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Abstract—With the objective of exploiting hardware capabilities
and preparing the ground for the next-generation X-band synthetic
aperture radar (SAR) missions, TerraSAR-X and TanDEM-X are
now able to operate in staring spotlight mode, which is character-
ized by an increased azimuth resolution of approximately 0.24 m
compared with 1.1 m of the conventional sliding spotlight mode. In
this paper, we demonstrate for the first time its potential for SAR
tomography (TomoSAR). To this end, we tailored our interfero-
metric and tomographic processors for the distinctive features of
the staring spotlight mode, which will be analyzed accordingly. By
means of its higher spatial resolution, the staring spotlight mode
will not only lead to a denser point cloud but also to more accu-
rate height estimates due to the higher signal-to-clutter ratio. As a
result of a first comparison between sliding and staring spotlight
TomoSAR, first, the density of the staring spotlight point cloud
is approximately 5.1–5.5 times as high; and, second, the relative
height accuracy of the staring spotlight point cloud is approxi-
mately 1.7 times as high.

Index Terms—SAR tomography (TomoSAR), staring spotlight,
synthetic aperture radar (SAR), TerraSAR-X.

I. INTRODUCTION

T ERRASAR-X and TanDEM-X, the twin German satellites
of an almost identical build, have been delivering high-

resolution X-band synthetic aperture radar (SAR) images since
their launch in 2007 and 2010, respectively. Among civil SAR
satellites, their unprecedented high spatial resolution in meter
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range and relatively short revisit time of 11 days opened up new
applications of spaceborne SAR interferometry (InSAR). As a
benchmark of medium-resolution spaceborne SAR sensors, a
resolution cell in an ENVISAT ASAR stripmap product of the
size 6× 9 m2 (azimuth-by-range) is resolved by approximately
5× 15 pixels in a high-resolution sliding spotlight image of
TerraSAR-X with 300-MHz range bandwidth [1]. Particularly
in urban areas, this meter-level resolution provides the possi-
bility of revealing detailed information in terms of the geolo-
cation and motion of single man-made objects. Adaptations of
advanced time-series analysis methods, such as persistent scat-
terer interferometry (PSI) and SAR tomography (TomoSAR),
to sliding spotlight datasets showed promising results (see, for
example, [2]–[5]).

In order to fully exploit the capabilities of TerraSAR-X1 and
to prepare for the next-generation X-band SAR satellite mis-
sions, e.g., HRWS [6], the TerraSAR-X staring spotlight mode
was conceptualized and consequently operationalized [7], [8].
Compared with the high-resolution sliding spotlight mode, the
SAR sensor in staring spotlight mode employs a larger squint
angle range to achieve a better azimuth resolution of approxi-
mately 0.24 m. As a result, the same ENVISAT ASAR stripmap
pixel, as mentioned in the previous paragraph, is represented
by 25× 15 pixels in a staring spotlight image. The advantages
of increased (azimuth) resolution for urban areas are at least
two-fold.

1) It is more likely for pointlike targets with similar azimuth–
range coordinates to appear in different resolution cells,
thus densifying the four-dimensional (4-D) point cloud.

2) Pointlike targets stand out more prominently from a clut-
ter, which leads to higher signal-to-clutter ratio (SCR).

These factors favor PSI and TomoSAR in different ways.
While the former increases the amount of information of par-
ticularly single man-made objects, the latter provides a better
lower bound on the variance of height estimates [9].

Although it seems encouraging to adapt and apply TomoSAR
to staring spotlight datasets, yet, to the best of our knowledge,
there has not been any published result. A lack of datasets could
be one reason. On the other hand, several considerations re-
garding staring spotlight mode need to be taken into account
during InSAR processing, which might also hinder such an ap-
plication. Through this paper, we intend to show that staring

1In the following, TerraSAR-X is referred to as the monostatic constellation
of TerraSAR-X and TanDEM-X, i.e., the SAR instrument is activated on either
TerraSAR-X or TanDEM-X but not both.
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Fig. 1. TerraSAR-X sliding (left) and staring (right) spotlight imaging ge-
ometries. Modified from [1].

spotlight datasets are indeed suitable for TomoSAR. Based on a
sufficient number of acquisitions, our first results on the scales
of a city and of individual infrastructures are demonstrated to
provide an argument in favor of this statement. We also perform
a preliminary comparison between sliding and staring spotlight
TomoSAR by using a limited number of datasets in both modes.

