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Learning a Robust Local Manifold Representation for
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Abstract—Local manifold learning has been successfully
applied to hyperspectral dimensionality reduction in order to em-
bed nonlinear and nonconvex manifolds in the data. Local manifold
learning is mainly characterized by affinity matrix construction,
which is composed of two steps: neighbor selection and computa-
tion of affinity weights. There is a challenge in each step: First,
the neighbor selection is sensitive to complex spectral variabil-
ity due to nonuniform data distribution, illumination variations,
and sensor noise; second, the computation of affinity weights is
challenging due to highly correlated spectral signatures in the
neighborhood. To address the two issues, in this paper, a novel
manifold learning methodology based on locally linear embed-
ding is proposed through learning a robust local manifold rep-
resentation. More specifically, a hierarchical neighbor selection is
designed to progressively eliminate the effects of complex spec-
tral variability using joint normalization and to robustly compute
affinity (or reconstruction) weights reducing multicollinearity via
the refined neighbor selection. Additionally, an idea that combines
spatial–spectral information is introduced into the proposed man-
ifold learning methodology to further improve the robustness of
affinity calculations. Classification is explored as a potential ap-
plication for validating the proposed algorithm. The classification
accuracy in the use of different dimensionality reduction methods
is evaluated and compared, while two kinds of strategies are ap-
plied in selecting the training and test samples: random sampling
and region-based sampling. Experimental results show the classi-
fication accuracy obtained by the proposed method is superior to
those state-of-the-art dimensionality reduction methods.

Index Terms—Dimensionality reduction (DR), hyperspectral im-
age, local manifold learning (LML), multicollinearity, nonuniform
data distribution.

I. INTRODUCTION

HYPERSPECTRAL data are characterized by very rich
spectral information, which enables us to detect targets of
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interest and analyze data attributes more easily, but also intro-
duces drawbacks caused by its high dimensionality. As a result,
the dimensionality reduction (DR) is a necessary and essential
ingredient to address the aforementioned issue. A large num-
ber of DR techniques have been developed for a wide range
of applications, including image segmentation [1], biometric
[2], large-scale data classification [3], image/video analysis [4],
and visualization [5]. Generally, these DR approaches can be
categorized into linear and nonlinear methods.

Classical linear methods, such as principal component analy-
sis (PCA) [6], easily fail to excavate the underlying data structure
that lies in the complex real world. Comparatively, many nonlin-
ear techniques, such as manifold learning (Isomap [7], locally
linear embedding (LLE) [8], Laplacian eigenmaps (LE) [9], and
local tangent space alignment (LTSA) [10]), exhibit unique ad-
vantages in DR and obtain state-of-the-art results in many fields.
These examples of successful use of manifold learning men-
tioned above have widely attracted the attention of researchers
working in the field of hyperspectral data analysis. Owing to
merits of manifold learning, which can effectively map nonlin-
ear and nonconvex manifolds in low-dimensional space, massive
related approaches are introduced into hyperspectral image pro-
cessing and successfully applied to various tasks, e.g., feature
extraction [11], [12], classification [13]–[16], detection [17],
[18], and multitemporal analysis [19]. In addition, it has been
proven in [3] that the algorithm performance with global mani-
fold methods is inferior to that with local manifold methods. As
a typical and benchmark local manifold learning (LML) method,
LLE explores locally linear and globally nonlinear assumptions
to effectively capture the underlying intrinsic structure of data.
LLE has been successfully applied to hyperspectral classifica-
tion. Ma et al. [13] integrated LML with improved k-nearest
neighbor for hyperspectral classification tasks. In [14], Ma
et al. extended their work and proposed a kind of semisuper-
vised hyperspectral image classification method based on LML.
Tang et al. [16] proposed manifold based on sparse represen-
tation for hyperspectral classification, and they embedded the
local geometric property using the local manifold representation
into classification framework based on sparse representation in
order to enforcedly keep consistent from sparse code to local
manifold representation.

Current research on manifold learning methods in hyper-
spectral data processing mostly focuses on their potential for
classification or detection tasks and frequently neglects the rep-
resentation capability of the manifold structure, leading to dif-
ficulty in improving the classification accuracy. In other words,
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Fig. 1. Unified framework of the LML algorithm.

considerable attention has been paid to feature fusion and clas-
sifier design on manifold-based hyperspectral data processing;
however, studies on manifold representation are still lacking.
Consequently, the classification accuracy can be limited by bot-
tlenecks in manifold learning, where a breakthrough in the level
of the classifier is hardly made. To this end, a better manifold
representation can break the stalemate.

In general, LML can be regarded as local graph embedding
[20], while the most important part of the graph-embedding
framework is the calculation of affinities (or similarities) of ver-
tex pairs in a graph, i.e., the affinity matrix. The construction of
the affinity matrix comprises two steps: neighbor selection (NS)
and computation of affinity weights. There is a challenge in each
step: 1) The NS is sensitive to the complex spectral variability
due to environmental conditions (e.g., illumination and atmo-
spheric conditions) and instrumental configurations (e.g., sensor
noise) as well as data inherent structure (e.g., data distribution);
2) the computation of affinity weights is challenging due to
highly correlated spectral signatures in the neighborhood. The
latter issue is called multicollinearity when multiple regression
analysis is used to obtain affinity weights. More specifically,
multicollinearity refers to a phenomenon where multiple ex-
planatory variables (spectral signatures in our case) are highly
correlated in a linear regression model. This phenomenon in
LML easily results in an inaccurate estimation of the affinity
matrix.

