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Classification of Urban Building Type from High
Spatial Resolution Remote Sensing Imagery Using

Extended MRS and Soft BP Network
Junfei Xie and Jianhua Zhou

Abstract—This study presents a new approach for classification
of building type in complex urban scene. The approach consists of
two parts: extended multiresolution segmentation (EMRS) and soft
classification using BP network (SBP). The technology scheme is
referred to here as EMRS-SBP. EMRS is used to guide the design
of descriptor. A descriptor is a feature expression or a symbol-
ized algorithm to systematically promote the expressing capability
of image features. A classifier can perform far better to discern
complex pattern of combining pixels working in an EMRS-based
feature space constructed by a number of such descriptors. SBP
serves as a classifier model to generate natural clusters of member
which refers to here as both pixels and image patches. Class-mark
ensured member is denoted as sure member and the rest as unsure
(fuzzy) members. The latter can be relabeled through recursive
defuzzifying according to the information carried by the gradu-
ally increased sure members. By using EMRS-SBP, three building
types, i.e., old-fashioned courtyard dwellings, multistorey residen-
tial buildings, and high-rise buildings, can be accurately classified
from high spatial resolution imagery in a feature space constructed
with fifteen descriptors including nine EMRS-based ones. There is
evidence that the mean overall accuracy using SBP in the EMRS-
based feature space is 19.8% higher than that using the hard classi-
fication with BP network in a single resolution segmentation space
and meanwhile, the mean kappa statistic value (κ) is 25.1% higher.

Index Terms—Back propagation network, building types, mul-
tiresolution segmentation (MRS), soft classification, urban area.

I. INTRODUCTION

BUILDING type (usage information) is one of the key in-
put variables to demographic and socioeconomic mod-

els [1]–[3]. Automated extraction of urban building as a sin-
gle category or as separate types from remotely sensed data
is important to many applications, such as map updating,
city modeling, urban growth analysis, change monitoring [4],
etc. However, it is hard to classify building types in com-
plex urban scene depending only on typical image features [5]

Manuscript received August 19, 2016; revised October 12, 2016, December
22, 2016, and February 9, 2017; accepted March 17, 2017. Date of current
version August 9, 2017. This work was supported by the National Natural
Science Foundation of China under Grant 51278056. (Corresponding author:
Jianhua Zhou.)

J. Xie is with the Beijing Institute of Landscape Gardening, Beijing 100102,
China (e-mail: xiejunfei@126.com).

J. Zhou is with the College of Geographic Science, East China Normal Uni-
versity, Shanghai 200062, China (e-mail: jhzhou@geo.ecnu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2017.2686422

due to spectral confusion. Different building types are often
similar to each other in spectrum whereas buildings consisting
a single type often appear different in spectra. The reason is that
most buildings are constructed by limited artificial materials and
the selections of the materials, in many cases, do not relate to
building types. Furthermore, cooling tower, pavilion, ornamen-
tal landscape, etc., on the roofs cause the appearances of building
in a high spatial resolution (HSR) image much complex.

A. Related Work

In the middle-to-late 1980s, researchers started to study the
methodology of extracting urban buildings from aerial photos
[6] and later from medium- or high-resolution satellite images
[7]. More recently, finer texture and more accurate boundaries
of building can be obtained from HSR imagery and applied to
building extraction [8]–[11]. However, it is still difficult to dis-
cern building types from HSR imagery by computers because
it is hard to find appropriate segmenting scales to completely
capture even an individual building from complex patterns of
combining pixels [12]. Therefore, most existing studies are ei-
ther to classify buildings as a single category in terms of land
use mapping [5], [7], [8], [13] or to distinguish between building
and nonbuilding [9].

Elevation data and building contours have also been applied
in classification of building type. Airborne light detection and
ranging (LiDAR) is particularly useful to collect the elevation
data for expression of building structural characteristics [14].
With a sole use of LiDAR data or a combining use of Li-
DAR and HSR data, previous difficulties to some applications
have been overcome, such as extraction of building object [15]–
[17], mapping of building boundary [18], [19], reconstruction
of three-dimensional (3-D) building model [20], identification
of building roof structure [21], classification of building type
[22], etc. However, LiDAR data are costly and rarely available
especially in China as compared with HSR imagery.

If accurate building contours are available, accuracy of dis-
cerning building types can often be improved. An example of
building type classification using contours was reported by Du
et al. [12] and the typical steps included:

1) acquiring building contours from a geographic informa-
tion system (GIS),

2) merging pixels within a contour to form an image object,
3) deriving image features of the object, and
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4) classifying all building objects in a given attribute space
consisting of these features.

However, its applications are likely to be limited by the out-
dated data because the update of GIS is usually far behind
an actual change of building, particularly in a region of rapid
urbanization.

Consequently HSR-image-based monitoring systems for ur-
ban buildings are expected to play further crucial roles. There-
fore, the testing data used in our scheme are conventional HSR
images (e.g., Quickbird and Worldview). This also concerns
some advantages of HSR imagery, such as easier to obtain,
higher spatial resolution, shorter update cycle, lower cost, fewer
requirements in data preprocess, etc., as comparing with those
of LiDAR and GIS data. Although there is an obvious fact that
majority of people can distinguish a number of building types
from HSR imagery through visual interpretation, it is still hard
to automatically discern these types by computers. The reason is
likely that the existing algorithms of image classification cannot
imitate the synthesis behavior of human brain yet. For example,
a person may discern different building types by considering
some patterns formed by randomly scattering pixels, such as
area, shape, shadow, interval, density, etc. Classification accu-
racy may be improved by enabling a computer to “concern” not
only the spectrum and texture features but also their combinative
patterns. This study mainly focuses on the latter.

B. Contribution

Extended multiresolution segmentation (EMRS), a compo-
nent of the EMRS-soft classification using BP network (SBP)
scheme, is developed from multiresolution segmentation (MRS)
[23] but runs a little further. As interesting objects in an image
often have a range of brightness, roughness, and sizes, no sin-
gle resolution is sufficient to capture all these characteristics.
MRS is a bottom-up, region-merging technique that partitions
image into image objects on the basis of homogeneity criteria
controlled by user-defined scale parameters (SP). EMRS has
two extensions to MRS. One is to increase measuring variables
to enhance expressions of resolution changes thereby offering
unique and often important insights to the differences between
building types. The other is to replace definite SP with weighted
sum matrices. This releases us from determination of SP which
is a necessary but hard work to conventional MRS.