The remainder of this paper is organized as follows.
Section II explains the TerraSAR-X staring spotlight mode and
its related InSAR processing aspects. The principles of To-
moSAR are briefly revisited in Section III, where several tech-
nical adaptations are elucidated as well. Section IV comprises
our first results with an interferometric stack of Washington,
DC, USA, and some interpretations thereof. In Section V, a pre-
liminary comparison of sliding and staring spotlight TomoSAR
is made based on a small number of images. Conclusions are
drawn and future work is proposed in Section VI. The Appendix
clarifies the structure of the TerraSAR-X annotation component
containing a 3× 3 grid of Doppler centroid in focused image
time, which could be used to avoid complex time conversions.

II. TERRASAR-X STARING SPOTLIGHT INTERFEROMETRY

In the spotlight mode, the SAR sensor steers the azimuth
beam forth and back in order to increase the illumination (or
aperture) time tAP of a target, as illustrated in Fig. 1. As a side
effect, the Doppler centroid frequency undergoes a negative drift
in azimuth time taz of the raw data (see Fig. 2). The beam sweep
rate is a tradeoff between the azimuth resolution and spatial
extent. In the TerraSAR-X sliding spotlight mode, the azimuth
beam is swept at a moderate rate with a squint angle range of up
to ±0.75◦ [10], while in the staring spotlight mode the azimuth
beam is steered exactly towards a reference ground target as
the satellite proceeds. In other words, the beam sweep rate is
configured to match the frequency modulation (FM) rate of the
reference target, which enables a longer azimuth illumination
time. To be more specific, the acquisition squint angle range is
restricted to approximately ±2.2◦ due to the antenna azimuth
grating lobe [7]. As a consequence, tAP is, in the ideal case,
equal to the azimuth time span of the raw data Δtraw. This
leads to a maximized azimuth resolution, which is limited by
the product of tAP and the FM rate [1]. This improved azimuth
resolution comes, however, at the expense of a reduced azimuth

Fig. 2. Time-variant Doppler spectra of SAR raw data (//) with time span
Δtraw and of focused image (shaded) with time span Δtimage in the sliding (top,
modified from [1]) and staring (bottom) spotlight modes. Bold line segments
denote the targets at the start and stop azimuth time (taz) in the focused image,
respectively. Both targets are illuminated with time tAP and their zero-crossings
define Δtimage. In the staring spotlight mode, tAP is set to equal Δtraw in order
to increase the azimuth resolution, which comes at the expense of a significantly
shorter Δtimage.

scene extent, i.e., the azimuth time span of a focused image
Δtimage in the staring spotlight mode is significantly shorter.
Naturally, the intrinsic range bandwidth imposes a ceiling on
the slant range resolution, which is normally solely enhanced by
a hardware upgrade. Table I lists, as an example, the parameters
of a TerraSAR-X staring spotlight acquisition of Washington,
DC.

Due to the longer integration time of approximately 7 s in the
TerraSAR-X staring spotlight mode, several challenges arise in
SAR processing [8], such as the following.

1) The stop-and-go approximation becomes invalid, i.e.,
satellite movement between transmitting and receiving
the chirp signal can no longer be neglected.
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TABLE I
EXEMPLARY PARAMETERS OF A TERRASAR-X STARING SPOTLIGHT

ACQUISITION OF WASHINGTON, DC (VALUES ARE ROUNDED)

2) The satellite’s trajectory deviates significantly from a lin-
ear track, i.e., an orbit curvature needs to be taken into
account.

3) The tropospheric delay could vary significantly within
the large squint angle span and, therefore, needs to be
corrected.

All of these effects are considerately accounted for in a re-
vised version of the TerraSAR-X multimode SAR processor
[11], [12].