To tackle these challenges, it is important to develop a robust
and effective local manifold representation approach. In this pa-
per, we mainly focus on improving LLE, which is one of the
benchmark LML methods in many fields. A novel LML method-
ology on the basis of LLE is proposed, which aims at learning
a robust local manifold representation (RLMR). Two main con-
tributions of this paper are as follows: First, the hierarchical NS
(HNS), which comprises joint normalization (JN) and refined
NS (RNS), has been embedded into the original LLE frame-
work to robustly select neighbors and mitigate multicollinearity
in calculating affinity weights at the same time; Second, in-
spired by successful applications of spatial information in the
hyperspectral classification, we model the spatial information
into the proposed DR methodology in order to further improve
the robustness of affinity calculations.

The remainder of this paper is described as follows: In
Section II, we begin with a brief review of LML with three
representative LML methods and provide comparative analysis.
Section III introduces our methodology. Experimental results on

classification are presented in Section IV. Finally, we provide
conclusions and future outlook in Section V.

II. LOCAL MANIFOLD LEARNING

In this section, three representative LML methods, i.e., LE,
LLE, and LTSA, are introduced in the graph-embedding frame-
work, focusing on their advantages and disadvantages.

Generally, LML methods attempt to capture the underlying
local manifold structure of the original data and preserve it in a
low-dimensional space, which enables nonlinear DR. Let X =
[x1 ,x2 , . . . ,xN ] ∈ RD×N denotes N data samples that have
D-dimensional features and Y = [y1 ,y2 , . . . ,yN ] ∈ Rd×N

denotes their low-dimensional representations, where d � D.
LML comprised mainly three steps:

1) neighbor selection;
2) computation of affinity weights; and
3) calculation of embedding.
The above-mentioned steps are illustrated in Fig. 1. Pairwise

similarity measurements are performed to selected k neighbors
for each data sample. Euclidean distance is commonly used for
similarity measurement. Let W ∈ RN ×N be a sparse affinity
matrix with the (i, j)th entry of the matrix representing the
affinity weight from the ith sample and jth sample, where j ∈ φi

and φi is a set of neighbors of the ith sample. The calculation
of embedding coordinates is generally formulated as [20]

Ŷ = arg min
Y

⎧
⎨

⎩

N∑

i=1

∑

j∈φi

‖yi − yj‖2
2 Wij

⎫
⎬

⎭
, s.t. YBYT = I

= arg min
Y

{
tr
(
YLYT

)}
, s.t. YBYT = I (1)

where L ∈ RN ×N is the Laplacian matrix defined as L = D −
W and D is a diagonal matrix defined by ∀i Dii =

∑
j Wij . B

is a constant matrix defined by the formulation of each manifold
learning method. LML methods can be mainly characterized by
the construction of the affinity matrix W, as described below.

In the following, three popular LML methods—namely LE,
LLE, and LTSA—are introduced in details according to the
aforementioned unified framework of the LML algorithm.

LE: The basic principle is to compute the affinity matrix for
each data point in the original high-dimensional space using the
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Gaussian function as [9]

WLE
ij =

{
exp

(
−‖xi − xj‖2

2

/
2σ2
)

if j ∈ φi

0 otherwise.
(2)

The constant matrix B is defined as B = D. The low-
dimensional representations can be obtained by solving the op-
timization equation (1).

LE is a very typical graph-based embedding method, which
has been proven in [9] to be simple to implement and robust
against outliers and noise. However, its limitation is also obvious
[21], namely a local manifold structure is artificially designed
by exploiting approximately pairwise distances with heat kernel,
which brings relatively weak representation of local manifold
without considering the property of local neighbors.

LLE: It represents the underlying local manifold structure by
exploiting the local symmetries of linear reconstructions [5] be-
tween each data point and its neighbors in the high-dimensional
space and then computes the low-dimensional embedding co-
ordinates that preserve the reconstruction coefficients. The re-
construction coefficients, denoted as A ∈ RN×N, are obtained
by the minimization

Â = arg min
A

⎧
⎨

⎩

N∑

i=1

∥
∥
∥
∥
∥
∥
xi −

∑

j∈φi

Aijxj

∥
∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭

s.t.
∑

j∈φi

Aij = 1 (3)

where Aij denotes the reconstruction weight between xi and
xj , if the jth data point is not one of the k neighbors of the
ith data point (j ∈ φj ); otherwise Aij = 0. The reconstruction
weights obey an important symmetry of being invariant to ro-
tations, rescalings, and translations of any target data point and
its neighbors [5]. The low-dimensional coordinates are obtained
by minimizing the embedding cost function as

Ŷ = arg min
Y

⎧
⎨

⎩

N∑

i=1

∥
∥
∥
∥
∥
∥
yi −

∑

j∈φi

Aijyj

∥
∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭

s.t.
N∑

i=1

yi = 0,
1
N

N∑

i=1

yiyT
i = I. (4)

From the viewpoint of the graph-embedding framework, LLE
can also be induced as the graph-embedding problem; therefore,
(4) can be rewritten in the form of (1) as

Ŷ = arg min
Y

⎧
⎨

⎩

N∑

i=1

∥
∥
∥
∥
∥
∥
yi −

∑

j∈φi

Aijyj

∥
∥
∥
∥
∥
∥

2

2

⎫
⎬

⎭
, s.t.YBYT = I

= arg min
Y

⎧
⎨

⎩

N∑

i=1

∑

j∈φi

‖yi − yj‖2
2 WLLE

ij

⎫
⎬

⎭
, s.t.YBYT = I

= arg min
Y

{
tr
(
YLLLEYT

)}
, s.t.YBYT = I (5)

where the affinity matrix (WLLE) can be computed by the fol-
lowing equation [20]:

WLLE
ij =

{
Aij + Aj i − AijAj i if j ∈ φi

0 otherwise
(6)

and Laplacian matrix of LLE can be given by LLLE = D −
WLLE = (I − A)T(I − A) [5].B is defined as B = I.