The back-propagation neural network (BPNN) is a widely ac-
cepted learning machine model especially for the classification
from remote sensing imagery [24]–[26]. In addition, soft clas-
sification using BPNN is still in the process of improvement.
SBP, the other component of the EMRS-SBP scheme, is char-
acterized by generating a clustering prototype by soft partition
and relabeling fuzzy members in the prototype through recur-
sive defuzzifying. The relabeling is evaluated by severe fuzzy
measures, thereby reducing the uncertainty.

II. STUDY SITE AND TEST DATA

Fig. 1 shows the study site. The rectangles in the right pic-
ture with serial numbers of 1 and 2 are two subsites involved
with Worldview 3 images obtained in 2014 with an original

spatial resolution of 0.5 m. The images were purchased from a
geographic information service institution of the Chinese gov-
ernment. They were preprocessed with geometric correction and
vegetation enhancement before selling. The other two with serial
numbers of 3 and 4 are other two subsites involved with Quick-
bird images. They were recently copied from screen images of
the Google Earth website with an original spatial resolution of
0.6 m. The image size of each subsite is listed in Table III. In
order to ensure the universality of the proposed scheme, these
subsites are randomly selected except the concern to include all
building types in each site.

III. METHOD

A. Overview

In EMRS-SBP scheme, EMRS serves to guide the design
of descriptor and SBP to generate a more natural classification.
Steps for the classification of urban building type are as follows:

1) Smooth image signals by recursive wavelet compression
to make image patches for an individual building as ho-
mogeneous as possible (see Section III-B).

2) Use three EMRS-based methods to express three kinds
of information carrier. The methods are multistructural
element morphological operations, multisized neighbor-
hood statistics, and multithreshold segmentation. The
carriers are dark details, building and shadow patches,
and standard deviation of neighborhood elements (see
Section III-C).

3) Construct feature space with EMRS-based descriptors
which are usually expressed by the weighted summing
of the discrete and hierarchical data obtained in step 2)
to express not only spectrum and texture features but also
their combinative patterns (see Sections III-C and III-D).

4) Use a soft partition to obtain a prototype of fuzzy cluster
and then use a defuzzifying algorithm to relabel unsure
members in the prototype (see Section III-E). Fig. 2 shows
the entire technological process.

B. Image Preprocessing

The major obstacle to the extraction of building object is spec-
tral confusion. Different building types are often similar to each
other in spectrum whereas buildings consisting a single type
often appear different in spectra. The band-based classification
is likely to be adversely affected. This will cause the extracted
building objects to be very broken. Wavelet compression is one
of the useful algorithms for image homogenization thereby di-
minishing the brokenness. Although both wavelet compression
and image smoothing can be used for the homogenization, we
choose the former because of its two advantages: 1) removing
redundant information while taking the homogenization; and 2)
remaining fine structure at several specified resolutions. These
advantages are useful for subsequent building classification.

We use a recursive process of wavelet compression to gradu-
ally attenuate unexpected noise (including spatially distributed
noise and radiation pulse). The recursion does not stop until
the number of gray scales of a processing image is less than
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Fig. 1. Study site. The site is in the downtown area of Beijing, the capital of China. The right picture provides a more detail image of the site. The yellow
rectangles on it show four subtesting sites and the digitals are the serial number of them, the same as the no. in Table III. The image was downloaded from the
Google Earth website.

Fig. 2. Flowchart of EMRS-SBP. The main algorithms are represented by the
dotted line rectangles.

23. A single compression will perform by calling “wdencmp,”
a MATLAB function. Fig. 3 shows an example of the recursive
process. By comparing homogeneity of individual building from
a compressed matrix X [see Fig. 3(c)] against its original V ma-
trix [see Fig. 3(b)] it can be seen that most roofs become more
homogeneous, and gray differences between roofs and other im-
pervious surface (e.g., roads and plazas) are enlarged after the
compression thereby diminishing the difficulties to extraction
of building objects.

C. EMRS

The work to partition pixels into image objects by MRS de-
pends on the homogeneity as specified by SP. However, it is
hard to decide a proper SP for a category in complex scenes.
There are two problems need to be solved in terms of building
type classification. One is how to enable SP variable to adapt
to variations of the scene. The other is how to comprehensively
interpret the segments associated with the SP(s).

There are two extensions from MRS to EMRS to solve these
problems:

1) Instead of using SP, three measure variables, i.e., range
of spectral brightness, size of neighborhood, and size of
structure element (SE) in regard to variations of radiation
threshold, pixel combinative pattern, and member size
respectively, are employed to indicate resolution changes.

2) Replacing a simple segmenting matrix with a weighted
sum matrix.

The former is segmented with the threshold derived from a
specified SP and the latter is a combination of multisegmen-
tations with several thresholds derived from either multivalue
ranges of a single feature or a group of features. Then, the lat-
ter will serve as either a single descriptor or a component of
descriptor to express a kind of mixed model of spectrum or
texture feature. The replacement not only enables EMRS to be
embedded in the classification but also enriches the information
carried by a descriptor. A feature space constructed by these
descriptors may be properly complex for identification of seri-
ously confused members whereas the dimension of feature space
(the number of features) is unchanged. There is evidence that an
EMRS-based descriptor always performs better in expression of
complex and mixed pattern of pixels than the SRS-characterized
version does where SRS means single resolution segmentation.

As mentioned before, there are three kinds of information
carrier in EMRS. Relative analyzing approaches to them and
involved descriptors will be introduced in detail as follows.
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Fig. 3. Examples of image preprocess. (a) Original image (Worldview 3, 2014). (b) V matrix in HSV color model. (c) Compressed image (X). The arrows
marked with 1, 2, and 3 represent three building types, i.e., the high-rise buildings, multistorey residential buildings, and old-fashioned courtyard dwellings.