InSAR processing, on the other hand, requires merely few
adaptations. As in the sliding spotlight mode, the master and
slave images are co-registered (resampled) on the basis of point-
like scatterers in order to generate a coherent interferogram [1].
A requirement is the knowledge of the Doppler centroid fre-
quency fDC as a function of the focused image time timage. Since
fDC is annotated as a (first-order) polynomial of the raw data
time traw in the TerraSAR-X products, it is suggested in [1]
and [13] to perform a time conversion for the sliding spotlight
datasets via the following:

timage = traw − fDC(traw)
FM

. (1)

This relation, however, does not hold for the staring spotlight
mode, in which the FM rate equals the beam sweep rate, i.e., a
target is visible throughout the whole raw data duration. In order
to circumvent this problem, a 3× 3 grid containing the fDC in
timage is provided as a TerraSAR-X annotation component [13].
Its structure is described in the Appendix of this paper. This grid
could be interpolated in order to derive the fDC at every point
of the focused image, which allows considering second-order
variations of the fDC along a range.

As an example, Fig. 3 shows a differential interferogram of
Washington, DC, with an effective baseline of approximately
−71 m. The master and slave scenes were acquired on October
31, 2015 and October 9, 2015, respectively, and processed with

Fig. 3. Staring spotlight differential interferogram of Washington, DC, with a
spatial perpendicular baseline of approximately−71 m and a temporal baseline
of −22 days.

Fig. 4. Zoomed-in view of Fig. 3 on the Theodore Roosevelt Bridge (lower-
left).

the integrated wide area processor (IWAP) [14], [15]. A low-pass
filtered digital elevation model (DEM) with a spatial resolution
of 1 arcsecond from the Shuttle Radar Topography Mission was
used. The differential phase consists primarily of a topographic
phase that is related to the residual height. As can be seen
in Fig. 4, the Theodore Roosevelt Bridge shown in the lower
left corner of Fig. 3 is subject to a spatially correlated motion,
presumably due to thermal dilation and contraction between
piers caused by a periodical temperature change.

Section III briefly revisits the principles of TomoSAR and
elucidates the processing chain, which was employed to produce
the results in Sections IV and V.
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Fig. 5. Layover phenomenon in side-looking SAR imaging. x, r, and s rep-
resent the azimuth, range, and elevation axes, respectively, that form a local
3-D Cartesian coordinate system. An elevation aperture Δb is built by means of
repeat–pass measurements to resolve multiple scatterers in the far-field toroid
segment with elevation extent Δs.

III. TOMOSAR PRINCIPLES

Due to the common side-looking geometry of spaceborne
SAR sensors, echoes of the chirp signal from equidistant tar-
gets within an elevation extent Δs in the far-field sum to give
one measurement for each azimuth–range pixel in the focused
image, as illustrated in Fig. 5. The three-dimensional (3-D)
azimuth–range–elevation (x–r–s) reflectivity profile is, thus,
embedded as two-dimensional (2-D), i.e., information regard-
ing the elevation is encoded during imaging. TomoSAR is a
technique to reconstruct the elevation axis from multibaseline
measurements [16]–[18]. For a spaceborne SAR, this multibase-
line configuration is usually achieved by repeat–pass measure-
ments (depicted as semitransparent satellite models in Fig. 5),
in which the scatterers’ motion in the course of time often needs
to be taken into account. A well-established theory models the
complex InSAR measurement gn of a specific pixel in the nth
interferogram as the integration of a phase-modulated elevation-
dependent complex reflectivity profile γ(s) over Δs [19]–[21],
given by

gn ≈
∫

Δs

γ(s) exp
(− i 2π(ξns + 2d(s, tn )/λ)

)
ds (2)

where ξn := 2bn/(λr) is the elevation frequency that is propor-
tional to the effective baseline bn (λ and r are the radar wave-
length and the range between the sensor and target in the master
image, respectively) and d(s, tn ) is the line-of-sight displace-
ment of the scatterer at the elevation position s and the temporal
baseline tn . In order to reduce the number of unknowns, d(s, tn )
could be modeled as a linear combination of basis functions.
It can be shown that (2) is equivalent to a multidimensional
spectral estimation problem [21]. After discretizing s and dis-
placement parameters, and subsequently replacing integration
by finite sum, a linear model for all N InSAR measurements

can be formulated as follows:

g ≈ Rγ (3)

where g := (g1 , . . . , gN ) ∈ CN is the complex InSAR mea-
surement vector, R ∈ CN×L is the TomoSAR dictionary, and
γ ∈ CL is the discrete elevation-motion reflectivity profile (or
spectrum).