With a local regression technique [22], the property of lo-
cal data is fully taken into consideration in LLE, which means
that a local manifold structure can be effectively learned from
local data. It is natural that it is able to improve the representa-
tion ability of the local manifold. That is not to say, however,
that the RLMR can be obtained using LLE, since LLE is very
sensitive to data distribution [23], variability [24], as well as
multicollinearity.

LTSA: Similar to LLE, LTSA attempts to mine the underlying
local manifold structure assuming local linearity. The core idea
of LTSA is to utilize a local tangent space to represent a local
manifold structure via a linear mapping, such as PCA. There-
fore, it can be solved naturally as a graph-embedding problem,
and the affinity matrix can be defined as WLTSA = D − LLTSA,
more specifically formulated as follows [14]:

WLTSA
ij =

{
1
k + 1

k−1 θT
i Λ

−1θj if j ∈ φi

0 otherwise
(7)

where θi and θj are the local tangent coordinates of xi and xj ,
respectively, and Λ stands for the leading d eigenvalues of the
covariance matrix of φi , and k is the number of neighbors for xi .
The low-dimensional embedding is calculated by the following
minimization:

Ŷ = arg min
Y

{
tr
(
YLLTSAYT

)}
, s.t.YBYT = I

= arg min
Y

⎧
⎨

⎩

N∑

i=1

∑

j∈φi

‖yi − yj‖2
2 WLTSA

ij

⎫
⎬

⎭
, s.t.YBYT = I

= arg min
Y

{
N∑

i=1

‖yiH − Tiθi‖2
2

}

, s.t.YBYT = I (8)

whereH = I − eeT/k is the centering matrix, ande is a uniform
vector with the size of k × 1. Ti is a local transformation matrix
with linearity, and B is defined as B = I.

Typically, a concept of local tangent space is proposed in
LTSA to linearly and approximately estimate the local manifold
structure, which is able to better capture the intrinsic structure
of the underlying manifold [10]. However, such approximated
estimation of the local manifold structure is possibly inaccurate,
particularly in nonuniform distributed data [25], due to those
data in the local manifold space without lying in, or closing to,
a linear subspace. Also, although the performance of LTSA can
improve the local manifold representation compared to LLE
to some extent, it still fails when taking the data variability
(e.g., noise) into consideration [26]. Furthermore, unlike LLE,
LTSA explores a linear mapping (e.g., PCA) to find the principle
information to depict the local manifold structure, accordingly
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Fig. 2. Holistic diagram of the proposed method.

resulting in inevitable loss of useful information (e.g., geometric
structure and local minutiae).

In summary, among the three LML methods, one advantage
of LLE and LTSA over LE is that by using LLE or LTSA we
can obtain a potentially better performance in DR due to their
reasonably linear representation in the local manifold space.
But the drawback of LLE and LTSA is that neither is highly
robust against complex data variability, e.g., caused by noise,
illumination, or nonuniform data distribution. Therefore, how to
robustly learn the local manifold representation is an unsolved
problem in LML. As a promising LML framework, LLE has
been successfully applied in many fields and has obtained some
amazing experimental results due to effectively and reasonably
local linear assumption, for example, in hyperspectral data pro-
cessing [3], [13], [14], [16], [17], [22]. However, sensitivity
to variability and multicollinearity when calculating the local
linear representation are hindering the advancement of LLE to-
ward robustness and high performance. Therefore, in the next
section, we emphatically introduce the proposed novel method-
ology based on LLE in an attempt to address the two issues
mentioned above.

III. ROBUST LOCAL MANIFOLD REPRESENTATION

In this section, a novel LML methodology is introduced in
detail in order to learn an RLMR, mainly including the design
of HNS and the integration of spatial contextual information.
Fig. 2 shows the holistic diagram of the proposed methodology
that mainly comprises the six steps given below, where the first

four correspond to HNS and the fifth is the integration of spatial
information.
Step 1. Global data normalization (GDN) is performed to deal

with the spectral variability modeled by scaling and
shifting.

Step 2. NS coarsely selects local neighbors of the target pixel.
Step 3. Local data normalization (LDN) is applied to make

local data distribution more uniform and isotropic and
further eliminate locally spectral variability.

Step 4. RNS aims at mitigating multicollinearity in the local
manifold space, making it possible to obtain a relatively
accurate and intrinsic structure of underlying manifold.

Step 5. Computation of reconstruction weights with contextual
information jointly embeds spectral and spatial infor-
mation for a robust calculation of the reconstruction
weights.

Step 6. Calculation of embedding obtains the low-dimensional
feature representation by embedding robust local man-
ifold properties into the low-dimensional space.

A. Hierarchical Neighbors Selection

Fig. 3 shows the detailed diagram of HNS, which is composed
of JN and RNS.

1) Joint Normalization: Data normalization is widely used
in data preprocessing procedure, including hyperspectral data
analysis [27], [28]. It aims at reducing the effect of numer-
ous variations and improving the performance of subsequent
algorithms. Generally, data normalization includes GDN and
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Fig. 3. Detailed diagram of HNS.