1) Dark Details: The length along the north–south direction
of a larger dark detail member associated with a building is
likely to respond to the height of the building. Therefore, the
density of dark details is selected as an indicator for building
type classification. Dark details can be extracted through low
cap transformation of mathematical morphology. The density
of dark details (Dd ) was defined by Zhou et al. [27] as

Dd (u, v) = count(Bd (u, v))/Aimper (1)

under the constraints:

Bd = {Bd ⊆ I,∀bd |(I • s − I) > c × dmean}
where I is a grayscale image; count(•) is a function to count
true members in a size-given neighborhood; Bd denotes a bi-
nary image of dark details, and bd is an element in Bd ; Aimper
denotes area of impervious surface in the neighborhood; sign
• represents morphological closing and s is its SE; c is a re-
served coefficient; dmean denotes the mean gray value of the
low hat transform result, and dmean serves as a base number for
computation of the segmenting threshold.

In theory, certain size of dark details for a building type can be
captured by selecting proper c and s. However, almost all tests
for segmentation of building shadow failed when using single
resolution of Dd as defined by (1) because the length and dark-
ness of a shadow member change in different scenes. Therefore,
we add EMRS to Dd . That is, enable s to be adjustable in three
different sizes to respond to the length changes and enable c
to be adjustable also in three different levels to respond to the
darkness changes. The newly defined EMRS-based Dd , Dd(all) ,
is

Dd(all) =

⎡
⎢⎣
Dd(1,1) Dd(1,2) Dd(1,3)

Dd(2,1) Dd(2,2) Dd(2,3)

Dd(3,1) Dd(3,2) Dd(3,3)

⎤
⎥⎦ . (2)

Dd(all) is a cell array which consists of nine matrices of dark
detail density in responding to variation on shadow length and
darkness. The cell in row i and column j of Dd(all) can be
calculated by

Dd(i,j ) = Ds(i,j ) + Dm (i,j ) + Da(i,j ) (3)

where i denotes the serial number of SE and a smaller i indicates
a smaller size of SE; j denotes the serial number of gray threshold
and a smaller j indicates a lower threshold; Ds(i,j ), Dm (i,j ) ,
and Da(i,j ) denote the density matrices calculated with a small,
middle, and large sizes of neighborhoods, respectively, from
W(i,j ) which is a binary image of dark details obtained with the
ith SE and then the results are segmented with the jth threshold.

Then, a sum of density matrices as defined by (3) serves as
a cell in Dd(all) to more definitely determine whether a pixel
is a dark detail or not. Furthermore, the cell row and column
numbers in (2) indicate the variation on shadow length and
darkness. For example, Dd(2,3) is obtained with a middle size
SE and a higher grey threshold. If a pixel has a higher Dd(2,3) ,
the pixel is likely within a middle-size and darker shadow region.
Each cell in Dd(all) can be used either individually if the cell
has a determined meaning or in combination if the cell needs
more constrains from the others. Fig. 4 shows the examples of
weighted combination of selected cells from Dd(all) .

2) Building or Shadow Patches: Building or shadow patches
are obtained through two methods, i.e., multithreshold seg-
mentation and multisize window statistics. The methods en-
able EMRS to be embedded in the classification. The descriptor
Dbu(t) calculated by using the former method is a combinative
matrix of multidensity layers and each layer is derived from a bi-
nary image of building or shadow member which is segmented
from a compressed gray image X (see Section III-B) with a
gradually strict gray threshold. Another descriptor Dbu(w ) cal-
culated by using the latter method is also a combinative matrix
of multidensity layers but these layers are derived from sum-
ming the number of neighborhood members for each pixel with
a gradually increased neighborhood size and a stable middle
gray threshold. Dbu(t) and Dbu(w ) are described by (4) and (5),
respectively, and Fig. 5(a) and (b) shows two examples applying
them:

Dbu(t)(u, v) =
⎧
⎨
⎩

T max∑
T =Tm e a n

count(Wbu(t)(u, v)),Wbu(t) |X > T

⎫
⎬
⎭ (4)
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Fig. 4. Three typical weighted combinations of element selected from Dd (a ll) . (a) Dd (s) is a descriptor for extraction of small-size shadow where Dd (s) =
0.7 × Dd (1 ,1) − 0.7 × Dd (1 ,2) − 0.7 × Dd (1 ,3) . The highlighting members in it often provide a better agreement with shadows of old-fashioned courtyard
dwellings (e.g., the members pointed by arrow 3). (b) Dd (m ) is another descriptor for extraction of middle-size shadow where Dd (m ) = 0.7 × Dd (2 ,1) + 0.7 ×
Dd (2 ,2) − 0.3 × Dd (3 ,2) − 0.7 × Dd (s) . The highlighting members in it often agree with shadows of multistorey residential building (pointed by arrow 2).
(c) Dd (a ) is also a descriptor for extraction of large-size shadow where Dd (a ) = 0.5 × Dd (3 ,1) + 0.5 × Dd (3 ,2) + 0.5 × Dd (3 ,3) − 0.7 × Dd (m ) . The
highlighting members in it often agree with shadows of high-rise building (pointed by arrow 1). The original image is the same as that of Fig. 3(a).

Fig. 5. Examples of forming building or shadow patches through three EMRS-based descriptors. The original image is the same as Fig. 3(a). (a) The brightness
from light to dark (Dbu(t) from high to low) provides a better agreement with building height from tall (pointed by arrow 1) to middle (pointed by arrow 2) and
then to low (pointed by arrow 3). (b) Higher values of Dbu(w ) are fairly certain indicators for members of high-rise building. (c) The brightness from light to
dark (Dsa(t) from high to low) provides a better agreement with building height from tall to low and all the shadow patches have been moved to locations of
corresponding building. Therefore, a combined use of Dbu(t) , Dbu(w ) , and Dsa(t) is helpful to separate these building types.

where Dbu(t)(u, v) denotes the uth row and vth column element
of Dbu(t) ; Wbu(t) denotes a binary image of building patch
segmented from X. The threshold T increases from Tmean (the
mean brightness of X) to Tmax (the maximum T decided by the
increment and the iteration number):

Dbu(w )(u, v) =
⎧
⎨
⎩

w max∑
w=wm e a n

count(Wbu(w)(u,v ))w×w ,Wbu(w) |X > Tmean

⎫
⎬
⎭
(5)

where Dbu(w )(u, v) denotes the uth row and vth column element
of Dbu(w ) ; Wbu(w ) denotes the binary image of building patch
segmented from X with Tmean . w (the size of neighborhood
for computation of the density) increases from wmean (with a
default of 11) to wmax (the maximum w decided by the iteration
number). count(·)w×w means to count sure members in w-by-w
moving window.

