order to balance the detection speed and detection ef-
fect, the width of the clutter ring is set to 1.

During the CA-CFAR detection process, determining whether
the pixel in ROI is the target pixel or not is according to a certain
criterion:

J(x, y) =

{
true, μratio(x, y) > T

false, otherwise
(1)

where T is the threshold of the CA-CFAR and is inversely
proportional to the false alarm (Pfa); the μratio(x, y) is known as
the mean ratio and is defined as

μratio(x, y) =
μROI(x, y)
μC (x, y)

(2)

where μROI(x, y) is the mean of the ROI, μC (x, y) is the mean
of clutter, and they are calculated according to Fig. 1.

B. Two-Parameter CFAR Method

The two-parameter CFAR detection method is based on the
assumption that the background clutter obeys Gaussian distri-
bution, which can adapt to the background clutter changes.
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Fig. 2. Schematic diagram of obtaining the threshold of the two-parameter
CFAR.

According to Fig. 2, Pfa is the given false alarm probability,
the probability density function of clutter is p(x), and the prob-
ability density function of the target is q(x). The relationship
between Pfa and p(x) is as follows:

Pfa =
∫ ∞

T

p(x)dx (3)

where T is the detection threshold.
It can be seen that the false alarm probability Pfa is corre-

sponding to the area of the shaded part. If the probability of
false alarm Pfa is given, the detection threshold T is determined
by the statistical characteristics of the clutter around the target
[18]. The window configuration of the two-parameter CFAR
method is the same as that of CA-CFAR in Fig. 1.

The mean and variance of the clutter are used for determining
the threshold T in the two-parameter CFAR [8]. Assuming that
the clutter background obeys Gaussian distribution, the proba-
bility density function p(x) is

p(x) =
1√
2πσ

exp

{
− (ln x − u)2

2σ2

}
, x ≥ 0 (4)

where u is the mean value of the clutter ring, and σ is the
standard deviation of the clutter ring.

Let y = lnx, x = ey ; the probability density function of y is

py (y) = p(ey )
∣∣∣∣dey

dy

∣∣∣∣ = − 1√
2πσ

exp

[
− (y − xm )2

2σ2

]
. (5)

According to (3), the threshold T is

T = σ × Φ−1(1 − Pfa) + u. (6)

Similar to CA-CFAR detection, in the two-parameter CFAR
method, the ROI also needs to travel each pixel of the input
image to determine whether the pixel in the ROI belongs to
target or not by the following criteria:

J(x, y) =

{
true, Iinput(x, y) > T

false, otherwise
. (7)

C. CP-CFAR Method

In the SAR images, the mutation of the gray value of the
target part is more obvious, but the grayscale of the background
changes more smoothly. The Sobel operator can be taken as the

Fig. 3. Flow of the CP-CFAR method.

Fig. 4. Horizontal and vertical Sobel operators used in this paper.

convolution kernel of the convolution layer, since after the Sobel
filtering, the background noise can be filtered out and the target
information can be extracted, and a certain texture and edge
can be showed [19]. And the CFAR method performs the target
detection based on the difference of the grayscale of the target
and the background. Therefore, after the convolution operation
is performed using the Sobel operator, it is possible to increase
the gray value of the region, where the pixel gray value of the
target region is mutated, and improve the accuracy of the CFAR
target detection.

Therefore, the CP-CFAR is proposed in this paper. The CP-
CFAR mainly has two stages: one is feature extraction stage and
after it is the two-parameter CFAR. The flow of the CP-CFAR
is shown in Fig. 3.

1) Feature Extraction Stage: The feature extraction stage of
CP-CFAR includes a convolution layer and a pooling layer. In
the convolution layer, the Sobel operator is used for convolution
kernel, the size is 3 × 3, and the stride is set to 1, as shown in
Fig. 4.

The calculation formula is as follows:

Iij = (|Iw ∗ SH |2 + |Iw ∗ SV |2)1/2 (8)

where Iw means the sliding window with the center of Iij , SH

and SV indicate the horizontal Sobel operator and vertical Sobel
operator in Fig. 4, respectively, and “∗” indicates for convolution
calculation.