LDN [29]. The purpose of GDN is to mitigate illumination vari-
ations and modify the global data distribution so that it is more
uniform and isotropic [30], [31], enabling them to be measured
in the same, or similar, level or unit. Therefore, GND should
be performed on the whole hyperspectral image. Unlike GDN,
LDN tends to uniformize the mean and variance of the local
neighborhood, which is particularly useful for nonuniform dis-
tributed data [32], [33]. Owing to the merits of GDN and LDN,
JN is an appropriate approach to effectively address the issues
of spectral variability and nonuniform data distribution, which
can be implemented step-by-step via the following formulations

1) Global data normalization: It performs the following com-
putations:

xns
i =

xo
i − co

i

so
i

(9)

xg
i = (xns

i − cns)./sns (10)

where “./” means the elementwise division, xo
i ∈ RD×1 is the

ith original spectral signature, and co
i and so

i are the mean value
and variance corresponding to xo

i , respectively. xns
i ∈ RD×1

stands for the normalized spectral signature. Xns ∈ RD×N

represents all normalized spectral signatures made up of xns
i ,

and cns ∈ RD×1 and sns ∈ RD×1 correspond to the mean
value and variance of Xns , respectively. xg

i ∈ RD×1 stands for

the normalized spectral signature of GDN. The normalization
obtained by performing (9) can mitigate the effects of spectral
variability that can be explained by scaling and shifting,
whereas (10) makes the global data distribution more uniform
and isotropic and puts the same weight on all the spectral
bands, as shown in Fig. 3(Top-left).

2) Local data normalization: After selecting coarse neigh-
bors for each data point using the Euclidean distance,
LDN is exploited to make data distribution more uniform
and isotropic in the local manifold space, which can be
formulated as

xl
ij =

{
(xg

i − cg
i )./s

g
i j = 0

(xg
ij − cg

i )./s
g
i j = 1, 2, . . . ,K

(11)

where “./” means the elementwise division, Xg
i = [xg

i ,
xg

i1 , ...,x
g
ij , ...,x

g
iK ] ∈ RD×(K +1) consists of the globally nor-

malized spectral features of ith data point and its K neigh-
bors. cg

i ∈ RD×1 and sg
i ∈ RD×1 represent the mean value and

variance of Xg
i , respectively. Xl

i = [xl
i ,x

l
i1 , ...,x

l
ij , ...,x

l
iK ] ∈

RD×(K +1) represents the final normalized spectral features for
ith data point and its neighbors by JN. An example of local
data distribution is shown in Fig. 3(Bottom-left). We can see
that the data distribution becomes more uniform and isotropic
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by means of LDN reducing the effects of nonuniform data
distribution.

2) Refined Neighbor Selection: After JN, we obtain the
rough results of NS where the influence of spectral variabil-
ity has been mitigated, but multicollinearity still exists among
neighbors. Multicollinearity leads to an inaccurate estimation
of the affinity matrix, thereby degrade the quality of the local
manifold structure. To address this issue, RNS is performed as
the second layer of HNS. RNS, which is inspired by the lo-
cal manifold alignment, is proposed to reduce the information
redundancy [34] in the coarse neighborhood, as illustrated in
Fig. 3(Right). RNS can mitigate the effects of multicollinearity
in the next step, i.e., the calculation of reconstruction weights,
while preserving local manifold properties. In detail, LFS is
divided into two parts.

First, inspired by [35] and [36], we construct the local struc-
ture featureFlocal

p for the data point p in the feature space using its
neighbor’s information Xl

p = [xl
p1 , ...,x

l
pj , ...,x

l
pK ] ∈ RD×K .

Flocal
p can be formed by the distance property between the feature

of p with those of its neighbors using a Gaussian function:

F local
pj = exp

(
−∥∥xl

p − xl
pj

∥
∥2

2

)
(12)

Flocal
p =

[
F local

p1 , . . . , F local
pj , . . . , F local

pK

]
. (13)

The second part is to screen out new local neighbors that
have similar data distribution using the Kullback–Leibler diver-
gence (KLD). The KLD has been justified to effectively mea-
sure the similarity of hyperspectral data distribution [37]. The
difference of local features df = [df

1 , ..., df
q , ..., df

K ] ∈ R1×K

between the point p and its neighbor q can be measured as

df
q = KLD

(
Flocal

p ||Flocal
q

)
+ αKLD

(
Flocal

q ||Flocal
p

)
(14)

KLD
(
Flocal

p ||Flocal
q

)
=

K∑

j=1

F local
pj × log2

(
F local

pj

F local
qj

)

(15)

KLD
(
Flocal

q ||Flocal
p

)
=

K∑

j=1

F local
qj × log2

(
F local

qj

F local
pj

)

(16)

where Flocal
p ∈ R1×K and Flocal

q ∈ R1×K stand for the local
structure features of p and q in the spectral domain, respectively,
and α is a penalty parameter balancing the two terms described
in (15) and (16). Neighbors with the k smallest df value are
chosen from the coarse neighbors as the new neighbors of the
data point p, namely Xnl

p = [xnl
p1 , ...,x

nl
pj , ...,x

nl
pk ] ∈ RD×k . k is

the final number of neighbors for each point, and we make the
value of K equal to twofold k.