Size of building shadow is also a meaningful indicator to
building height. By using a method almost the same as that of ob-
taining Dbu(t) , a new descriptor Dsa(t) can be generated. Dsa(t)
is a combinative matrix of multidensity layers as described by
(6) and each layer is derived from a binary image of shadow
member. Experiments indicate that shadow members can be
extracted quite completely through the segmentation from an
inversing X matrix with a gradually strict gray threshold:

Dsa(t)(u, v) =

T max∑
T s a =Tm e a n

count(Wsa(t)(u, v)),

Wsa(t) |!X > Tsa . (6)

The method of calculating Dsa(t) is almost the same as that
for Dbu(t) only replacing X with its inverse (sign ! means in-
versing) and T with Tsa . Wsa(t) denotes a binary image of
shadow member. A shadow patch has additionally been moved
to the location of corresponding building by an adaptive compu-
tation according to the south–north length of the shadow patch.
Fig. 5(c) shows an example of Dsa(t) .
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Fig. 6. Examples of EMRS-based standard deviation descriptor. (a) A standard deviation matrix derived from component V of Fig. 3(a) with a 3-by-3 moving
window. (b) A sum matrix derived from (a). (c) One of the weighted combinations of Ssum (i) for indication of members of low-rise dwelling.

3) Neighborhood Deviation: When an image gradually
zooms out on a screen, homogeneity between pixels appears
early at the region of low-rise dwelling (old-fashioned court-
yard dwelling), later the region of multistorey residential build-
ing, and finally the region of high-rise building. The standard
deviation of grayscale in a size-given neighborhood of a pixel
can serve as an indicator to express the homogeneity. Therefore,
the standard deviation from a size gradually increased neigh-
borhood can simulate the zooming-out process. DMR is such an
EMRS-based descriptor for the simulation.

As setting the initial, increment, and iteration number with
defaults of 3, 8, and 5, respectively, the neighborhood sizes are
3-by-3, 11-by-11, 19-by-19, 27-by-27, 35-by-35, and 43-by-43
in turn. Five matrices of standard deviation, Std(1) , Std(2) , . . .,
and Std(5) agreeing with these neighborhood sizes, are derived
from a grey scale image. Fig. 6(a) shows an example of Std(1)
calculated from the brightness component of Fig. 3(a). It can be
seen that “higher Std(1)” is a quite certain indicator to the out-
lines of high-rise building (pointed by arrow 1). Another mean-
ingful phenomenon is that the regions having dense distribution
of middle Std(1) elements fairly agree with the members of low-
rise dwelling (pointed by arrow 3). In order to express grayscale
and distribution in the same time, replace Std(i) (i = 1, 2 . . . 5)
with Ssum(i) to indicate the changes of homogeneity between
the building types as

Ssum(i) = Ds(i) + Dm (i) + Da(i) (i = 1, 2 . . . 5) (7)

where Ds(i), Dm (i) , and Da(i) denote the density matrices of
qualified element derived with 11-by-11, 22-by-22, and 33-by-
33 neighborhoods, respectively, where the qualified elements
meet the condition that their neighborhood standard deviations
are higher than mean Std(i) .

Fig. 6(b) shows an example of Ssum(1) . Three EMRS-based
descriptors DMR(s) , DMR(m ) , and DMR(a) are derived from
the weighted combinations of Ssum(i) (i = 1, 2 . . . 5) as

DMR(s) = 0.7 × Ssum(1) − 0.3 × Ssum(2) − 0.2 × Ssum(3)
(8)

DMR(m ) = 0.5 × Ssum(2) + 0.3 × Ssum(3) − 0.5 × DMR(s)
(9)

DMR(a) = 0.7 × Ssum(4) + 0.7 × Ssum(5) − 0.4 × DMR(m )

− 0.4 × DMR(s) . (10)

Fig. 6(c) shows an example of DMR(s) . It can be seen that
the elements with higher DMR(s) quite fairly agree with the
members of low-rise dwelling (pointed by arrow 3). Experi-
ments indicate that these constant weights in (8)–(10) need no
adjustment as the image changes among these testing images.

D. Descriptors for Building Type Classification

The feature space used here consists of 15 descrip-
tors, Dd(a) , Dd(m ) , Dd(s) , Dbu(t) , Dbu(w ) , Dsa(t) , DMR(a) ,
DMR(m ) , DMR(s) , MSV , MVI , Abu , Asa , Sra , and Dbu(m ) .
There is evidence that the space is effective in building type
classification using HSR imagery solely. A descriptor is a
grayscale image and can be regarded as a two-dimensional ma-
trix. The first nine are EMRS-based ones which are introduced in
Section III-C. The rest is described as follows:

1) MSV denotes the matrix of NDSV median where NDSV is
the normalized difference between saturation and brightness
values as defined by (11) [27]. NDSV can be used to capture
shadow and vegetation members because both of them have
higher NDSV values:

NDSV = (S − V) / (S + V) (11)

where S and V denote the saturation and brightness components
in HSV color model.

2) MVI is the matrix of NDVI median where NDVI is the
normalized difference vegetation index [28].