Equation (8) shows that, in the convolution layer, the horizon-
tal and vertical texture information of the input image is used.
The main purpose of this step is to improve the contrast between
the target and the background and then highlight the target itself
and suppress the noise.

Fig. 5 presents a convolution result obtained by (8). It can be
seen that, after the convolution layer, the target information is
preserved and enhanced, and the background information, such
as trees, has been suppressed effectively.

In the pooling layer, the average pooling is chosen in this
paper, the filter size is 2 × 2, and the stride is 2. The principle
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Fig. 5. Convolution result obtained by (8). (a) Original SAR image. (b) Output
of the convolution layer.

Fig. 6. Average pooling.

of the average pooling layer is, according to a certain sliding
stride and size, calculating the average of a certain area and the
output of the pooling layer [20], as shown in Fig. 6.

This operation can be described by the following equation:

Mi,j = mean(Fi,j ). (9)

The main purpose of pooling is to reduce the processing
dimension of the images and decrease the operation time. For
example, in Fig. 6, the dimension of output only is one-fourth
of the input dimension.

2) Target Detection: After the feature extraction layer of CP-
CFAR, the width and height of the feature map will be half of
the original image, and the number of pixels to be processed in
the two-parameter CFAR will be only one-fourth of the original
one. In order to improve the accuracy of the detection results,
some subsequent processing steps have been added, such as
erosion and dilation operations and median filtering.

3) False Alarm Elimination: After CFAR detection, there
are always some false alarms. In this paper, according to the
basic size information of the targets, the morphological pro-
cessing method and median filtering are used to eliminate the
false alarms. The erosion and dilation operations can join the
separated target areas and isolate the different target areas. After
erosion and dilation, the median filtering is used to reduce the
isolated bright spots. Through the above operations, the false
alarm can be effectively eliminated, and the target can be com-
pletely preserved.

III. PARALLEL COMPUTATION OF THE CP-CFAR METHOD

From Fig. 3, it can be seen that the CP-CFAR can be di-
vided into several steps: convolution layer, pooling layer, two-
parameter CFAR, erosion, dilation, median filtering, and resize.
This section will describe the detailed GPU acceleration pro-
cess step by step. Meanwhile, because of the massive parallel
cores structure in GPU, CUDA has been widely used in gen-
eral computing in recent years. So, in this section, each step

Fig. 7. Schematic of the texture memory.

of the CP-CFAR method is parallel computing in the CUDA
architecture.

A. Parallel Computation of the Convolution Layer

The convolution layer operation requires successive convo-
lution operations on 3 × 3 pixels centered on each pixel. Since
each convolution operation is independent of each other, CUDA
can be used for parallel acceleration. A thread is created for each
pixel of the image, and the output of the pixel is calculated ac-
cording to (8). In [21], a parallel GPU implementation of an
edge detection method with a Sobel operator using CUDA en-
vironment is presented. However, the acceleration ratio cannot
meet real-time requirements. So, the texture memory is used for
acceleration.

Texture memory is cached on the chip, is read only, and has
caches, so it has relatively fast speed. So, in some cases, it can
reduce memory requests and provide higher memory bandwidth
[22]. Texture caches are designed for those graphics applications
that have a lot of spatial locality in memory access modes. In a
computational application, this means that a thread can read a
location that is “very close” to where the nearby thread reads,
as shown in Fig. 7.

There is tremendous memory locality in the memory access
mode during convolution layer computation, and this access
mode can be accelerated by texture memory. The data of the
input image are stored in texture memory. Combined with spe-
cific issues, the two-dimensional texture memory is used in this
paper.

The delay in accessing shared memory is much less than the
latency of accessing normal buffers, making shared memory as
efficient as the cache or intermediate result scratchpad for each
thread block [23]. Therefore, using shared memory can improve
program performance when data are reused. Through adding the
keyword of CUDA ‘ shared ’ before one variable declaration,
this variable will be left in the shared memory.

