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Detection of Asphalt Pavement Potholes and Cracks
Based on the Unmanned Aerial Vehicle

Multispectral Imagery
Yifan Pan , Xianfeng Zhang , Guido Cervone , and Liping Yang

Abstract—Asphalt roads are the basic component of a land
transportation system, and the quality of asphalt roads will de-
crease during the use stage because of the aging and deterioration
of the road surface. In the end, some road pavement distresses may
appear on the road surface, such as the most common potholes and
cracks. In order to improve the efficiency of pavement inspection,
currently some new forms of remote sensing data without
destructive effect on the pavement are widely used to detect the
pavement distresses, such as digital images, light detection and
ranging, and radar. Multispectral imagery presenting spatial
and spectral features of objects has been widely used in remote
sensing application. In our study, the multispectral pavement
images acquired by unmanned aerial vehicle (UAV) were used to
distinguish between the normal pavement and pavement damages
(e.g., cracks and potholes) using machine learning algorithms,
such as support vector machine, artificial neural network, and
random forest. Comparison of the performance between different
data types and models was conducted and is discussed in this
study, and indicates that a UAV remote sensing system offers a
new tool for monitoring asphalt road pavement condition, which
can be used as decision support for road maintenance practice.

Index Terms—Artificial neural network (ANN), asphalt roads,
multispectral imagery, pavement distress, random forest (RF), sup-
port vector machine (SVM), unmanned aerial vehicle (UAV).

I. INTRODUCTION

ROADS, as one of the most important infrastructures, play
a crucial role in supporting the development of an econ-

omy and human society. Therefore, it is imperative to maintain
roads in a good condition. The quality of road pavement directly
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determines the lifetime of one road segment [1]. Asphalt road
pavement is the most common road surface type in the road
system. However, due to the combined effect of aging and de-
terioration of the road surface, some types of distresses would
always appear on the pavement during the use of the road [2].
Potholes and cracks are the two most common categories of road
surface damages and have significant influences on the running
quality of vehicles [3]. Road condition inspection is the first
work the road department should do before road maintenance
and rehabilitation. However, nowadays, it is really a challeng-
ing work for the road management department to quickly obtain
the large-scale technical condition of asphalt road pavement be-
cause of the rapid growth of the mileage of the road networks,
especially the highway. According to the 2017 Statistical Com-
munique of China Transport and Logistic Development [4], the
total length of roads was about 4.77 million kilometers, and the
highway reached 0.13 million kilometers. Moreover, the length
of the roads that had been maintained and rehabilitated was up to
4.67 million kilometers, which accounted for 97.9% of the total
road length. Previously, field investigations and manual mea-
surements were the conventional methods to detect and assess
the pavement distresses. For example, the falling weight deflec-
tometer is used to check the road structure strength [5]. The
3-m ruler is used to measure the road roughness [6]. Pavement
friction measurements can be tested by lateral force pendulum
instrument [7]. Obviously, this kind of methods is time consum-
ing and labor intensive, most of which are even destructive to
the road surface meanwhile [8], [9].