3) Abu denotes the matrix of weighted building area as de-
fined by (12). The value of an element in Abu is the
weighted area of a patch where the element locates. The
computation of the weighted area includes two steps: a)
marking smaller patches with their average area to save
computational time, and b) marking each remaining by its
weighted area to avoid possible mistakes from unexpected
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Fig. 7. SRS descriptors and comparison between HBP and SBP classification. (a) Original Worldview 3 image. (b) Abu . (c) Asa . (d) Sra . (e) Dmb . (f) Output
by HBP. (g) Output by SBP. (h) Final results simplified from (g). (i) 3D view.

adhesion between patches:

Abu(u, v) =
⎧
⎪⎨
⎪⎩

0.07 × Amean (A(i) < 0.1 × Amean)

0.18 × Amean (0.1 × Amean ≤ A(i) < 0.25 × Amean)
ca × abs(1 − Pa(i)) × A(i) (A(i) ≥ 0.25 × Amean)

(12)

where Abu(u, v) denotes the uth row and vth column element
of Abu and locates in patch i. ca is a factor for area adjust-
ment. Pa(i) denotes the weight for area adjustment of patch i
where Pa(i) = a× exp(b×Ccox(u, v)) where a and b are two
experimental coefficients with defaults of 0.06 and 2.77, re-
spectively. The defaults are derived from real experimental data
through the least square fitting and have proved to be good in

universality. Ccox(i) is the shape complex coefficient of patch i
serving as an indicator to assess the adhesion between patches.
Ccox(i) = Ladj(i)/Ai where Ai is the area of patch i; Ladj(i)
is the corrected perimeter, and Ladj(i) = L(i)/(1 − d) where
L(i) is the real perimeter where d = (l − h)/(l + h) where l
and h are the patch length and width. Fig. 7(b) shows an example
of Abu where higher brightness indicates larger weighted area.

4) Asa denotes the matrix of weighted building shadow area.
The computation method for it is almost the same as that
for Abu . Fig. 7(c) shows an example of Asa where higher
brightness indicates larger weighted area.

5) Sra denotes a matrix of road buffer region. The value of
an element in Sra is the distance between a road and the
element. Sra is derived from Wra through morphological
dilating with a size gradually increased SE where Wra is
a binary image of road derived from a GIS. The dilating
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process is as follows:

Sra (Wk ) = 1 − 0.1 × k (k = 1, 2, . . . 9) (13)

where Sra (Wk ) means to select W′
k s true members from

Sra ; Wk is the binary image of newly extended region in loop
k, and Wk = Wra ⊕ sk∩!W[1,k−1]∩!Wra where sign ⊕ rep-
resents morphological dilating and sk is the SE at loop k.

Fig. 7(d) shows an example of Ssa where higher brightness
represents shorter distance to road.

6) Dbu(m ) denotes the density of multistorey residential
building which is designed to separate this type from the
others. There are two characters making the former dif-
ferent: 1) each building in this type being far narrower
in south–north direction, and 2) several patches being
densely arranged as similar to each other in terms of size
and shape. Such narrow patches can be extracted by the
operation of morphological opening as defined by

Wbu(m ) = (Wbu◦ss)∩!(Wbu◦sm ) (14)

where Wbu and Wbu(m ) denote the building binary images
for all buildings and for only multistorey residential buildings
separately. Sign °is morphological opening while ss and sm

denote small and middle size SEs to filter out noise and the
multistorey residential building, respectively.

Dbu(m ) can be computed by (15). Fig. 7(e) shows an example
of Dbu(m ) where higher brightness indicates higher density of
multistorey residential buildings:

Dbu(m )(u, v) =
wL∑

w=wS

count(Wbu(m )(u, v))w×w (15)

where wL and wS denote the minimum and maximum of w.

E. Soft Classification With BP Network

The building type classification is still hard work due to poor
homogeneity containing a type although the classification con-
ducts in an EMRS space. To solve this problem, a soft classifi-
cation approach, referred to here as SBP, is also addressed. SBP
includes the technologies of soft partition and defuzzifying.

The soft partition is reached by setting output mode with con-
tinuous variable to adapt to the gradual transformation between
membership and nonmembership. This enables to generate a
natural prototype of fuzzy clusters. Output vector A is a m-by-n
matrix as defined by (16). Aidea is an idea A as defined by
(17). Each column of A is the mode value vector of a pixel.
Of all components of a column, the higher the mode value of
a component, the higher the probability that the pixel belongs
to the class indicated by the row number of the component. In
traditional hard classification with BP network (HBP), the row
number of the largest component in a column serves as the class
mark. However, the reliability of the result is often challenged

Fig. 8. Example of output matrix A.

by reality:

A =

∣∣∣∣∣∣∣∣∣∣

a1 , 1 .. a1,j .. a1,n

.. .. .. .. ..
ai,1 .. ai,j .. ai,n

.. .. .. .. ..
am,1 .. am,j .. am,n

∣∣∣∣∣∣∣∣∣∣

Referring to |ai,j |
i=1:m
j=1:n

(16)

Aidea =

⎡
⎢⎢⎣

1 0 0 .. 0
0 1 0 .. 0
: : : .. :
0 0 0 .. 1

⎤
⎥⎥⎦ (17)

Fig. 8 shows several columns of a real A for the first seven
pixels. It can be seen that the third component (the highlighted)
of the first column (for the first pixel) is the largest and very close
to 1; therefore, the pixel can be safely marked with 3. However,
to the sixth pixel, the largest and sublarge components are 0.6336
and 0.5696; that is, the probabilities that the pixel belongs to
class 2 and class 4 are very close. Similar conclusions can also
be derived from other five pixels. In many cases, it is unsafe to
determine class marks according to the maximum membership
solely.

In an entire process of SBP classification, an original A serves
as a prototype of natural cluster and then unsure members in A
are relabeled through a systematic defuzzifying. Steps for the
defuzzifying are as follows:

1) Add specified weights to each element in A to enlarge
the differences between components of a column. If a
membership is higher than a given threshold TA , set the
weight with 2, else if less than half of TA , set with
0.5 and else set with 1 (not processing). For example,
when defining TA = 0.9 the renewed membership vec-
tor of column 1 in Fig. 8 should be [0.085, 0.00425,
1.9896, 0.05395, 0.0000]T. Denote the renewed A as U
as defined by (18) which is the weighted membership
matrix.

2) The initial class label matrix L0 is derived from U accord-
ing to the rule of maximum membership. L0 is a 1-by-n
matrix as defined by (19). Each element in L0 is an initial
class mark for a pixel.

3) Then L0 will be converted into L1 as defined by (20)
which is a r-by-c matrix where r and c are the row and
column numbers of the processing image where n equals
r-by-c.