Various algorithms were proposed to estimate γ with a given
R and g. A common approach is to use Tikhonov regularization
[4] as follows:

minimize
γ

‖Rγ − g‖22 + δ‖γ‖22 (4)

where δ > 0 is a regularization constant. Note that (4) is equiv-
alent to the maximum a posteriori estimator of γ, provided that
the measurement noise is additive and white with variance δ,
and γ is white with variance 1.

If one is primarily concerned with man-made objects in high-
resolution spotlight images acquired over urban areas, it is
deemed reasonable to assume that radar echoes in the far-field
are dominated by those from merely few pointlike scatterers
within the toroid segment shown in Fig. 5, i.e., γ is presumed
to be compressible and, thus, g could be sufficiently approxi-
mated by a linear combination of few atoms (columns) of R.
This hypothesis gave rise to approaches with sparsity-driven �1
regularization [22], [23], given by

minimize
γ

‖Rγ − g‖22 + ε‖γ‖1 (5)

where ε > 0 is another regularization constant.
In terms of the capability to resolve multiple pointlike scatter-

ers, conventional methods, such as Tikhonov regularization (4),
are limited by the elevation resolution ρs := λr/(2Δb), where
Δb is the elevation aperture as shown in Fig. 5. For TerraSAR-X,
ρs is in the order of several tens of meters (typically 20–30 m,
given a sufficiently large stack), as a consequence of the satel-
lite being confined to a 250-m orbit tube [24]. Given a single
scatterer within the resolution cell, a lower bound on the errors
of elevation estimates ŝ can be derived [9] as follows:

σŝ :=
λr

4π
√

N
√

2SNR σb

(6)

where SNR is the scatterer’s signal-to-noise ratio, and σb is the
standard deviation of effective baselines. In the case of dou-
ble scatterers, their mutual interference could be modeled as a
scaling factor that depends primarily on their elevation distance
and phase difference [25]. For TerraSAR-X, this lower bound
is approximately one order smaller than ρs and could be ap-
proached by means of �1 regularization (5). In other words, (5)
could achieve superresolution [26].

As an overview, a top-down model of the processing chain
is illustrated in Fig. 6 and consists primarily of the following
parts.

1) Preprocessing (via IWAP), which takes focused single-
look slant-range complex (SSC) images as the input and
performs the following:
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Fig. 6. Top-down model of the processing chain. Modified from [30].

a) InSAR processing, which provides raster images of
the calibrated amplitude and differential phase; and,
subsequently,

b) PSI processing, which estimates the atmospheric
phase screen (APS) from single pointlike targets and
a sidelobe risk map [14], [27], [28].

Note that the use of a DEM is optional if the concerned
terrain is relatively flat.

2) TomoSAR processing.
a) Sidelobe detection: A simple hypothesis test (thresh-

olding) is applied to the sidelobe risk map from 1b).
b) APS compensation: The estimated APS is compen-

sated in the differential phase, if the corresponding
pixel concerned is, with high probability, not domi-
nated by a sidelobe.

c) Spectrum estimation: The elevation-motion spec-
trum is estimated with, for example, (4) or (5).

d) Model selection: By minimizing the penalized neg-
ative log-likelihood, the number of scatterers is esti-
mated to reduce the false positive rate [25]. If �1 reg-
ularization is employed in 2c), the underestimated
amplitude is, hereby, corrected as a byproduct.

e) Off-grid correction: In order to ameliorate the
off-grid problem as a consequence of discretiz-
ing elevation and motion parameters, the estimated

Fig. 7. Distribution of effective baselines bn .

elevation-motion spectrum from 2c) is oversampled
in a neighborhood of each statistically significant
scatterer. A local maximum is detected in the over-
sampled high-dimensional signal, which allows a
better quantization.

f) Outlier rejection: As a natural extension of the com-
plex ensemble coherence for single pointlike scat-
terers [29], we define the following for the multiple-
scatterer case:

η :=
1
N

N∑
n=1

exp
(− i (∠rnγ − ∠gn )

)
(7)

where ∠ : C → R returns the phase of a complex
number, and rn denotes the nth row of the To-
moSAR dictionary R. We reject outliers, i.e., scat-
terers whose phase history deviates significantly
from the adopted model, by thresholding of |η|.