According to [24], data transfer between CPU and GPU is
time-consuming. Since the pooling layer also needs to be oper-
ated in the GPU, and in order to reduce the data transfer between
the host memory and the device memory, the operation is com-
pleted without the need to transfer data to host memory, and the
data are stored in device memory for the next step.

B. Parallel Computation of the Pooling Layer

The average pooling layer also needs to average the pix-
els in each adjacent 2 × 2 area in turn. Since each operation
is independent of each other, CUDA can be used for parallel
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acceleration by creating a thread for each 2 × 2 area to calcu-
late the mean value.

Similar to the convolution layer, pixels within each 2 × 2
area are adjacent and can be read using texture memory, and the
two-dimensional texture memory is also used.

Since the next operation is the two-parameter CFAR, the mean
and variance of the clutter ring need to be calculated. However,
the pixels of the clutter ring are not continuous, and it has more
time consumption when using CUDA operation, the operation
of taking out the pixels of clutter ring is executed on the CPU.
Therefore, it is necessary to copy the data to the host for the
next step.

C. Parallel Computation of the Two-Parameter CFAR

In the two-parameter CFAR method, the ROI needs to traverse
every pixel of the image. The same operation is performed when
each pixel is traversed, that is calculating the mean and variance
of the corresponding clutter ring, so these operations can be ac-
celerated using CUDA in parallel. Create a thread for each ROI
to calculate the mean and variance of the corresponding clutter
ring. For each ROI, the mean and variance of num pix pixels
of clutter ring need to be calculated. According to Section II,
num pix = 2 ∗ (2 + 2 ∗ (2 ∗ max(width, height) + 1)).

Due to the presence of the guard ring, the clutter ring of the
ROI at the edge of the image is incomplete if the image edge is
not expanded by pixels. Therefore, for an image with a width
of col and a height of row, it needs to be filled with pixels with
a pixel value of aver around it, where aver is the mean of the
original image. According to Section II, the image after filling
has a width of col + 2 ∗ max(width, height) + 2 and a height of
row + 2 ∗ max(width, height) + 2.

The pixels of the clutter ring are not continuous, so reading
the pixels of the clutter ring corresponding to each ROI requires
complicated logic. However, the GPU is most efficient when
all CUDA cores follow the same logic and computational path.
When cores processing different pixels diverge from each other,
each will execute sequentially. Therefore, if we use CUDA in
this step to operate, it will be more time consuming. The specific
operation is to use the CPU to sequentially read the pixels of the
clutter ring corresponding to each ROI into an array of length
col × row × num pix.

In addition, page-locked memory is a special form of memory
mapping that allows direct mapping of host memory to GPU
memory space. So, the high-speed global memory bandwidth
can be obtained by using cudaHostAlloc to allocate page-locked
memory.

According to the above, the procedure of two-parameter
CFAR acceleration based on CUDA is as follows.

1) Pixel fills around the image.
2) Use cudaHostAlloc to declare an array of length col ×

row × num pix.
3) Store the pixels of the clutter ring corresponding to the

col × row ROI sequentially in the declared page-locked
memory.

4) Each thread is responsible for calculating the mean and
variance of the pixels of the clutter ring corresponding to
an ROI.

5) Store the calculated mean and variance sequentially in an
array of length col × row.

6) Calculate the threshold T of each ROI according to (6).
7) According to (7), if IROI(x, y) > T (x, y), I(x, y) = 255,

else I(x, y) = 0.
After the above operation, a binary image can be obtained,

which contains the CFAR target detection results.

D. Parallel Computation of Erosion and Dilation

For the erosion and dilation operations, the processing of
each pixel is independent of each other, so CUDA can be used
for parallel acceleration. Dilation of the image is to replace the
current value with the maximum value around the pixel. Erosion
of the image is to replace the current value with the minimum
value around the pixel.