An example showing the effect of RNS is given in
Fig. 4, where correlations between the target pixel and
its neighbors are shown with and without using RNS. To
be specific, given any target pixel, k neighbors were se-
lected without RNS, whereas for RNS, 2k were selected at
first and then k neighbors are refined from 2k neighbors.
Therefore, the same number of neighbors k was obtained
without RNS and with RNS. Fig. 4(Left) shows spectral
signatures of neighbors from two different strategies (without
RNS and with RNS). Although it is not so obvious, it still

Fig. 4. (Left) Spectral signatures of local neighbors for an exemplar data point
and (right) their correlations (top) without RNS and (bottom) with RNS.

emerges the slight difference that spectral signatures without
RNS are more intensive than those with RNS, which means that
those without RNS are likely to generate multicollinearity when
computing the affine matrix (weight matrix). Fig. 4(Right)
shows relatively obvious results regarding the reduction of
multicollinearity. We can see that the values of correlation
matrix with RNS are lower than those without RNS, which
demonstrates that the linear correlations observed in the
correlation matrix are effectively reduced after using RNS.

B. Local Manifold Representation With Spatial Contextual
Information

To further improve the robustness of the calculation of recon-
struction weights, the spatial information is incorporated into
linear reconstructions. We assume that spatially neighboring
spectral pixels can be explained by the same or similar recon-
struction weights [38], if spatially neighboring pixels include
similar spectral components. The calculation of reconstruction
weights with spatial contextual information can be formulated
based on (1) by adding the constraint that the reconstruction
weights of the target pixel are approximately equal to the aver-
age of those of its neighboring pixels, as shown in the following:

a0
i = arg min

w 0
i

{
4∑

s=0

∥
∥xnl

is − Xnl
i as

i

∥
∥2

2

}

,

s.t.

∥
∥
∥
∥
∥
Xnl

i

(

4a0
i −

4∑

s=1

as
i

)∥
∥
∥
∥
∥

2

2

≤ η , (as
i )

Tas
i = 1,

s = 0, 1, . . . , 4 (17)

where Xnl
i = [xnl

i1 , ...,xnl
ij , ...,xnl

ik ] ∈ RD×k is the k-nearest
neighbors selected by HNS. xnl

is , s = 0, 1, ..., 4 are the tar-
get spectral pixel and its four spatial neighbors, respectively, as
an example shown in Fig. 5. Correspondingly, as

i ∈ Rk×1 ,s =
0, 1, ..., 4 are their reconstruction weights. η is a tiny real number
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Fig. 5. Diagram for spatial–spectral combination in hyperspectral DR.

(here η = 10−3) that represents the limit of error. Note that LDN
should be conducted on this dataset composed of target spectral
pixel and its spatial and spectral neighbors before calculating
reconstruction weights.

We can regard (17) as a joint optimization problem. In this
case, the objective function of (17) can be rewritten as

a0
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(18)

where the sizes of L, X̂nl
i , Âi ,C are 6D × 5k, 6D × 1, 5k × 1

and 5 × 5k, respectively. And e ∈ R1×k is the unit vector with
a size of 1 × k, and β is a penalty parameter to balance the
importance between error item and constraint item in (18).

In order to solve (18), it can be further relaxed by means of
Lagrange multipliers as represented by

a0
i = arg min

a0
i

{∥
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∥X̂nl

i − LÂi

∥
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2

F
+ λ

∥
∥
∥CÂi − ∧

e
∥
∥
∥

2

2

}

(19)

where λ is also a penalty parameter, and here let it be 1 for
simplicity as well as ê = [1 1 1 1 1 ]T ∈ R5×1 . The solution
in (19) can be analytically derived [39] by matrix derivation

operation as

a0
i =

(
LTL + λCTC

)−1
(
LTX̂nl

i + λCT ∧
e
)
. (20)

Therefore, a0
i is the weight vector for ith pixel by using

RLMR. Following the framework shown in Fig. 2, the result of
DR can be obtained by calculating the embedding using (1).

IV. EXPERIMENT

In this section, we explore the classification as a potential
application and quantitatively evaluate the performance of DR
algorithms using overall classification accuracy. The main focus
of this paper is to learn a more robust and discriminative feature
representation, rather than how to develop a more advanced
classifier. Therefore, we use two common classifiers, namely
the nearest neighbor (NN) algorithm based on the Euclidean
distance and linear support vector machines (SVMs).

A. Hyperspectral Datasets

The experiments are carried out using two benchmark hyper-
spectral datasets.

1) Indian Pines AVIRIS Image: The first dataset was acquired
by NASA’s AVIRIS sensor over the Indian Pines test site
in Northwest Indiana with the size of 145 × 145 × 220
and 10 nm spectral resolutions over the range of 400–
2500 nm, mainly including several kinds of vegetation.
More specific classes and the number of samples can be
found in Table I.

2) 2013 IEEE GRSS Data Fusion Contest (DFC) image: The
second dataset was provided for the 2013 IEEE GRSS
DFC acquired by the ITRES-CASI 1500 sensor with the
size of 349 × 1905 × 144 in the range of 380–1050 nm,
which includes more varied categories.