3) Postprocessing, which couples the updated topography
and its deformation parameters to produce a 4-D geocoded
point cloud.

In Section IV, we demonstrate for the first time TerraSAR-X
staring spotlight TomoSAR results produced with the above-
mentioned processing chain. Based on a sufficient number of
acquisitions, the demonstration is given not only for individual
urban infrastructures but also on the scale of a city.

IV. FIRST PRACTICAL DEMONSTRATION OF STARING

SPOTLIGHT TOMOSAR

Forty-one staring spotlight images were acquired by
TerraSAR-X from July 4, 2014 to November 30, 2016 with
a constant repeat interval of 22 days, i.e., every second orbit.
The image from October 31, 2015 with an incidence angle of
40.7◦ at the scene center was chosen as the master due to its
central position in the spatial–temporal baseline plot and rela-
tively small atmospheric delays. Fig. 7 shows the distribution of
effective baselines bn with respect to the master scene, which
are indeed confined to ±250 m. The elevation aperture Δb is
approximately 417 m, which leads to an elevation resolution ρs

of approximately 24.6 m at the scene center. Given an SNR of
2 dB, the lower bound for single pointlike scatterers σŝ is merely
1.44 m, i.e., less than 6% of ρs .

As previously mentioned in Section III, the preprocessing
(i.e., InSAR and PSI processing) was accomplished by IWAP.
In order to decrease the computational cost, we exclusively
considered the pixels with SCR ≥ 1.7 dB as candidates for
TomoSAR processing, i.e., heavily vegetated areas and water
bodies were likely masked out. The number of candidates was
further reduced by eliminating those pixels, each of which has
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Fig. 8. TomoSAR results of Washington, DC, with 41 TerraSAR-X staring spotlight acquisitions. (a) Updated topography h (m). (b) Linear deformation rate
v (mm/year). (c) Periodical deformation amplitude a (mm).

an estimated likelihood of being a sidelobe larger than 0.45. As
a result, we only processed approximately 12% of the original
raster data. The scatterers’ motion was modeled with a coupled
linear model and a sinusoidal model with the latter having a

period of one year. The elevation-motion spectrum was esti-
mated either with Tikhonov regularization (4) for the whole
scene or with �1 regularization (5) for certain regions of inter-
est. The maximum number of pointlike scatterers within each
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Fig. 9. Original point cloud (6%) of the Watergate complex that is overlaid on Google Earth 3-D photo-realistic building model and color-coded by the updated
topography h (m).

Fig. 10. Original point cloud (6%) of the John F. Kennedy Center for the Performing Arts that is overlaid on Google Earth 3-D photo-realistic building model
and color-coded by the updated topography h (m).

resolution cell was set to 2, and the model selector was trained
such that the false positive rate for double scatterers, i.e., the
empirical probability that two scatterers are detected whereas
there is at most one, is below 0.1%. A neighborhood of each
selected scatterer in its 3-D elevation-motion (s–v–a, where v
is the linear deformation rate and a is the periodical deforma-
tion amplitude) spectrum was oversampled with a factor of 10
to alleviate the off-grid problem. Scatterers with an ensemble
coherence (7) less than 0.6 were considered as outliers and ex-
cluded from postprocessing.

The updated topography h, the linear deformation rate v, and
the periodical deformation amplitude a are shown in Fig. 8(a)–
(c), respectively. On the Potomac River (lower left), scarcely
any pointlike scatterers could be detected, except for those from
the National Memorial on the Theodore Roosevelt Island (see
Fig. 3) and those on the Theodore Roosevelt Bridge (see Fig. 4).

The National Mall in the lower part is in general void of pointlike
scatterers due to its vegetation.

Most of the buildings in the scene appear to be flat with the
exception of several high-rise ones in Rosslyn, VA, USA (lower
left, to the west of the Theodore Roosevelt Bridge). Zoomed-
in views of the Watergate complex and the John F. Kennedy
Center for the Performing Arts are shown in Figs. 9 and 10,
respectively. Due to the limitations of Google Earth, merely 6%
of the original point cloud was used for visualization.