The dilation is implemented as

g(i, j) = Max{f(i − k, j − h)}, (k, h) ∈ W. (10)

The erosion is implemented as

g(i, j) = Min{f(i − k, j − h)}, (k, h) ∈ W. (11)

In [25], the erosion and dilation operations are implemented
in parallel on the GPU, and a very high speedup is achieved com-
pared to the CPU. (2 ∗ n + 1) × (2 ∗ n + 1) template is used in
the erosion and dilation operation. Similar to the convolution
layer operation, the erosion and dilation operations perform the
same operation for each pixel.

In order to avoid the currently processing pixels being dis-
turbed by the processed pixels, a new image with the same
size as the original image needs to be generated in the device
memory. After creating a thread for each pixel, the maximum or
minimum value of the surrounding pixels can be used to perform
parallel operations on the dilation and erosion of the image.

E. Parallel Computation of Median Filtering

After erosion and dilation, the median filtering is used to
reduce the isolated bright spots. Median filtering is a nonlinear
signal processing technique that can effectively suppress noise
based on sorting statistics theory. The basic principle of median
filtering is to replace the value of a point in a digital image or
digital sequence with the middle value of each point value in a
neighborhood of the point. The median filter is implemented as

g(i, j) = Med{f(i − k, j − m)}, (k,m) ∈ W (12)

where g(i, j) is the grayscale value of the output image, f(i, j)
is the grayscale value of the input image, and W is the template
window. The size of the template window is assumed to be
w × h, as shown in Fig. 8.

It can be seen that the median filter algorithm needs to sort
w × h elements. The sorting algorithm includes quick sorting,
bubble sorting, and merge sorting, and in the worst case, quick
sorting and bubble sorting require (w × h) × (w × h − 1)/2
times comparison operations; the two-way merge sorting algo-
rithm needs (w × h) × log(w × h) times comparisons.

In [26], the author proposes an acceleration algorithm that
requires at least (w × h) × 2 + w times comparisons to obtain
the median value. However, if (w × h) × 2 + w comparisons
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Fig. 8. Template window of median filtering with size w × h.

are needed for each pixel of the image, it still takes a long time
for calculating. Actually, the image of the CFAR detection result
is a binary image with only two gray values of 255 and 0; the
operation of finding the median value does not need to sort the
elements in the template.

In this paper, the median filter only needs to sum the ele-
ments in the template to find the median value. The specific
implementation is

g(i, j)=

{
0, Sum{f(i − k, j − m)} ≤ 255 × (w × h)/2
255, otherwise

.

(13)

Since the value of the w × h elements in the template window
can only be 255 or 0, as long as there are (w × h)/2 + 1 or
more elements with a value of 255, the median value will be
255. Using the above algorithm, only one summation is needed
to calculate the median value, which can greatly improve the
efficiency of the algorithm.

F. Parallel Computation of Resize

Since the width and height of the image after processing
become half of the original image, it is necessary to adjust the
size of the image to be the same as the original image. Bilinear
interpolation is a common method for image scaling, and it is a
linear interpolation extension of an interpolation function with
two variables. The core idea is to perform a linear interpolation
in both directions, respectively.

In [27], a graphic processing unit acceleration-based bilinear
interpolation parallel is proposed. The experiment results show
that the bilinear interpolation parallel algorithm can greatly im-
prove calculation speed. But, in [27], the output is not a binary
image. So, in the interpolation process, the bitwise OR operation
is used in this paper to obtain the binary output after resizing.

Fig. 9. (a)–(d) Synthesized airborne SAR images, with the background com-
plexity increasing gradually. (a) has the simplest background, and (d) has the
most complex background.

IV. EXPERIMENT ANALYSIS

The parallel computation of the CP-CFAR method has been
described in detail in the previous section. Based on the the-
ory of Section II, in this section, several sets of comparative
experiments are conducted to verify the detection performance
and GPU acceleration performance of the proposed CP-CFAR
method.