Currently, with the support of computer and remote sens-
ing technologies, many forms of remote sensing data and ad-
vanced pattern recognition algorithms have been introduced into
the automated detection of pavement damages without doing
harm to the road pavement [10]–[15]. For instance, light de-
tection and ranging (LiDAR) technology can directly acquire
the elevation information of the deteriorated pavement to mea-
sure the geometric dimensions of the road pavement damages
[16], [17]. Ground penetrating radar utilizes radar pulses to im-
age the subsurface profile to detect subsurface objects, changes
in material properties, voids, and cracks [18]. Especially, in the
previous studies, the digital images or videos with only single
or RGB channels captured, based on the mobile vehicle, are the
most frequently used data type to automatically detect the pave-
ment damages [2], [19]. As for digital pavement images, image
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processing and machine learning algorithms are the two primary
methods to extract the surface defects [19]. Image processing
can be used to isolate the defects from the background and create
a binary image, such as histogram thresholding, morphological
algorithms (opening, closing, dilation, and erosion), wavelet,
and Fourier transformation [11], [20]–[23]. The identification
of pavement distresses is then interpreted from the binary im-
age [24]. For example, Georgopoulos detected the flexible pave-
ment cracks using the digital image processing tools [21]. Kim
utilized one simple unmanned aerial vehicle (UAV) system to
capture the pavement images and identified cracks based on the
image binarization method [20]. However, the automatic de-
tection of pavement distresses based on an image processing
method would become more complex and challenging for im-
ages with high variations of lighting and road surface texture
[25], [26]. With the development of artificial intelligence in re-
cent years, some machine learning algorithms were introduced
into the automatic pavement defects detection field, such as a
support vector machine (SVM) [27], [28], an artificial neural
network (ANN) [29], [30], and a random forest (RF) [31]. For
example, Xu segmented the pavement images into a number of
square tiles and then extracted four customized features of tiles
to train the BP neural networks to identify the crack tiles [30].
Mokhtaria first extracted the crack image objects using the mor-
phological image processing technique and then fed six features
including area, length, texture, intensity, location, and orienta-
tion to four classifiers (ANN, decision tree, K-nearest neighbors,
and adaptive neurofuzzy inference system) to identify the crack
damages [32]. An accurate and effective description of pavement
damages features is the key factor to ensure the accuracy and
reliability of machine learning algorithms to detect road surface
defects. The common digital images only have a single or three
RGB channels that can only provide limited spectral features
of pavement damages [24], [33], [34]. In the remote sensing
field, multispectral images (MSI) with wide wavelength cover-
age have been widely used to characterize the detailed spectral
features of the objects, which would further improve the clas-
sification accuracy [35]–[37]. Enlightened by this characteristic
of MSI, the multispectral pavement images were captured and
first attempted to detect the road surface damages in our study.

The vehicle integrated with some types of sophisticated and
heavy remote sensing devices is the commonly used platform
to collect the remote sensing data for pavement monitoring by
the majority of road departments, such as the pavement man-
agement system [11], [19]. However, the mobile vehicle has
some potential risks to the normal traffic order and pedestrian
safety. In addition, the camera mounted on the vehicle can only
capture one small portion of the road surface at a time. There-
fore, it is unable to obtain the full pavement of different lanes
simultaneously, and consequently most of the studies just only
focused on one kind of distresses (e.g., potholes or cracks) in
their research because of the small coverage of the road surface,
whereas one more type of damage could exist on the pavement
at the same time. In last ten years, UAV taking advantage of
carrying light-weight remote sensors and large spatial coverage
has been applied to some fields, for instance, topographic map-
ping, natural disaster surveying, precision agriculture, and traffic

Fig. 1. (a) Six-spreading-wings UAV. (b) MCA snap12 camera. (c) Full MCA
road image. (d) Sample MCA road image. (e) Spot photo of the study road.

monitoring [38]–[43]. To solve the above-mentioned problems
of current vehicle platform, the flexible UAV platform config-
ured with one multispectral imaging system was selected to
collect the road pavement image data in our experiment.

In our study, we proposed one new application procedure that
applied SVM, ANN, and RF classifiers to detect the asphalt
road surface cracks and potholes from the UAV multispectral
pavement images. The central objective and contribution of this
study is to investigate the feasibility of the proposed model,
and offer a new tool for monitoring asphalt road pavement
condition to improve the efficiency of road maintenance prac-
tice. This paper is organized as follows. After this introduction,
Section II will introduce the data and methods that include image
acquisition and processing, image segmentation, sample data
preparation, feature selection, and three classifiers introduction.
In Section III, practical experiment and results will be presented
to prove the feasibility of the proposed procedure and find out
the best model on detection of asphalt pavement damages. In
Section IV, the selectable spatial resolution of UAV pavement
images for detecting pavement damages and the importance of
every feature will be discussed. The conclusion is delivered in
the end.