4) By relabeling an element with the dominant label in its
neighborhood, generate a new r-by-c label matrix L2 as
defined by (21). The so-called dominant label represents
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the class having the highest proportion of elements in the
neighborhood. If the proportion of class i is the highest
and higher than Tp , the pixel is relabeled with i, otherwise
with zero. A zero-labeled member (fuzzy member) can be
relabeled later according to the labels and density of the
sure members around this fuzzy.

5) Within a loop of the recursive defuzzifying, parts of the
fuzzy members adjacent to sure ones are relabeled first
and then these serve as new sure members to help relabel
the rest fuzzy. The recursion does not stop until all the
fuzzy are relabeled. Denote the updated matrix as L3 as
defined by (22).

6) Find out noise members from L3 , relabel them with zero,
and then recursively relabel them with the same process
at the last step. The relabeling process can be described
by (24) and Lfinal is the final qualified label matrix:

U = |ui,j |
i=1:m
j=1:n

and ui,j =

⎧
⎪⎨
⎪⎩

2 × ai,j (ai,j > TA)

ai,j (0.5 × TA ≤ ai,j ≤ TA)

0.5 × ai,j (ai,j < 0.5 × TA)

(18)

L0 = |lj |
j = 1 :n

and lj = i , i|ui,j = max(|ui,j | i=1:m
j=j

).

(19)

Equation (19) states that mark pixel j with i if component i
in column j of U is the largest where max(•) is the maximum
function:

L1 = |lu,v |
u=1:r
v=1:c

(u = floor(j/c); v = j − u × c) (20)

where floor(•) is the round down function:

L2 = |lu,v |
u=1:r
v=1:c

and lu,v =
{

i, i|Ai = max(A1 , A2 ...Am )&Ai ≥ Tarea
0, i| (max(A

i
) < Tarea

(21)

where Ai denotes the weighted density of i-labeled element in
the w-by-w neighborhood of pixel (u,v). Tarea denotes an area
threshold with a default of 0.3 × w2:

L3 = {M (1)
sure , ...M

(i)
sure , ...M

(m )
sure} (22)

and

M (i)
sure = {M (k−1,i)

sure +
q∑

k=1

(M (k,i)
sure ⊕ s) ∩ ∀M

(k)
0 ,

M
(k)
0 |area(∀M0) < k × N}. (23)

Equation (22) states that L3 consists of all ensured mem-
bers belonging to m classes. Equation (23) shows the recursive
process of updating M

(i)
sure which is the subset of ensured ele-

ments of class i. k is the loop variable (k = 1,2 . . . q); M
(k,i)
sure is

M
(i)
sure at loop k (especially, M (k−1,i)

sure equates the original M
(i)
sure

when k = 1). s denotes a size-given SE. Area(•) is the patch
area function. M

(k)
0 denotes the set of zero-labeled member at

loop k while the limitation on it means that the area of M
(k)
0

should not larger than k-by-N where N is the base number of
area threshold. The limitation promises zero-labeled elements
being evenly divided into all adjacent classes, rather than all
assigned to the class encountered first. At loop k, the members
in renewed M

(k,i)
sure serve as the sure members of class i to ab-

sorb remaining zero-labeled members. An iterative process of
traversing m classes is embedded in loop k:

Lfinal =
{ q∑

k=1

n∑
i=1

[
L(k)

3 (W(k−1)
0 ∩ W(k−1)

uni )

= i,W(k)
0 (W(k−1)

0 ∩ W(k−1)
uni ) = 0

]}

and Wuni = {(Wi • s2) ∪ (Wi ⊕ s3)} (24)

where the ith loop (the interior loop) traverses each class and
conducts a recursive absorption at loop k (the external loop). W0
and Wi denote the binary images of the zero-labeled and the
i-labeled members, respectively. L(k)

3 denotes the kth renewed

L3 .W(k)
0 and W(k−1)

0 denote W0 at loop k and just before
loop k, respectively. Wuni denotes the union of two sets derived
from adjacent analyses. The former (Wi • s2) means morpho-
logically closing Wi with s2 where s2 is a size-given SE. This
operation is for a deleting patch surrounded by a far larger patch
in Wi to be absorbed by the larger. The latter (Wi ⊕ s3) means
to dilate Wi with s3 where s3 is another size-given SE. The
expression, L(k)

3 (•) = i, means to relabel some of members in

L(k)
3 with i if these members conform to the conditions in the

parentheses. Similar to this, the expression, W(k)
0 (•) = 0, means

to remove these relabeled members from W0 .
Find more information about the process of recursive defuzzi-

fying from another literature provided by our team recently [29].
The literature introduced a defuzzifying method similar to that
of this study but the soft partition before the defuzzifying was
conducted by combined binary support vector machines instead
of SBP.

In the examples shown in Figs. 7 and 9, graphs presented in
Figs. 7(f) and 9(d) show the classification results using HBP.
Graph presented in Fig. 7(g) displays the results using SBP
where an originally unsure pixel is relabeled with the dominant
label in the pixel’s neighborhood. Graphs presented in Figs. 7(h)
and 9(e) show Lfinal derived from L3 after removing noises. It
can be seen that SBP performs better than HBP in terms of
resisting noise and generating more complete patches. Graphs
presented in Figs. 7(i) and 9(f) show 3-D views from Lfinal
by setting the old-fashioned courtyard dwellings, multistorey
residential buildings, and high-rise building with their mean
heights of 4, 18, and 60, respectively.

IV. RESULTS AND DISCUSSION

The significance of the study (see Sections IV-A and IV-B),
accuracy assessments (see Section IV-C), computation com-
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Fig. 9. Comparison of performance in regard to using soft and hard classifiers in single-resolution and multiresolution feature spaces. (a) Original Worldview 3
image. (b) L1 (classified in EMRS space). (c) L1 (classified in SRS space). (d) Classification results using EMRS and HBP. (e) Classification results using EMRS
and SBP. (f) 3D view.

plexity (see Section IV-D), and sensitivity for parameter varia-
tions (see Section IV-E) will be discussed as follows.