A. Implement Configuration

1) Hardware Configuration: The experiments are carried
out on an Intel Core i7- 7700 CPU with 16-GB main mem-
ory. The NVIDIA GeForce GTX 1080 Ti is characterized by
3584 CUDA Cores with 11-GB graphic memory. The operat-
ing system is Windows 10 64-bit, whereas the C/C++ Visual
Studio 2015 development environment is used to implement the
methods. The version of the CUDA Driver Runtime is 9.0.

2) SAR Data: The SAR images used in this paper come
from the public database of MSTAR. The sensor collecting this
dataset is a high-resolution beamforming SAR with a resolution
of 0.3 m × 0.3 m, X-band, and HH polarization mode [28].

The MSTAR dataset provides the slice images with targets
and the large-scale scenes images without targets. So, the SAR
images with targets of T72, BMP2, and BTR70 are synthesized
for the experiments. To verify the effectiveness of the method,
this paper selects the SAR images under four different back-
grounds, and with size of 1478 × 1784, as shown in Fig. 9.
Fig. 9(a) shows an image under simple background, and the
background complexity of Fig. 9(b)–(d) is increasing gradually.
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Fig. 10. Target detection results obtained by CP-CFAR. (a)–(d) is correspond-
ing with Fig. 9(a)–(d), respectively.

Fig. 11. Partial enlarged view in Fig. 10(a).

B. Target Detection Via CP-CFAR

In this section, the CP-CFAR detection performance on the
four images in Fig. 9 is illustrated, with setting the false alarm
probability Pfa to 0.0001.

1) Detection Performance: The target detection results of
CP-CFAR in Fig. 9 are shown in Fig. 10, and a partial enlarged
view of the target detection result in Fig. 10(a) is shown in
Fig. 11. It can be seen that the detected targets’ areas are very
similar with them in the original SAR images, which means that
the proposed CP-CFAR can remain the shape information while
accurately detecting the targets.

In order to show the quantitative detection results, the figure
of merit (FoM) is defined as [29]

FoM =
Ntest

(Nfa + Nreal)
(14)

where Ntest is the correct number of targets detected, Nfa is the
number of false alarm targets, and Nreal is the actual number of
targets. The FoM can effectively reflect the performance of the

TABLE I
FOM OF TARGET DETECTION USING CP-CFAR

TABLE II
TIME CONSUMPTION OF EACH STEP IN CP-CFAR (MS)

detection method. The larger the FoM, the better the detection
performance.

The quantitative detection results of CP-CFAR are shown in
Table I. It can be seen that, for the four airborne SAR images
in Fig. 9, the proposed CP-CFAR can obtain the excellent per-
formance, with all the targets being detected, and with no false
alarm.

2) Time Consumption Analysis: The detailed time consump-
tion of each step in CP-CFAR is shown in Table II.

It can be seen that the main time consumption comes from
the two-parameter CFAR, accounting for nearly 98%. The other
operations, like convolution, dilation, erosion, and median fil-
tering, only take 1 or 2 ms.

The results show that, although the proposed CP-CFAR
method adds operations before and after the two-parameter
CFAR, these additional operations do not take up much time.
On the contrary, these operations can significantly reduce
the amount of computation while improving the detection
performance.

C. Comparison of Different Methods

For further verification, the target detection performance in
Fig. 9 of three methods, CA-CFAR, two-parameter CFAR, and
CP-CFAR, is compared.

1) Detection Performance Comparison: For CA-CFAR, T
is set to 1.2. For the two-parameter CFAR and CP-CFAR, the
false alarm probability Pfa is set to 0.0001. The detection results
of the three methods on the four images in Fig. 9 are shown in
Fig. 12. The detection results are marked in the original images
with the minimum enclosing rectangle of the binary detection
results.

From Fig. 12(a), it can be seen that, for the images with sim-
ple background such as Fig. 9(a), the detection results obtained
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Fig. 12. Results of target detection using CA-CFAR, two-parameter CFAR, and CP-CFAR. The target detection results are marked with rectangular boxes in the
original images. (a) Target detection results of CA-CFAR. (b) Target detection results of two-parameter CFAR. (c) Target detection results of CP-CFAR.

by CA-CFAR are better, but for the images with complex back-
ground such as Fig. 9(d), the detection results have many false
alarms. It means that the CA-CFAR method cannot adapt to dif-
ferent backgrounds. In addition, different thresholds T need to
be determined according to different images, which shows the
unrobustness of the CA-CFAR and limits its further application.