Bridges and overpasses are in general subject to periodical
deformation as a result of temperature changes, i.e., dilation
between piers or fixed bearings in summer and contraction in
winter. The estimated periodical deformation amplitude of the
Theodore Roosevelt Bridge is shown in Fig. 11. As an example,
Fig. 12 depicts the phase history of two scatterers within a
resolution cell. The higher scatterer (depicted as a red dot) is
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Fig. 11. Original point cloud (6%) of the Theodore Roosevelt Bridge that is overlaid on Google Earth 3-D photo-realistic building model and color-coded by
the periodical deformation amplitude a (mm).

Fig. 12. Phase history of InSAR measurements and TomoSAR reconstruction
of double scatterers subject to the layover in Fig. 11. The higher and lower
scatterers are marked as red and blue, respectively.

located on the bridge, while the lower (blue) resides at one of the
piers. The estimated height difference of these two scatterers is
approximately 8.3 m, which lies in the superresolution regime.
As the upper-right plot of Fig. 12 depicts, the lower scatterer
on the pier undergoes little deformation, whereas the periodical
deformation amplitude of the higher scatterer on the bridge was
estimated to be approximately 2.9 mm. The topography and
deformation model of double scatterers fits quite well with the
InSAR measurements (see the lower-right plot of Fig. 12), and
the ensemble coherence amounts to approximately 0.97.

The Washington Marriott Marquis hotel (opened on May 1,
2014) beside the Walter E. Washington Convention Center ap-
pears to suffer from subsidence that is presumably due to the
building weight [see Fig. 13(a)]. In addition, it undergoes ther-
mal dilation and contraction that are more significant on the roof
than on the facade, as can be seen in Fig. 13(b). Fig. 14 shows
the resolved layover effect of two scatterers, which is a typical
case of roof–facade interaction. The higher and lower scatterers
subside at a linear rate of−1.1 and−1.0 mm/year, respectively.
The scatterer on the roof moves periodically with an amplitude

of approximately 3.0 mm, while, on the contrary, the one on the
facade is subject to little such deformation. Similar to the pre-
vious example depicted in Fig. 12, the TomoSAR model could
describe the phase history sufficiently well with an ensemble
coherence of approximately 0.97.

As one last example, Fig. 15(a) and (b) shows the updated
topography and periodical deformation amplitude of the Ross-
lyn Twin Towers, respectively. Clearly, the amplitude of thermal
dilation and contraction is highly correlated with the building
height. Note that the tower on the left has a smaller point density
on the left-hand side of the facade due to its convex shape, as
seen from the radar wavefront. Fig. 16 depicts another typical
case of layover effect in urban areas, which is the facade–ground
(or facade–lower-infrastructure) interaction. The periodical de-
formation amplitude of the higher and lower scatterers was es-
timated to be approximately 5.0 and 2.0 mm, respectively.

Section V reports a preliminary comparison of the sliding
and staring spotlight TomoSAR using TerraSAR-X data. The
comparison is based on a limited number of acquisitions and,
therefore, restricted to two small typical urban areas.

V. PRELIMINARY COMPARISON OF SLIDING AND STARING

SPOTLIGHT TOMOSAR

Due to data unavailability, a direct comparative study of
both modes was not possible for Washington DC. Instead, we
drew the comparison with two small descending interferometric
stacks of the City of Las Vegas. Each stack contains 12 images,
which were acquired alternately from October, 2014 to Febru-
ary, 2015 during the TanDEM-X Science Phase [31]. For each
mode, 11 interferograms were generated with a similar baseline
distribution as shown in Fig. 7.

Two small areas were selected for the comparison of the slid-
ing and staring spotlight TomoSAR. One of them is a relatively
flat area of approximately 0.01 km2 . The same area of inter-
est was cropped in both datasets using ground control points.
Fig. 17 shows the mean intensity map in each mode. In the
staring spotlight case, pointlike targets appear more focused,
which indicates an increase of the SCR. As a result, the con-
trast between areas of different degrees of smoothness becomes
larger, i.e., the boundaries of the rectangular surfaces in the
middle of the image are much easier to recognize. The recon-
structed TomoSAR point cloud is shown in Fig. 18. An increase
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Fig. 13. Original point cloud (4%) of the Washington Marriott Marquis hotel
that is overlaid on Google Earth 3-D photo-realistic building model. (a) Linear
deformation rate v (mm/year). (b) Periodical deformation amplitude a (mm).

in the number of points in the staring spotlight mode is obvi-
ous. Indeed, the point density in the staring spotlight case is
approximately 5.5 times as high (see Table II).