II. DATA AND METHODS

A. Image Acquisition and Segmentation

The asphalt road segment is located in the rural farmland area
of Shihezi City, Xinjiang, China (see Fig. 1). This road was
built in 2006, and the east half-side of the road was repaved
in 2010. The total length of the road, we captured, was about
500 m. This road was mainly used to connect villages and for
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TABLE I
SPECIFICATIONS OF THE MINI-MCA12 CAMERA

Fig. 2. (a) GCPs landmark. (b) Huace LT600T Client.

crops transportation by tractors or heavy trucks. Based on the
field investigation, the pavement was in a worse condition with
a variety of severe potholes and cracks [see Fig. 1(e)]. The
field investigation shows that the mean width of cracks is about
2.8 cm, and the diameter of potholes is about 97 cm. A multi-
spectral camera microminiature multiple camera array system
(MCA) designed by Tetracam Inc., Chatsworth, GA, USA, was
mounted on a six-wing UAV [see Fig. 1(a) and (b)] to capture the
pavement images on July 29, 2017. MCA configures 12 bands
spanning from blue to near-infrared wavelength (450–1000 nm)
(see Table I). The flight task was conducted at noon without
clouds to avoid the shadow influence, and the wind speed was
less than 0.2 m/s, all of which guaranteed the safety and success
of the flight experiment. The UAV flied along with the road at
the height of 25 m above the ground level, and as a result one
image pixel corresponded to about 13.54∗13.54 mm2 area of the
road pavement. Two hundred one pavement image tiles were ac-
quired with 70% of overlapping between two sequential images.
The DN images were calibrated using a 100% reflectance white
board to produce the reflectance images. The Pix4D software
was used to mosaic all the image tiles into one full image [see
Fig. 1(c)]. Fourteen ground control points (GCPs) were set at
both sides of the road to rectify the geometric distortion of the
mosaic image [see Fig. 2(a)]. The Huace LT600T client inte-
grated with continuously operating reference stations was used
to measure the GPS location of GCPs within the error 0.05 m
[see Fig. 2(b)]. The road area was extracted manually by one
shape file using ArcGIS tools.

Given the high resolution of the UAV pavement images, mul-
tiresolution segmentation (MS) algorithm integrated in eCogni-
tion Developer software was adopted to conduct the segmen-
tation of the pavement images in a multiresolution manner.
MS identifies individual image objects of one pixel in size and
merges them with their neighbors based on relative homogeneity

criteria. This homogeneity criterion is a combination of spectral
and shape criteria that are calculated through a comprehensive
scale parameter. Higher values for the scale parameter result in
larger image objects and smaller values in smaller ones [44].

Consider that potholes and cracks are in different scales and
the pixel values of the pavement images in distress (e.g., pot-
holes and cracks) areas present bigger variation than those in
the nondistressed pavement. Therefore, one fixed scale param-
eter cannot segment the potholes, cracks, and normal pavement
correctly at the same time. In order to obtain intact and prac-
tical image objects, the segmentation will follow the following
procedure. First, one small-scale parameter is used to extract
the small and linear crack objects. Second, the contrast value
of every image object, calculated based on the gray-level co-
occurrence matrix (GLCM) [45], is selected as the threshold
to determine which small objects will be merged into one full
object. GLCM will also be used to extract other textural features
in feature selection (see Table II).

B. Sample Dataset Preparation and Feature Selection

Sufficient sample data are essentially necessary for training
and validating machine learning algorithms [32]. Three classes
were defined in our study, i.e., pothole, crack, and nondistressed
pavement. The nondistressed pavement includes a normal pave-
ment and yellow traffic lines. It can be observed from the com-
parison of two sequential images that the pixel value in the same
location has bias because of the illumination difference caused
by the different solar incident angle (see Fig. 3). Consequently,
this will lead to some degree of difference between the segmen-
tation results of the same target in the sequential images. In this
study, the same target in two of sequential images is seen as two
different objects, and they will be extracted based on the two
images, respectively.

Due to the fact that feature selection has a great influence
on the performance of learning algorithms, reasonable num-
bers and types of features are able to increase the accuracy of
algorithm while decreasing the computation time [46]. Gener-
ally speaking, three types of image features can be extracted
from digital imagery, i.e., spectral, geometric, and textural fea-
tures. In our study, based on the prior knowledge of feature
value distribution of every category of image objects, ten types
of features were extracted to train and validate the learning
algorithms (see Table III). Descriptions of every feature are
listed as follows.