B. Results of Indian Pines AVIRIS Data

For the first dataset, we adopted two sampling strategies to
select training samples and test samples: random sampling and
region-based sampling. Random sampling is a common way
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TABLE I
NUMBER OF TRAINING SAMPLES AND TEST SAMPLES FOR EACH CLASS

No. Class Name Total Cross Validation Training Testing

1 Corn-Notill 1434 50 50 1334
2 Corn-Mintill 834 50 50 734
3 Corn 234 50 50 134
4 Grass-Pasture 497 50 50 397
5 Grass–Trees 747 50 50 647
6 Hay-Windrowed 489 50 50 389
7 Soybean-Notill 968 50 50 868
8 Soybean-Mintill 2468 50 50 2368
9 Soybean-Clean 614 50 50 514
10 Wheat 212 50 50 112
11 Woods 1294 50 50 1194
12 Bldg-Gra-Tr-Driv 380 50 50 280
13 Stone–Stel–Tower 95 15 15 65
14 Alfalfa 54 10 10 34
15 Grass-Past-Mowed 26 5 5 16
16 Oats 20 5 5 10

for the validation of the hyperspectral classification. In contrast,
classification using region-based sampling is more practical and
challenging due to high correlation and limited variability of
training samples, and thus an effective way to investigate the
performance of the proposed method. We randomly assigned
around 5% of total samples as cross-validation samples and
then divided the rest into two parts: training samples (5% of
total samples), by random sampling or region-based sampling,
and test samples (90% of total samples). Moreover, ten repli-
cations were performed for selecting training and test samples
based on the two aforementioned sampling strategies. The spe-
cific number of cross validation, training, and test samples is
listed in Table I [40]. We compare the classification results on
dimensionality-reduced data using the proposed method with
those using some benchmark DR methods (PCA, KPCA [41],
LLE, LE, and LTSA) and original spectral features (OSF). Three
step-by-step methods, i.e., JN, HNS, and RLMR, are used for
the proposed methods to investigate the effects of JN, LFS, and
the integration of spatial information.

1) Performance Comparison and Analysis Between RLMR
and Classical DR Methods: Initially, we conducted a fivefold
cross validation on training samples in order to select the op-
timal parameter combination. Table II gives the classification
accuracies obtained by using the nine methods with optimal
parameters (d, k). It should be noted that two kinds of classifica-
tion accuracy are applied here, including overall accuracy (total
classification accuracy of all classes) and average accuracy (the
average of the classification accuracy of each class), to evaluate
the performance of the listed methods.

The proposed methods outperform the other methods both
with random sampling and region-based sampling. Compared
to OSF, JN, HNS, and RLMR increase the overall accuracy
by 8.25%, 12.71%, and 21.1%, respectively, with random sam-
pling, and 7.42%, 8.83%, and 10.46%, respectively, with region-
based sampling. For the average accuracy, on the other hand,
the corresponding increases are, respectively, 10.2%, 12.89%,
18.11% with random sampling, and 9.68%, 10.95%, 11.54%
with region-based sampling.

The classification maps are shown in Figs. 6 and 7. It can be
seen that the classification maps of JN, HNS, and RLMR in-
clude less salt-and-pepper errors. In particular, those of RLMR
are smoother in the local spatial region, resulting from the em-
bedding of spatial information. These results demonstrate the
effectiveness of all three technical components of the RLMR,
i.e., JN, RNS, and the integration of spatial information, and
imply that they successfully contribute to extracting robust and
discriminative low-dimensional feature representations. In con-
trast, the classification accuracies of the classical LML methods
(e.g., LLE, LTSA) are holistically higher than those obtained by
using OSF and PCA, and yet lower than the results of our pro-
posed methods due to the sensitivity of variability with respect
to LLE and the unavoidable loss of information with respect to
LTSA. As for the performance of LE, it is even inferior to the
performances of OSF and PCA, and considerably lower than
LLE and LTSA, as discussed in Section II. This indicates that
the performance of these methods is unstable in DR due to
challenges involved in NS and affinity calculations.

To effectively support the conclusion obtained by the NN
classifier, an advanced and common classifier—SVM [44] is
also applied for classification under the same condition. In this
paper, a linear version of SVM is selected for the classifier
rather than nonlinear versions to investigate the capability of
handing nonlinear structure in the data for all DR methods under
comparison. Classification accuracies obtained via SVM and
corresponding optimal parameters for nine methods are listed
in Table III. Figs. 8 and 9 show classification maps for the
different methods using the random sampling and region-based
sampling strategies, respectively.

In addition, we can observe from Tables II and III that the
performance of JN, HNS, and RLMR is progressively increased,
which can be contributed by the used of normalization, RNS, and
spatial information, respectively. To investigate the effectiveness
of RNS, we compare the performance with RNS and without
RNS via the NN classifier, listed in Table IV. We can clearly
see that the classification accuracies of those methods with RNS
are stably higher than those without RNS while the proposed
method JN+RNS (HNS) shows the best performance.

2) Sensitivity Analysis of Parameters and Robustness Against
Noise

a) Sensitivity analysis of parameters: The sensitivity of pa-
rameters is examined by varying the number of neighbors (k) and
the size of reduced dimensionality (d) for LML methods, and
the variance (v) of kernel for KPCA. As shown in Figs. 10 and
11, the performance of the LML methods is less sensitive to the
parameters. In general, as observed from the data dimensionality
point of view, the classification accuracy increases with increas-
ing dimensionality, to a certain extent, and then holds steady.
When the reduced dimensionality d reaches approximately 50,
the results are basically stable for those ML-based methods,
while the number of neighbors k is around 60 when accuracy
reaches the nearly optimum level. As the number of neighbors
gradually increases, the corresponding classification accuracy
progressively increases to a peak (e.g., k is equal to around
50) and then dramatically drops. A large number of neighbors
may obscure the local structure, whereas a small number of
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TABLE II
CLASSIFICATION ACCURACIES USING OPTIMAL PARAMETERS VIA NN FOR DIFFERENT DR METHODS IN INDIAN PINE DATASET