Comparing Fig. 12(a) and (b), it can be seen that the per-
formance of the two-parameter CFAR is better than the CA-
CFAR. Especially for the fourth image, the two-parameter
CFAR can detect all the targets, and the number of false alarms
is less than that of the CA-CFAR. But, for Fig. 9(c) and (d),
the two-parameter CFAR cannot obtain the ideal performance,
which means that the complex background will affect the two-
parameter CFAR detection ability.

Comparing Fig. 12(a)–(c), it can be seen that the proposed
CP-CFAR can obtain the best performance in the all four images.
All the targets can be detected, and even if the images with the
most complex background, there is no false alarm. In addition,
from the human visual angle, the targets’ areas marked by the
rectangle boxes are more fit for the actual size of the targets.

The detailed detection performance is listed in Table III. It can
be seen that, for the images with sample background, all three
methods can obtain the accurate detection results. However,
with the increasing complexity of the background, the detection
performance of CA-CFAR and two-parameter CFAR decreases
gradually, while the performance of the proposed CP-CFAR
remains stable. Such as for Fig. 9(d), the FoM of CA-CFAR
is 52.4%, two-parameter CFAR is 80%, while the CP-CFAR is
100%.

Therefore, from the detection performance comparison, it can
be said that the proposed CP-CFAR is robust to different SAR
images and can obtain the best performance.

2) GPU Parallel Acceleration: For the target detection of
SAR images, besides the detection accuracy, the detection time
is also an important indicator.

For the above three methods, there are three ways of com-
puting: CPU serial computation, CPU multithread parallel com-
putation (CPU-MT), and GPU parallel computation. So, in this
part, the performance of three different methods via CPU se-
rial computation, CPU-MT, and GPU parallel computation is
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TABLE III
TARGET DETECTION PERFORMANCE COMPARISON BETWEEN

DIFFERENT METHODS

compared. The procedure of CPU multithreads parallel compu-
tation is like in [30] and [31], with eight cores and four threads
used in this paper.

The main comparison indicator is Speedup, which can be
defined as follows:

Speedup1 =
TCPU

TCPU−MT

Speedup2 =
TCPU

TGPU
(15)

where TCPU means the detection time consumption via CPU,
TCPU-MT means the detection time consumption via multithread
CPU, and TGPU means the detection time consumption via GPU.
It can be seen that the bigger the Speedup, the better the accel-
eration performance.

Table IV detailedly lists the time consumption of different
three methods via CPU, multithread CPU, and GPU on the four
images in Fig. 9, corresponding to the “CPU,” “CPU-MT,” and
“GPU” columns, respectively.

1) From the “CPU” column in Table IV, it can be seen that
the detection time of each method is more than 1 s. The
CA-CFAR can obtain the fastest detection performance,
CP-CFAR is the second, and the two-parameter CFAR
obtains the most time consumption. This is related to the
complexity of each method, and the CA-CFAR has the
lowest complexity.
Take two-parameter CFAR and CP-CFAR for comparison.
The CP-CFAR contains the two-parameter CFAR stage,
but before the two-parameter CFAR, there are convolution
operation and pooling operation, which can reduce the
processing dimension of the images. Therefore, the CP-
CFAR can obtain the lower time consumption.
However, it is worth noting that, although the CA-CFAR
can obtain lowest time consumption, its detection accu-
racy is also the lowest. The time consumption of the pro-
posed CP-CFAR is higher than the CA-CFAR, but the
detection accuracy obtained by CP-CFAR is the highest.