1) Mean: The mean of pixel values in every band for every
image object. Generally, the mean of distressed area is
lower than nondistressed pavement area.
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TABLE II
FORMULA OF GLCM FEATURES

Note: i, j are the row and column number of GLCM, respectively. Pi , j is the value in the cell i, j. N is the number of rows or columns.

μJ =
∑ N −1

i = 0
∑ N −1

j = 0 jPi , j , σJ =
√∑ N −1

i = 0
∑ N −1

j = 0 Pi , j (j − μj )2 .

Fig. 3. Same targets in two sequential images. (a) Left. (b) Right.

TABLE III
FEATURES SELECTED TO RUN RANDOM FOREST

2) Standard deviation: (STD) The STD of pixel values for
every image object in every band. Because the internal
material of distressed area is exposed to the pavement, the
STD would be higher than that of nondistressed pavement
objects.

3) Area: The area of image object is calculated based on the
spatial resolution and pixel numbers. Generally, the size
of four classes follows this sequence: Normal pavement
>Pothole> Traffic line>Crack.

4) Length/width: The ratio of length to width of one image
object. Obviously, the length/width of a crack is higher
than other classes.

5) Elliptic fit: The feature is used to evaluate the similarity
between an image object and ellipse. Potholes are more
similar to ellipse; as a result, the value will be higher than
other classes.

6) Roundness: The feature is used to evaluate the similarity
between an image object and a circle. Some potholes are
also similar to the circle.

Contrast, homogeneity, dissimilarity, and correlation features
are calculated based on the GLCM to evaluate the value variation

inside the image object. Nondistressed pavement objects have
lower variation than damage areas (see Table II).

Furthermore, considering the different value distribution of
every feature, feature normalization was implemented based on

XNorm =
X − Xmin

Xmax − Xmin
(1)

where XNorm is the normalized feature vector. Xmax and Xmin
are the maximum and minimum values of the feature X, respec-
tively. All features are in the same range from 0 to 1, which could
speed up the convergence efficiency of learning algorithms.

C. Support Vector Machine

An SVM is a classification system derived from statistical
learning theory. It separates the classes with a decision surface
that maximizes the margin between the classes [27]. The surface
is often called the optimal hyperplane, and the data points clos-
est to the hyperplane are called support vectors. The support
vectors are the critical elements of the training set. An SVM
is one of the nonprobabilistic binary classifiers to assign new
examples to one category or the other [28]. It means that one
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SVM can only solve the two-class problems. An SVM can also
perform the multiclass problems by combining several binary
SVM classifiers together, based on the logic classification proce-
dure of one-versus-one or one-versus-all. One special feature of
an SVM is the kernel function, which is introduced to deal with
nonlinear classification problems. The kernel function can map
the original examples into a high-dimensional feature space, in
which the nonlinear classification problem will become the lin-
ear case. There are several types of kernel model with different
performance for different applications, such as linear kernel,
polynomial kernel, Gaussian kernel, etc. In our study, the per-
formance of four types of kernel models on the detection of
potholes and cracks were evaluated, i.e., linear, quadratic, cu-
bic, and Gaussian.

D. Artificial Neural Network

An ANN mimics the way human brain solves problems with
a large number of neurons [29], [30]. An ANN is composed,
typically, of three kinds of layers, i.e., the input layer, the hidden
layer, and the output layer. Every layer comprises a certain
number of nodes, similar to the neurons in the brain. The number
of nodes in the input layer is determined by the number of
features in the example data, whereas the number of output
classes decides the number of nodes in the output layer. The
number of hidden layers and associated nodes could vary for
different applications. Moreover, every node corresponds to a
kind of activation function that defines the output of that node
given a set of inputs. Sigmoid, Softmax, and rectified linear unit
are commonly used in an ANN. Which of them should be used
depends on the objective of the application. Back propagation
is a widely used training procedure for an ANN to adjust the
weights and bias between the nodes. In our study, a three-layer
feed-forward network with one input layer, one Sigmoid hidden
layer, and one Softmax output layer was constructed to classify
the potholes and cracks. The network will be trained with the
conjugate gradient method to minimize the difference between
the output node activation and the output. In order to find out the
appropriate number of nodes in the hidden layer for pavement
distress detection, a series of numbers from 1 to 15 was evaluated
one by one.