The assessment of the relative height accuracy is explained
as follows. Since this area is relatively flat (see Fig. 18), we
fitted a plane with robust measure through each point cloud and
considered it as a partial ground truth. Note that this also took
the local slope into account. Subsequently, we calculated the
distance of each scatterer to the fitted plane and projected it into
the vertical direction. In this context, we refer to the median
absolute deviation of height estimate errors relative to this fitted
plane as the relative height accuracy.

Fig. 14. Phase history of InSAR measurements and TomoSAR reconstruction
of double scatterers subject to the layover in Fig. 13. The higher and lower
scatterers are marked as red and blue, respectively.

Let us denote the vectors containing the geographic coor-
dinates of all m scatterers as x̃, ỹ, z̃ ∈ Rm . We seek a plane
parameterized by ã, b̃, c̃, d̃ ∈ R such that

ãx̃ + b̃ỹ + c̃z̃ + d̃ ≈ 0 (8)

for each scatterer at the coordinates x̃ ∈ x̃, ỹ ∈ ỹ, and z̃ ∈ z̃.
Without loss of generality, let us assume that c̃ = 1. The plane-
fitting problem can be formulated as follows:

minimize
x

‖Ax− b‖1 (9)

where A :=
(
x̃ ỹ 1

) ∈ Rm×3 , 1 is an m-dimensional vec-

tor of ones, x :=
(
ã b̃ d̃

)T ∈ R3 , and b− z̃. The �1 loss
function is known for its robustness against outliers [32]. Let x∗

denote an optimal solution and n :=
(
x∗1 x∗2 1

)T
be a corre-

sponding plane normal. The signed distance of scatterers to the
fitted plane is given by (Ax∗ + z̃)/‖n‖2 . Due to the large scale
of problem (9), i.e., m > 105 as presented in Table II, generic
conic solvers may not be able to solve it efficiently. Based on the
alternating direction method of multipliers (ADMM) [33], we
developed a fast solver with a superlinear convergence rate (see
Algorithm 1), where z and y are auxiliary primal and dual vari-
ables, respectively, ρ > 0 is a penalty parameter for a smooth-
ness term in the augmented Lagrangian (fixed to 1 in this paper),
and prox�1 ,λ(w) := (w − λ)+ − (−w − λ)+ is the element-
wise soft thresholding operator [34], where (u)+ := max(u, 0)
replaces the negative entries with zeros.

Fig. 19 depicts the errors of height estimates relative to the
fitted plane. Although both normalized histograms are centered
around zero, the height estimate errors in the staring spotlight
mode exhibit less deviation. According to Table III, the relative
height accuracy (defined as the median absolute deviation of
height estimate errors) in the sliding spotlight case is approxi-
mately 1.7 times as high.
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Fig. 15. Original point cloud (5%) of the Rosslyn Twin Towers that is overlaid
on Google Earth 3-D photo-realistic building model. (a) Updated topography
h (m). (b) Periodical deformation amplitude a (mm).

Fig. 16. Phase history of InSAR measurements and TomoSAR reconstruction
of double scatterers subject to the layover in Fig. 15. The higher and lower
scatterers are marked as red and blue, respectively.

Fig. 17. Mean intensity map of a relatively flat area in the (a) sliding and
(b) staring spotlight modes.
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Fig. 18. Updated topography h (m) of the area in Fig. 17 with 12 TerraSAR-X
images in the (a) sliding and (b) staring spotlight modes, respectively.

Algorithm 1: ADMM-Based Algorithm for Solving (9).
1: Input: A, b, ρ
2: Initialize z← 0, y← 0
3: Until stopping criterion is satisfied, Do
4: x← (ATA)−1

(
AT(b + z− 1

ρ y)
)

5: z← prox�1 ,1/ρ(Ax− b + 1
ρ y)

6: y← y + Ax− b− z
7: Output: x

TABLE II
STATISTICS OF THE POINT CLOUDS IN FIG. 18

aThe ratio was calculated by dividing the larger value by the smaller value.