2) From the “CPU-MT” and “Speedup1” columns in
Table IV, it can be seen that, after the CPU multithreads,
the performance improvement of CA-CFAR is not very
obvious, and the “Speedup1” indicator is just a little more
than 1. However, the performance improvement of two-
parameter CFAR and CP-CFAR is obvious and can ob-
tain the speedup of 3.56–5.39× over their CPU modes.
It means that, compared with CPU serial processing, the
CPU multithread computation can indeed reduce the de-
tection time consumption.

3) From the “GPU” and “Speedup2” columns in Table IV,
it can be seen that, after the GPU acceleration, the per-
formance improvement of CA-CFAR is similar with its
CPU-MT mode, and the “Speedup2” indicator is also just
a little more than 1. By comparison, the performance im-
provement of two-parameter CFAR and CP-CFAR is very
obvious, and the “Speedup” indicator of both is more than
10, which means that the two-parameter CFAR and CP-
CFAR are more suit for being implemented on GPU.

4) Comparing “CPU-MT” and “GPU” columns, it can be
seen that, for the three methods, their CPU-MT modes
can improve the detection speed with varying degrees.
But compared to their GPU modes, the speedup degree is
still lower.
For the two-parameter CFAR, the process of calculating
variance is a floating-point operation, and the “Speedup2”
indicators can reach to 11.98. However, while detecting
the targets in SAR images, it still takes more than 1500 ms,
and it is still difficult to meet real-time requirements.
For the proposed CP-CFAR, the “Speedup2” indicator can
reach to 18.74, and the time consumption on four SAR
images via GPU is less than 192 ms, which can meet the
real-time processing requirements. So, in general, the pro-
posed CP-CFAR can obtain the best detection efficiency
while obtaining the best detection accuracy.

To further analyze the performance of the proposed CP-
CFAR, the two-parameter CFAR with 4-to-1 pooling is taken as
an extra comparison. Actually, the two-parameter CFAR with
pooling is just the same as the CP-CFAR but without the con-
volution operation. The detection results are shown in Table V.

From Table V, it can be seen that, in terms of both the detec-
tion time and detection accuracy, the proposed CP-CFAR can
obtain the better performance. It is worth noting that the two-
parameter CFAR with pooling has one step less but takes more
time consumption. The main reason is that the two-parameter
CFAR with pooling will produce more false alarms after CFAR
detection, so the time consumption of false alarm elimination via
morphological operations will increase significantly, resulting
in an increase of the overall time.

The comparison results also show that, although the proposed
CP-CFAR mainly reduces the input dimension through pooling
to improve the detection speed, if there is only pooling opera-
tion, it will lead to information loss and detection performance
reduction. Therefore, the CP-CFAR adds the convolution op-
eration before the pooling operation, in order to preserve the
target information via feature extraction, which can improve the
detection speed on the basis of high detection accuracy.
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TABLE IV
COMPARISON BETWEEN CPU, CPU MULTITHREADS AND GPU PARALLEL MODES OF CA-CFAR, TWO-PARAMETER CFAR, AND CP-CFAR

TABLE V
COMPARISON BETWEEN TWO-PARAMETER CFAR WITH 4-TO-1 POOLING AND

CP-CFAR

V. CONCLUSION

In this paper, an effective way to achieve the real-time SAR
target detection in airborne SAR images by combining CFAR
and convolution operation is proposed. In order to reduce the
computational complexity, the convolution layer and the pooling
layer are added before the two-parameter CFAR in the CP-
CFAR method, which can reduce the processing dimension of
the images without losing the main feature of original image.
In order to improve the detection accuracy, the test results were
subjected to erosion and dilation operations and median filtering
after CFAR detection. In order to improve the detection speed,
the GPU is used to accelerate the program in parallel.

The proposed CP-CFAR method can detect the targets in
SAR images with high accuracy and high speed. Compared with
the traditional CA-CFAR, two-parameter CFAR and their CPU,
multithread CPU, and GPU acceleration modes, the proposed
CP-CFAR with GPU acceleration can obtain the best detection
performance with the highest acceleration ratio and can meet
the requirements of real-time target detection.
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