E. Random Forest

RF is a member of ensemble learning algorithms, which com-
bines a certain number of decision tree classifiers together as a
forest to predict the class of new examples [47]. Every tree in
the forest is trained with a subset training sample set, which is
resampled from the original training dataset. The resampling is
implemented with replacement and follows the bootstrap sam-
pling procedure, i.e., the number of subset examples is same as
the original examples. In addition to the resampling of training
samples for every tree, the features used to find the best split
at each node of tree are resampled from the original feature set
as well. The class of new sample is predicted by every tree in
forest, and is assigned based on a majority vote of them. The
bootstrap and feature resampling tactics strengthen the robust

and generalization of RF compared with other machine learning
algorithms, ANN, KNN, etc. Moreover, RF can also generate
the importance of every feature based on the resampling strat-
egy [48]. Based on the prior knowledge of previous work [31],
an RF classifier was selected to detect the potholes and cracks
from the UAV MSI in this study and to estimate the contribution
of every feature on this application. The number of trees has a
significant effect on the accuracy and computation time of RF.
In this study, a series of tree number will be set to evaluate what
size of forest will perform best on the pavement distress detec-
tion. The RF classification accuracy will be validated using the
out-of-bag (OOB) error [47].

The above-mentioned three machine learning algorithms
would run on a PC configured with Core i7-6700HQ CPU@
2.6 GHz, Nvidia Quadro M1000M GPU, and 16 GB RAM. The
running time was also recorded to be as one of the important
indicators of the algorithm performance.

III. EXPERIMENTS AND RESULTS

To evaluate the advantage of UAV MSI in the detection of road
pavement damages, all the images acquired by the UAV remote
sensing system in the suburb of Shihezi City were divided into
two subdatasets: One only includes the RGB channels (Band5,
Band3, and Band1) of every image as the common digital image
(RGB images); and the other one includes all the 12 image
bands (Band1–Band12) to represent the MSI Two subdatasets
will be used to extract the pavement damages, respectively. The
flowchart of our experiment is illustrated in Fig. 4.

A. Two-Step Image Segmentation

As mentioned in Section II-A, it is difficult to choose one ap-
propriate scale parameter to extract intact potholes and cracks
simultaneously. For instance, the pavement image in Fig. 5(a)
contains one crack and one pothole. Fig. 5(b) and (c) shows the
segmentation results by the scale parameter in eCognition appli-
cation 50 and 150, respectively. It can be seen that smaller values
for scale parameter will partition one whole pothole into sev-
eral small image objects because of the heterogeneous material
inside the pothole, whereas larger scale parameters will result
in missing of some small cracks. Following the procedure in
Section II-A, the GLCM contrast value was chosen to measure
the variations within the distress area and the nondistressed area
in this study. Fig. 5(d) shows the contrast values of every image
object. Obviously, the contrast values of the distress area (e.g.,
pothole and cracks) are significantly higher than the nondis-
tressed pavement. Hence, in order to obtain an intact pothole
object, a merge operation was conducted based on the contrast
values of objects over the initial segmentation result from the
smaller scale parameter. All image objects, the contrast value
of which exceed the given threshold of 0.58, will be merged
into one image object. As Fig. 5(f) shows, the pothole became
one intact object after a merge operation while the crack object
remains unchanged. The RGB and MSI would all be segmented
following this two-step segmentation procedure.
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Fig. 4. Flowchart of the experiment of pavement damages detection.

Fig. 5. (a) Original image. (b) Segmentation with a scale parameter 50. (c) Segmentation with a scale parameter 150. (d) Contrast values of image objects.
(e) Merge of image object based on the contrast. (f) Improved segmentation.