Fig. 19. Normalized histogram of height estimate errors of the point clouds
in Fig. 18 relative to a fitted plane.

TABLE III
STATISTICS OF THE HEIGHT ESTIMATE ERRORS IN FIG. 19

aThe ratio was calculated by dividing the larger value by the smaller value.

Fig. 20. Mean intensity map of Hilton Grand Vacations on the Las Vegas Strip
and its surroundings in the (a) sliding and (b) staring spotlight modes.

The other area of approximately 0.11 km2 contains two high-
rise buildings and its surroundings. The regular patterns of
building facades appear sharper in the staring spotlight mode
(see Fig. 20). The reconstructed point clouds are illustrated in
Fig. 21 for single- and double-scatterers, respectively. As ex-
pected, the staring spotlight mode densified the corresponding
point cloud in both single- and double-scatterer cases. In total,
the point density in the staring spotlight case is approximately
5.1 times as high (see Table IV). With respect to the ratio of the
number of single scatterers to the number of double scatterers,
we recorded a slight decrease approximately from 6.9 (sliding)
to 6.0 (staring), i.e., no significant difference was observed.
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Fig. 21. Updated topography h (m) of the area in Fig. 20 with 12 TerraSAR-X images in the sliding (left column) and staring (right column) spotlight modes,
respectively. The upper and lower rows show single and double scatterers, respectively. (a) Single scatterers (sliding). (b) Single scatterers (staring). (c) Double
scatterers (sliding). (d) Double scatterers (staring).

TABLE IV
STATISTICS OF THE POINT CLOUDS IN FIG. 21

aThe ratio was calculated by dividing the larger value by the smaller value.

VI. CONCLUSION

In this paper, we studied the characteristics of the TerraSAR-
X staring spotlight mode and its impact on multibaseline InSAR
techniques, in particular, the PSI and TomoSAR. The difference
in the time-variant Doppler spectra of the sliding and staring
spotlight modes was analyzed in concept in order to demonstrate
the azimuth resolution versus scene extent tradeoff. The usage of
the TerraSAR-X annotation component containing the Doppler
centroid in focused image time was proposed to skirt the time
conversion issue. The TomoSAR processing chain was revised
in order to incorporate sidelobe detection, off-grid correction,

and outlier rejection. A first practical demonstration was made
with an interferometric stack of 41 images of Washington, DC.
The whole scene extent was processed to estimate the topogra-
phy update of pointlike scatterers and their deformation param-
eters. Besides, the results of several typical urban areas were
visualized and interpreted. A preliminary comparison between
the sliding and staring spotlight TomoSAR was drawn in the end
with two small interferometric stacks of the City of Las Vegas.

In Section I, we argued that by means of the staring spotlight
mode, first, more pointlike targets would be separable in the
azimuth–range plane; and, second, each target would have a
higher SCR.

As a result, the 4-D point cloud would be not only denser but
also more accurate. In this paper, we observed that the density of
the staring spotlight point cloud is approximately 5.1–5.5 times
as high, and the relative height accuracy of the staring spotlight
point cloud is approximately 1.7 times as high.

Multiple-snapshot TomoSAR approaches, e.g., using an
adaptive neighborhood identified within a spatial search window
[35], [36] or incorporating additional geospatial information of
building footprints [37], could also benefit from the staring spot-
light mode. In the former case, the enhanced azimuth resolution
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Fig. 22. 3 × 3 grid of Doppler centroid frequency fDC in focused image time
timage.

would increase the number of pixels in the homogeneous area;
in the latter, the isoheight clusters of a facade to be jointly re-
constructed would expand. On the whole, it would lead to a
larger number of snapshots and, in turn, to a better estimation
accuracy.

APPENDIX

As previously mentioned in Section II, fDC is provided
in timage on a 3× 3 grid as a TerraSAR-X annotation com-
ponent [13]. This grid is defined as the Cartesian prod-
uct of the sets {start timage, center timage, stop timage} and
{near range, midrange, far range}, as depicted in Fig. 22. This
information could be employed to bypass time conversion from
traw to timage and to consider second-order variations of the fDC

along a range. Note that this grid is also provided for each burst
of any ScanSAR SSC product.
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