A. Performance of EMRS Against SRS

When replacing single resolution descriptor with its EMRS-
based one, there is a significant increase of carrying information.
Take Dsa(t) , a shadow involved descriptor as defined by (6) and
displayed by Fig. 5(c), as an example. The value of an element in
Dsa(t) is the weighted sum of percentages of shadow member
calculated in several size-given neighborhood of the element.
Thereby, the higher the value, the higher the probability the ele-
ment belongs to a larger area of shadow patch and therefore, the
higher the probability the element indicates a higher building.
In general, an EMRS-based descriptor is able to express the
mixed patterns of spectrum and texture features associated with
various resolutions. Some classes could not be distinguished in
an SRS space which consists of single resolution descriptors
only but now possible to be distinguished in an EMRS space
which replaces some of the SRS-characterized descriptors with
the EMRS-based ones. Graphs presented in Fig. 9(b) and (c)
show a comparison of classification in both of the spaces. It
can be seen that in the initial stage of soft partition, the pro-
portion of the black members (fuzzy members) as classified in
the SRS space is far larger than that in the EMRS space. The
sure building members softly partitioned in the SRS space are
so few and so fragmented that they can hardly be connected into
building patches. In contrast to this, most patches of the three

building types are preliminarily formed as the partition running
in the EMRS space. This benefits from these EMRS-based de-
scriptors with which the majority of members of a building type
scattered in several layers associated with various resolutions
can be captured separately and then integrated into the patches.
Consequently, classification accuracy can significantly be im-
proved as classification running in an EMRS space (see the data
in Table III).

B. Significance of the Recursive Defuzzifying in SBP

The membership and nonmembership between separate
building types often converse gradually rather than flatly due
to changeable building structure and complex scene even
the classification running in an EMRS space. Consequently,
there are considerable fuzzy members still remaining in the ini-
tial output of classification.

SBP is developed to solve this problem. By setting the output
mode with continuous values and taking logistic curve as the
activation function, all building types can more naturally be
separated. The fuzzy members in the output can be relabeled
by recursive defuzzifying. Take Fig. 9 as an example. Using
HBP, three building types are heavily confused and many of the
original fuzzy members are flatly and mistakenly classified for
high-rise buildings [the brown in Fig. 9(d)]. But using SBP, these
fuzzy members are marked with zero [the black in Fig. 9(b)] at
first, and then more reasonable labels for the black will gradually
be clear depending on the information carried by the ensured
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members around the black as the recursive defuzzifying going.
Fig. 9(f) shows final results after the defuzzifying and denoizing.
Comparisons of overall accuracy (OA) using SBP against HBP
from four testing images are listed in Table III.

C. Accuracy Assessment

This section provides accuracy assessments using following
approaches for comparison:

1) supervised classification in either an EMRS space or an
SRS space.

2) supervised classification by either SBP or HBP.
We do not compare EMRS with MRS because the latter is

a special case of the former, namely the case of the number of
SP(s) being equal to one. By using the latter, a member set for
a class is involved with a specified SP but by using the former
the set is involved with a group of SP(s) and these SP(s) can
adaptively be decided.

The accuracy for an approach is assessed by checking if there
is a reasonable spatial agreement between the classification
outputs and the visual interpretation results. In order to ensure if
the variation of classification accuracy was caused only by the
variation of reference item, the number of descriptors for each
compared feature space is the same. The EMRS space consists
of Dd(a) , Dd(m ) , Dd(s) , Dbu(t) , Dbu(w ) , Dsa(t) , DMR(a) ,
DMR(m ) , DMR(s) , MSV , MVI , Abu , Asa , Sra , and Dbu(m )
(see Sections III-B and III-C) total fifteen descriptors while
the SRS space replaces the first nine EMRS-based descriptors
with their single components. For example, replace Dd(a) with
Dd(3,1) as defined by (2). The samples for training and testing
were acquired through visual interpretation and image point
sampling. For each test image, the average number of samples
for each class is 57, half for the training and the other for the
testing. Both of the SBP and HBP networks use single hidden
layer with 32 nodes.

The measures for accuracy assessment are the OA and the
mean kappa statistic value (κ). Figs. 7, 9, and 10 display four
examples for the assessments. Tables I and II provide two con-
fusion matrices for two comparison tests both by SBP but one
in EMRS space and the other in SRS space. Table III provides
assessing statements for all four examples.

The data in Table III indicate that the mean OA by HBP in
EMRS space is 17.2% higher than that in SRS space and the
mean κ is 21.8% higher. As running both in EMRS space, the
mean OA by SBP is 2.6% higher than that by HBP and the mean
κ is 3.3% higher. That is, the mean OA by SBP in EMRS space
is 19.8% higher than that by the traditional HBP classifier in the
common SRS space and the mean κ is 25.1% higher.

D. Computational Complexity

Computational complexity is an important metric which can
be used to evaluate the practicability of a new algorithm. By
comparing the computation of descriptor with EMRS against
SRS and comparing the classification with SBP against HBP, it
can be seen that there is a huge number of extra neighborhood
operations being added to EMRS and SBP. The extra addings are

TABLE I
CONFUSION MATRIX FOR THE EXAMPLE IN FIG. 7(A) CLASSIFIED BY SBP

IN EMRS SPACE

Bh ig h Bm id Bl ow Ve Bg �r ow UA

Bh ig h 58 8 0 1 1 68 0.935
Bm id 3 49 0 0 0 52 0.817
Bl ow 0 2 32 1 1 36 1
Ve 1 0 0 42 1 44 0.955
Bg 0 1 0 0 69 70 0.958
�c o l 62 60 32 44 72 270

κ = 0.906 OA = 0.926

Bh ig h , Bm id , and Bl ow represent high-rise buildings, multistorey res-
idential buildings, and old-fashioned courtyard dwellings, respectively.
Ve and Bg represent vegetation and background, respectively. UA de-
notes user accuracy. �r ow and �c o l represent sums of row and column
value, respectively.