B. Performance of SVM, ANN, and RF

Based on the rules in Section II-B, the sample data for train-
ing and validating were extracted, and total 1760 pieces of sam-
ple image objects containing 538 potholes, 753 cracks, and
469 nondistressed pavements (305 damage-free pavement and
164 yellow traffic lines) were collected from the UAV images
finally (see Fig. 6). The total feature types of RGB and MSI
are 14 and 32, respectively, because of the different number
of bands (6 spectral features for RGB images and 24 spectral

features for MSI). In order to verify the performance of each
type of features toward the detection of potholes and cracks,
seven combinations of three kinds of features were individually
used to produce seven classification experiments, i.e., spectral
features (C1), geometrical features (C2), textural features (C3),
spectral features and geometrical features (C4), spectral fea-
tures and textural features (C5), geometric features and textural
features (C6), and spectral, geometrical features, and textural
features (C7).

Fig. 7 indicates the performance of an SVM configured
with different types of kernel functions and seven feature
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Fig. 6. Sample objects of (a) potholes, (b) cracks, (c) yellow traffic line, and (d) normal pavement.

Fig. 7. (a) Classification accuracy and (b) running time of SVM algorithms
over four types of kernel functions and seven feature combinations. The curves
in red represent the result of the RGB images and the curves in green indicate
the performance of the MSI.

combinations. Fig. 7(a) shows that the SVM with linear ker-
nel presented lower classification accuracy when it is trained
and validated only using either spectral features or geometry
features individually. Along with introducing texture features

or more types of features, the four kinds of SVM models (lin-
ear, quadratic, cubic, and Gaussian) almost performed similarly
on feature combination C3, C4, C5, C6, and C7, and the highest
accuracy was achieved by using three types of features together,
i.e., C7. It can also be concluded that the accuracies derived from
MSI are generally higher than from RGB images. Fig. 7(b) indi-
cates the running time of different SVM models. It can be seen
that the SVM with polynomial kernels (quadratic and cubic)
cost most time on the feature sets of C1, C2, and C3. For C4,
C5, C6, and C7, all types of SVM models performed similarly
on the running time. It is interesting that the SVM models with
linear and Gaussian kernel took almost the same time on each
of six feature combinations. Considering the as higher accuracy
as possible and relative less running time, Fig. 7 shows that
the SVM model configured with linear kernel and the feature
combination C7 could achieve the highest classification accu-
racy of 98.78% while cost the least running time of 0.63 s from
the MSI.

Fig. 8 shows the variation of classification accuracy and run-
ning time of an ANN with respect to different numbers of neu-
rons in the hidden layer. Specifically, when the number of hidden
neurons was set to one, it means that only one abstract feature
in hidden layer was used to classify the objects, which was not
sufficient to distinguish between the pavement and distresses
(cracks and potholes). Moreover, it took the most time to train
and validate an ANN in this case. With increasing the number
of hidden neurons, the classification accuracy could benefit a
lot from the more abstract features learned by the ANN, and
the running time decreased generally [see Fig. 8(b)]. Fig. 8(a)
shows that the ANN models with more than one type of fea-
tures (C4, C5, C6, and C7) and two more hidden neurons could
always result in a higher accuracy. It also can be observed that
when the number of hidden neurons was set over two, the classi-
fication accuracy did not change so much. Moreover, it can also
be concluded that the accuracies derived from MSI are gener-
ally higher than RGB images. Taking in account the running
time and accuracy together, the ANN with four hidden neurons
and feature combination C4 was the best model to classify the
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Fig. 8. (a) Classification accuracy and (b) running time of ANN algorithms
over a series of numbers of hidden neurons and seven feature combinations. The
curves in red represent the result of the RGB images and the curves in green
indicate the performance of the MSI.

pavement and distresses with the overall accuracy 98.46% and
the corresponding running time was 0.21 s, which is also based
on the MSI.

Appropriate number of decision trees in the forest greatly
contributes to the accuracy and efficiency of RF classification.
As a result, we selected a series of numbers of trees to optimize
the best forest size for pavement damages detection. The per-
formance of RF with different number of trees in the forest and
two types of images is shown in Fig. 9(a). Obviously, the ac-
curacy of RF classification maintained increases along with the
growth of quantity of trees till a flat trend. The feature combina-
tions with one more type of features (i.e., C4, C5, C6, and C7)
always achieved better classification. Spatial features, namely
geometry and texture, played a crucial role in improving the
classification. Compared with the RGB images, the RF classifi-
cation of the multispectral pavement images has higher accuracy
when using the same feature combinations. The running time of
RF algorithms for different number of trees and the two types of
images is illustrated in Fig. 9(b), which has demonstrated that
the more trees were used in the forest and the longer time would
be spent in the experiment. Because MSI contain more spectral
features, longer running time was also consumed. Nevertheless,

Fig. 9. (a) Classification accuracy and (b) running time of RF algorithms over
a series of numbers of trees and seven feature combinations. The curves in red
represent the result of the RGB images and the curves in green indicate the
performance of the MSI.