Method Optimal Parameters Classification Accuracy

Random Sampling Region-based sampling

Overall Accuracy Average Accuracy Overall Accuracy Average Accuracy

OSF / 64.74% 72.72% 44.78% 56.67%
PCA d = 50 64.62% 72.66% 44.74% 56.64%
KPCA d = 50, v = 10 66.95% 76.03% 48.79% 61.25%
LLE d = 60, k = 40 68.49% 75.51% 47.45% 59.55%
LE d = 60, k = 7 59.57% 68.19% 40.92% 52.73%
LTSA d = 60, k = 70 71.22% 81.12% 51.63% 66.09%
JN d = 70, k = 40 72.99% 82.92% 52.20% 66.35%
HNS d = 70, k = 40 77.45% 85.61% 53.61% 67.62%
RLMR d = 50, k = 80 85.84% 90.83% 55.24% 68.21%

Fig. 6. NN classification maps for the Indian Pines dataset using all DR methods under comparison with the optimal parameters in Table II based on random
sampling. (a) Ground truth and (b)–(j) results for OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, and RLMR, respectively.

Fig. 7. NN classification maps for the Indian Pines dataset using all DR methods under comparison with the optimal parameters in Table II based on region-based
sampling. (a)–(i) Results for OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, and RLMR, respectively.
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TABLE III
CLASSIFICATION ACCURACIES USING OPTIMAL PARAMETERS VIA SVM FOR DIFFERENT DR METHODS IN INDIAN PINES DATASET

Method Optimal Parameters Classification Accuracy

Random Sampling Region-Based Sampling

Overall Accuracy Average Accuracy Overall Accuracy Average Accuracy

OSF / 73.86% 76.04% 47.39% 61.87%
PCA d = 30 70.60% 79.50% 47.82% 58.38%
KPCA d = 60, v = 10 72.16% 80.88% 50.36% 63.52%
LLE d = 40, k = 50 71.47% 72.51% 47.23% 62.49%
LE d = 80, k = 3 56.93% 65.06% 36.59% 52.85%
LTSA d = 40, k = 70 75.49% 84.93% 52.79% 64.51%
JN d = 90, k = 60 76.52% 83.03% 52.83% 66.95%
HNS d = 100, k = 50 78.75% 85.04% 54.73% 68.03%
RLMR d = 40, k = 90 87.06% 90.93% 56.92% 69.24%

Fig. 8. SVM classification maps for the Indian Pines dataset using all DR methods under comparison with the optimal parameters in Table III based on random
sampling. (a) Ground truth and (b)–(j) results for OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, and RLMR, respectively.

Fig. 9. SVM classification maps for the Indian Pines dataset using all DR methods under comparison with the optimal parameters in Table III based on
region-based sampling. (a)–(i) Results for OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, and RLMR, respectively.
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TABLE IV
CLASSIFICATION ACCURACIES OBTAINED WITH NN CLASSIFIER FOR THE INDIAN PINES DATASET USING LLE WITH DIFFERENT NS METHODS

NS Method Optimal Parameters Classification Accuracy

Random Sampling Region-Based Sampling

Euclidean d = 60, k = 40 68.49% 47.45%
Euclidean+RNS d = 90, k = 50 70.24% 48.85%
SAM d = 60, k = 80 70.85% 48.97%
SAM+RNS d = 70, k = 50 72.67% 49.50%
JN d = 70, k = 40 72.99% 52.20%
JN+RNS (HNS) d = 70, k = 40 77.45% 53.61%

Fig. 10. Performance comparison: Classification accuracy as a function of data dimension using random sampling for the Indian Pines dataset. (a)–(i) Results
using different numbers of neighbors, respectively.

neighbors may not sufficiently represent the local structure,
causing the degradation of the DR performance. Proper param-
eters are determined from Figs. 10 and 11, which are basically
consistent with parameter selection defined via cross valida-
tion given in Table II, where the LML methods are used for
classification. However, it is worth noting that due to robust-
ness of our proposed method (RLMR), its results remain stable
with the increase in the number of neighbors k and reduced

dimensionality d. Conversely, the performances of JN and HNS
are progressively degrading with the change of parameters; par-
ticularly in a situation with a large k, the classification accuracies
even degrade to a level similar to classical LML methods.

Unlike manifold learning methods, the size of reduced di-
mensionality (d) is the only parameter for PCA, and a limited
number of d, around 30, is sufficient to obtain the best clas-
sification accuracy. Compared to PCA, KPCA shows a better
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Fig. 11. Performance comparison: Classification accuracy as a function of data dimension using region-based sampling for the Indian Pines dataset.
(a)–(i) Results using different numbers of neighbors, respectively.

Fig. 12. Sensitivity of the proposed method to the change of three parameters: (a) α, (b) λ, and (c) number of spatial neighbors.

performance owing to its advantage to capture nonlinear prop-
erties of the data; however, the parameter selection of kernel is
important.

Except for the two parameters, the number of neighbors (k)
and the size of reduced dimensionality (d), there are still several
parameters in the proposed method, including α in RNS (14), the

penalty parameter λ (19), and the number of spatial neighbors
(17). With the change of these parameters, the best classifica-
tion accuracies can be found on the Indian Pines dataset via
the NN classifier, and the optimal parameters can be obtained
accordingly, as shown in Fig. 12. More specifically, the param-
eter α in (14) balances similarities generated by KLD between
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Fig. 13. Classification accuracy for the Indian Pines dataset with different SNRs using all DR methods under comparison based on (left) random sampling and
(right) region-based sampling.