TABLE II
CONFUSION MATRIX FOR THE EXAMPLE IN FIG. 7(A) CLASSIFIED BY SBP

IN SRS SPACE

Bh ig h Bm id Bl ow Ve Bg �r ow UA

Bh ig h 59 17 1 0 3 80 0.952
Bm id 2 30 0 0 1 33 0.5
Bl ow 0 2 29 1 0 32 0.906
Ve 1 1 2 42 2 48 0.955
Bg 0 10 0 1 66 77 0.917
�c o l 62 60 32 44 72 270

κ = 0.793 OA = 0.837

used to obtain the multilayer densities of neighborhood elements
which are involved with certain conditions and/or resolutions.

We replace the computation for density of gray elements with
a calculation for mean value of binary elements to reduce time
consumption. The binary matrix for the latter is segmented from
a gray matrix according to given conditions. The mean value of
binary elements in a neighborhood is approximately equal to
the density of gray elements in the same neighborhood under
the same segmenting conditions. Big O notation can serve as a
measure to assess how the new algorithm responds to changes in
input size. By taking function f(x) to denote the computation for
the mean value of binary elements, the exponent of x is 1. That
is, f(x) = O(x1). f(x) should increase linearly as x increases.
Experiments also prove that the execution time is steadily and
linearly growing as the input size increases. Fig. 11 shows an
example of the relation between input size A (image area) and
execution time t and the testing image is the same as that shown
in Fig. 10(d).

Meanwhile, a comparison of time consumption with the study
algorithm against conventional algorithm is listed in Table IV.
Four images for the comparison are the same as those for accu-
racy assessment. The data in the table indicate that the average
consuming time for descriptor computation is 11.140 and 8.789 s
using EMRS and SRS, respectively, and the former is 22.769%
higher than the latter; the average consuming time for classifi-
cation is 14.628 and 14.160 s using SBP and HBP, respectively,
and the former is only 3.330% higher than the latter. That is,
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TABLE III
SUMMARY OF ACCURACY ASSESSMENT FOR ALL TEST IMAGES

No Image size NF ig In EMRS space In SRS space

By HBP By SBP By SBP after simplification By HBP By SBP By SBP after simplification

OA κ OA κ OA κ OA κ OA κ OA κ

1 757 × 800 7(a) 0.882 0.840 0.922 0.887 0.926 0.906 0.811 0.76 0.855 0.817 0.837 0.793
2 797 × 800 9(a) 0.913 0.891 0.927 0.908 0.927 0.908 0.648 0.558 0.700 0.625 0.732 0.663
3 718 × 711 10(a) 0.888 0.856 0.898 0.869 0.905 0.877 0.675 0.573 0.747 0.670 0.770 0.701
4 702 × 739 10(d) 0.848 0.806 0.889 0.859 0.903 0.876 0.709 0.629 0.799 0.743 0.789 0.729

Mean 0.883 0.848 0.909 0.881 0.915 0.892 0.711 0.630 0.775 0.714 0.782 0.722

No and NF ig denote the serial number of test and the figure number of test image, respectively.

Fig. 10. Third and fourth examples for accuracy assessments. (a) Original Quickbird image. (b) Final results. (c) 3-D view. (d) Original Quickbird image.
(e) Final results. (f) 3-D view.

the consuming time does not significantly increase as the extra
neighborhood operations being added to the new algorithms.

E. Sensitivity for Parameter Variation

In order to automatically set parameters in the proposed
scheme, a parameter is usually divided into two parts: a base
number and two experimental variables. The base number is
often an average and can be derived adaptively from image
data. Two variables are the increment and the iteration number
and need to be set experimentally. However, the experimental
setting is not difficult because a 10–15% deviation is verified
acceptable. Take Dd as defined by (1) as an example. In order
to calculate Dd , a threshold series needs to be specified for the
multisegmentation of a gray matrix derived from a low hat trans-
form. The series is set with c by dmean where dmean is the mean Fig. 11. Relation between input size A (image area) and execution time t.
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TABLE IV
ASSESSMENT OF TIME CONSUMPTION

No NF ig Descriptor computation Classification by BP

tE M R S (s) tS R S (s) dt1 (%) tS B P (s) tH B P (s) dt2 (%)

1 7(a) 10.370 7.978 29.991 16.772 16.289 2.965
2 9(a) 13.201 10.584 19.824 16.360 15.830 3.348
3 10(a) 11.341 8.571 24.425 12.719 12.282 3.558
4 10(d) 9.646 8.022 16.836 12.662 12.240 3.448
Mean 11.140 8.789 22.769 14.628 14.160 3.330

value of the gray matrix. dmean also serves as a base number (a
central threshold) to avoid the series deviating from actual situ-
ations seriously. On the other hand, c changes in a range around
1. In this example, set the increment and the iteration number
with 0.3 and 3, respectively. The range of c is {0.7,1,1.3}. Ex-
periments indicate that the c range is often stable and needs
no adjustment for all four testing images resulting from taking
dmean as an approximate center value of the threshold series.
That is, classification accuracy seems almost insensitive to a not
too big deviation in setting c.

V. CONCLUSION

A literature review of current practices in building type clas-
sification indicates that this study has several meaningful inno-
vations:

1) Propose the concept of EMRS. EMRS uses the multi-
structural element morphological operations, multisized
neighborhood statistics, and multithreshold segmentation
to get the information scattered in different layers (e.g.,
the layer of pixel, neighborhood, image object, etc.) and
to generate meaningful segments.

2) Integrate the segments into a number of weighted sum ma-
trices which serve as either a descriptor or a component of
descriptor in a feature space, therefore, enabling EMRS to
be embedded in the classification and enabling the mem-
bers of a single building type as scattered in several layers
of different resolutions to be captured entirely.

3) Develop a defuzzifying method to recursively rela-
bel fuzzy members in a clustering prototype derived
from soft partition depending on the information car-
ried by the gradually increased sure members around the
fuzzy.

4) The extra neighborhood operations almost do not increase
the computational consumption due to having the mean
value of binary element as a replacement for the density
of gray element.

5) Classification accuracy is usually not sensitive to the de-
viation in setting parameters because the center values of
these parameters are adaptively derived from image data.

The main contribution of this study is the EMRS-SBP scheme
explored for building type classification in complex urban scene
using general HSR imagery solely. The excellent classification
accuracy and good universality indicate that the scheme, in many
cases, has potential for identification of other objects, especially
for those with spectral confusion and in complex scene.
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