TABLE IV
CLASSIFICATION ACCURACY AND RUNNING TIME OF SVM, ANN,

AND RF CLASSIFIERS

the difference of running time between the RGB and MSI is rel-
atively small (<0.02 s). Considering the accuracy and running
time together, the best model should get the highest classifica-
tion accuracy and consume relatively less running time. As a
result, the MSI are selected because of the better performance
than RGB images (see Fig. 9). Moreover, the best size of forest
is 18 trees with all three types of features (RF18-C7), which can
achieve the highest accuracy (98.83%) with minimum running
time (0.09 s) (see Table IV).

In a brief summary, among the three models, the RF18-
C7 could get the best performance together with the high-
est classification accuracy and least running time for the de-
tection of the pavement distresses (see Table IV). Table V
presents the confusion matrix of the classification using the
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TABLE V
CONFUSION MATRIX OF RF18-C7

Note: OA—Overall accuracy.

Fig. 10. Classification result of a sample road segment using the RF18-C7
model.

RF18-C7 model and multispectral pavement images, and
the overall accuracy of 98.3% was achieved. The accu-
racy (also known as producer’s accuracy) presents the accu-
racy of the classification, which is the fraction of correctly
classified image objects with regard to all image objects of that
ground truth class. The reliability (also known as user’s accu-
racy) presents the reliability of classes in the classified image,
which is the fraction of correctly classified image objects with
regard to all image objects classified as this class in the classi-
fied image. The classification result of one sample road based
on the RF18-C7 model is illustrated in Fig. 10. It can be seen
that most of the potholes and cracks were classified correctly,

TABLE VI
STATISTICS OF THE NUMBER AND AREA OF POTHOLES AND CRACKS IN THE

STUDY ROAD

but some locations of the pavement were polluted by oil spills or
artificial traffic symbols so that they were unable to be classified
using the RF model. Based on the classification result, the total
number and area of cracks and potholes can be calculated (see
Table VI).

IV. DISCUSSION

The incorporation of spectral, geometrical, and textural fea-
tures extracted from the UAV MSI into the random forest classi-
fication can produce better delineation of the potholes and cracks
from the regular pavement on the UAV images. However, the
algorithm is still sensitive to the spatial resolution of the UAV
images, thus we will discuss about the impact of UAV image
spatial resolution and feature importance on the classification.

A. Selectable Resolution of Pavement Images

The setting of UAV flight altitude can change the spatial reso-
lution of pavement images acquired during the fly. Higher spatial
resolution can provide rich features of road pavement objects,
especially the spatial and textural features. However, higher spa-
tial resolution also mean that the large storage memory should
be used to store the volume data, and lower flight altitude has a
degree of potential risk to the public traffic and people. Consid-
ering above-mentioned problems, appropriate spatial resolution
should be determined prior to the flight task. In this experi-
ment, the multispectral pavement images were resampled to a
series of images with different spatial pixel sizes. Following the
methods mentioned in Section II, these images were segmented
into image objects first, and then the features of every object
were calculated. The optimized model RF18-C7 was applied to
classify the potholes, cracks, and nondistressed pavements (see
Fig. 11). The test samples were collected in advance to evaluate
the classification accuracy.

The classification accuracies using a series of multispectral
pavement images with different resampled pixel sizes are shown
in Fig. 12. It can be seen that the classification accuracy generally
decreased while reducing the spatial resolution or pixel size.
Due to the fact, the mean width of cracks is only 2.8 cm in our
experiment, coarser image pixel size would lead to that some
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Fig. 11. Flowchart of evaluation of pavement image spatial resolutions.