the target point and its neighbors. Equation (14) consists of two
parts: One is the similarity of data distribution from the target
point to its neighbors, and the other is the similarity of data
distribution from neighbors to the target point. Obviously, the
similarity of the former should be more important than that of
latter, which means the parameter α should be less than 1. The
optimal value of α is 0.2 corresponding to the best classification
accuracy. Regarding the parameter λ, it is used to strike a bal-
ance between the error and constraint terms in (19). A proper
value (λ = 1) is set according to experimental results shown
in Fig. 12(b). If the number of spatial neighbors is too large or
too small, spatial information can be overused or underused, as
indicated by degraded classification performance in Fig. 12(c).
The value of this parameter should be selected eclectically, and
it is set as 4 in terms of the best classification accuracy observed
in Fig. 12(c).

b) Robustness analysis: In order to validate the robustness
of RLMR, a further experiment is performed, which adds noise
with a different signal-to-noise ratio (SNR) into the AVIRIS In-
dian Pines image. The Gaussian noises are added to the image
band by band with the same SNR. Classification was performed
with various SNRs to investigate the robustness of the DR
algorithms against noise. Fig. 13 shows the classification accu-
racies under the two sampling strategies. As the SNR decreases,
the performance of JN, HNS, and RLMR are comparatively sta-
ble and superior compared to those of classical ML methods,
PCA, KPCA, and OSF. This demonstrates the robustness of the
proposed method against noise and implies its effectiveness for
low SRN hyperspectral images.

C. Results of 2013 IEEE GRSS DFC Data

Similarly, we obtained the classification accuracies for the
nine methods under the optimal parameters tuned by fivefold
cross validation via NN and SVM classifiers using the given
training samples in DFC, as listed in Tables V and VI. As
can be seen in Tables V and VI, RLMR outperforms the other
methods in DFC dataset. This demonstrates that the proposed
novel ML method can indeed obtain the good feature repre-
sentation, thereby further improving the classification accuracy.

TABLE V
CLASSIFICATION ACCURACIES FOR THE DFC DATASET USING NN AND

DIFFERENT DR METHODS WITH OPTIMAL PARAMETERS

Method Optimal Parameters Classification Accuracy

Overall Accuracy Average Accuracy

OSF / 72.83% 76.16%
PCA d = 50 72.85% 76.19%
KPCA d = 50, v = 10 73.80% 77.79%
LLE d = 40, k = 50 74.23% 77.49%
LE d = 60, k = 20 66.70% 70.66%
LTSA d = 40, k = 50 75.40% 78.75%
JN d = 60, k = 50 77.45% 80.69%
HNS d = 80, k = 70 78.52% 81.75%
RLMR d = 70, k = 50 80.87% 82.77%

TABLE VI
CLASSIFICATION ACCURACIES FOR THE DFC DATASET USING SVM AND

DIFFERENT DR METHODS WITH OPTIMAL PARAMETERS

Method Optimal Parameters Classification Accuracy

Overall Accuracy Average Accuracy

OSF / 74.68% 77.84%
PCA d = 30 74.78% 77.79%
KPCA d = 30, v = 10 75.12% 78,14%
LLE d = 60, k = 40 75.33% 78.03%
LE d = 20, k = 30 70.71% 72.98%
LTSA d = 30, k = 50 76.04% 79.18%
JN d = 70, k = 60 77.86% 80.12%
HNS d = 90, k = 60 78.98% 82.01%
RLMR d = 90, k = 100 81.13% 82.79%

To be specific, similar results from the different classifiers listed
in Tables V and VII also demonstrate the effectiveness and sta-
bility of the proposed method.

For simplicity, a general framework for the out-of-samples
extension of ML proposed by Bengio [42], [43] is used in this
paper in order to obtain the full classification map. The out-
of-samples extension can be separated into two parts: first, an
appropriate kernel function should be constructed (here, a Gaus-
sian kernel is chosen); next, the Nystrom formulation should be
applied for the generalization of a new data point. Classification
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Fig. 14. NN classification maps of the DFC dataset using all DR methods under comparison with optimal parameters in Table V. (a) RGB image from the
original hyperspectral image. (b)–(j) Results using OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, and RLMR, respectively.

Fig. 15. SVM classification maps of the DFC dataset using all DR methods under comparison with optimal parameters in Table VI. (a)–(i) Results using OSF,
PCA, KPCA, LLE, LE, LTSA, JN, HNS, and RLMR, respectively.

maps for different DR methods using the aforementioned opti-
mal parameters are given in Figs. 14 and 15, respectively, cor-
responding to NN and SVM classifiers. As shown in Fig. 14(a),
the east side of the scene is covered with shadows of clouds,

resulting in the performance degradation of those previous DR
methods—such as in Fig. 14(b)–(g) and Fig. 15(a)–(f)—while
our proposed methods are rather robust against this variability
observed in Figs. 14(h)–(j) and Fig. 15(g)–(j).



2974 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 6, JUNE 2017

V. CONCLUSION

In this paper, a novel LML methodology—RLMR—is de-
veloped for hyperspectral DR in order to tackle two challenges
of LML, involving: 1) NS due to complex spectral variability
(e.g., noise, illumination, nonuniform data distribution), and 2)
the computation of affinity weights due to multicollinearity. The
proposed method is based on JN, RNS, and the integration of
spatial information. It was validated via the classification us-
ing two benchmark hyperspectral datasets. Compared to other
state-of-the-art methods, the proposed method achieves better
performance in terms of the classification accuracy. RLMR has a
more robust and stable performance than the other methods due
to JN, RNS, and the embedding of spatial information, as shown
in a series of experiments. In the future, we will further focus on
how to more effectively embed the spatial information into DR
framework. Additionally, the application of manifold learning
methods to large-scale data should be given more attention in
the future.
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