Fig. 12. Classification accuracy of MSI of pavement with different spatial
resolutions and the number of missed cracks.

cracks could not be segmented successfully when the resolution
exceeded the minimum scale of the cracks, and consequently
they would be missed finally in the classification. It is also
can be seen in Fig. 12 that the number of missed cracks would
increase when the pixel size was over about 3 cm. Therefore, the
appropriate spatial resolution should not exceed the minimum
scale of pavement objects, which requires that sufficient field
works should be conducted before the flight task.

B. Feature Importance Evaluation

One of the main aims in this study is to determine appropri-
ate feature set for detecting asphalt potholes and cracks. Three
types of features were introduced in the RF classification in this
study, and generated the relative importance of every feature. In
the RF framework, the most widely used score of importance of
a given feature is the increase in mean of the error of a tree in the
forest when the observed values of this variable are randomly
permuted in the OOB samples. The larger this score is, the more
important the feature is. In Fig. 13, the importance value of
the three types of features is presented. It can be seen that the
geometrical and textural features played an important role in
the application, especially the homogeneity and length\width

Fig. 13. Out-of-bag feature importance of three types of features (Red: Ge-
ometry, Green: Texture, Blue: Spectral-Mean, and Yellow: Spectral-STD).

Fig. 14. Mean spectra of object of pavement, potholes, cracks, and traffic
lines.

features. Obviously, some small pebbles and other material al-
ways filled potholes and cracks, which result in high variation
inside the pothole and crack image objects. The importance of
standard deviation is almost same because it is also a measure-
ment of pixel value variation. For the spectral mean feature, the
bands centered at the wavelength of 570 nm and 900 nm made
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a great contribution to the detection of potholes and cracks.
Combining with the detailed spectra of the pavement objects
(see Fig. 14), it indicated that the reflectance of potholes and
cracks was lower than nondistressed pavement and traffic line in
the band wavelengths. The band reflectance centered at 570 nm
and 900 nm has great difference between pothole, cracks, pave-
ment, and traffic line, which is helpful to distinguish between
them from each other.

V. CONCLUSION

This study presents an approach for the detection of asphalt
road pavement distresses from UAV MSI using SVM, artificial
neural networks, and RF learning algorithms. The case study in
the suburb of Shihezi City indicated that spatial features (i.e.,
texture and geometry) contributed much more to the accuracy of
the cracks and potholes detection than the spectral ones for both
RGB and 12-band MSI. The three types of features extracted
from the UAV MSI can achieve best classification and less run-
ning time if using an 18-tree RF classifier. The overall accuracy
of the classification of cracks, potholes, and nondistressed pave-
ments is 98.3% with the UAV MSI. In addition to the feature set
and classifier, the spatial resolution of pavement imagery is also
a decisive factor for the performance of the RF classifier. The
comparison study of the simulated multiple resolution imagery
showed that the spatial resolution should not exceed the mini-
mum scale of pavement distress objects; otherwise some small
damages (i.e., cracks) may be missed even in the segmentation
procedure. In conclusion, the flexible UAV platform configured
with multispectral remote sensors provide a valuable tool for
the monitoring of asphalt pavement condition.

In future work, more UAV pavement images of different road
areas and segments could be used to further evaluate the per-
formance of these models and parameters on the detection of
potholes and cracks. Because of the spatial resolution limitation,
the UAV pavement images used in the paper still cannot capture
the cracks that width are less than 13.54 mm. Therefore, higher
resolution pavement images should be obtained to further in-
crease the accuracy of pavement condition evaluation. In this
paper, we just focus on the two common asphalt pavement dam-
ages, potholes and cracks. The next work will consider more
types of road surfaces and pavement damages, such as cement
road, gravel road, rutting, and road roughness. Other remote
sensing data including LiDAR and radar by UAV also have a
great potential on the pavement condition monitoring. For ex-
ample, LiDAR can directly acquire the elevation information of
the road surface. By means of it, the depth of potholes, cracks,
and ruttings can be characterized directly by the LiDAR data.
Additionally, other advanced learning algorithms could also be
introduced into the pavement distresses detection, such as con-
volutional neural networks. Moreover, the integrated software
and algorithms by individual coding could be used to speed up
the detection of pavement distresses in the future.
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