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Abstract—Synthetic aperture radar (SAR) images are opera-
tionally used for the detection of oil spills in the marine environ-
ment, as they are independent of sun light and weather-induced
phenomena. Exploitation of radar polarimetric features for op-
erational oil spill detection is relatively new and until recently
those properties have not been extensively exploited. This paper
describes the development of a oil spill detection processing chain
using coherent dual-polarimetric (copolarized channels, i.e., HH-
VV) TerraSAR-X images. The proposed methodology focuses on
offshore platform monitoring and introduces for the first time a
combination of traditional and polarimetric features for object-
based oil spill detection and look-alike discrimination. A total num-
ber of 35 feature parameters were extracted from 225 oil spills and
26 look-alikes and divided into training and validation dataset.
Mutual information content among extracted features have been
assessed and feature parameters are ranked according to their
ability to discriminate between oil spill and look-alike. Extracted
features are used for training and validation of a support vec-
tor machine-based classifier. Performance estimation was carried
out for the proposed methodology on a large dataset with overall
classification accuracy of 90% oil spills and 80% for look-alikes.
Polarimetric features such as geometric intensity, copolarization
power ratio, span proved to be more discriminative than other
polarimetric and traditional features.

Index Terms—Feature extraction, feature ranking, near real
time (NRT) services, polarimetric oil spill detection, support vector
machine.

I. INTRODUCTION AND POLARIMETRIC OIL

SPILL DETECTION

O PERATIONAL monitoring activities (e.g., European
Maritime Safety Agency’s CleanSeaNet service) show

regular occurrence of accidental and deliberate oil spills [1].
In the last decade, a number of semiautomatic and automatic
techniques have been proposed in order to differentiate oil spill
and look-alike dark spots based on single pol (HH or VV, multi-
looked ground range projected) synthetic aperture radar (SAR)
images. Some of the proposed techniques are also capable of
providing results in near real time (NRT) [1]. It is worth to note
that the NRT environment for SAR oceanographic applications
means delivery of the final product within 30 min after the image
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acquisition time. However, such techniques suffer from a high
misclassification rate which is undesirable for operational ser-
vices. In addition to that, small operational spillages (production
water) from offshore platforms are often ignored as its signature
appears insignificant on traditional “ScanSAR” wide swath im-
ages. In order to mitigate this situation, a major focus of research
in this area is the development of automated algorithms based on
polarimetric images to distinguish oil spills from “look-alikes.”
Traditional oil spill detection techniques use backscatter, ge-
ometry, shape, or context-based feature parameters in order to
classify dark-spots on an object basis. A comprehensive review
of traditional oil spill detection methodologies and evaluation of
traditional features can be found in [1] and [2], respectively. On
the other hand, numbers of polarimetric features have been pro-
posed for the same purpose for pixel-based classification [3]–[7]
and discussed briefly in Section II.

Space-borne SAR sensors with polarimetric (dual (HH-VV)
and/or quad) capabilities are now operationally available in
L (ALOS-2 PALSAR), C (RADARSAT-2, RISAT), and X
(TerraSAR-X, COSMO SkyMed) band and proven to be suit-
able for oil spill detection. Methodologies for oil spill detection
systems based on polarimetry are evolving rapidly and several
previous studies investigated the capability of dual copolarized
SAR measurements for oil spill detection [5]–[9]. Although
previous studies based on single polarimetric images manage to
produce reasonable classification results using traditional fea-
tures (feature based on geometry, backscatter, contextual, etc.),
it may suffer from a considerable false positive rate [1], hence
warrant an investigation into the polarimetric domain. Recent
studies show unique benefits of polarimetric SAR data to both
observe oil slicks and discriminate between oil spill and look-
alike spots, which is a major challenge for traditional oil spill
detection systems based only on single polarized SAR images
[3], [4], [9]–[12]. Nonetheless, an integration of traditional and
polarimetric-based features is yet to be established [13]. This
study focuses on developing an object-based classifier which
uses polarimetric features along with traditional features to dis-
tinguish oil spills from “look-alikes” using a dataset acquired
primarily over offshore platforms. In addition to that, this study
also looks into the performance of each feature for its ability to
discriminate between two classes.

The paper is organized as follows. Section II gives an intro-
duction about the polarimetric features and their mathematical
definitions. Section III provides the description of the dataset
used in this study. Section IV provides the summary of the
proposed methodology and the processing chain along with a
comprehensive scheme to analyze the discriminative power of
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polarimetric and traditional features. Experimental results and
discussions about the performance of the classifier and feature
analysis are presented in Section V, while summary and con-
clusion are drawn in Section VI.

II. POLARIMETRIC OIL SPILL DETECTION

Polarimetric features are directly related to the physical prop-
erties of the scattering surface. As mentioned in the previous
section, several researcher have demonstrated the benefits of
multipolarization measurements for oil spill detection over the
last decade. The polarimetric scattering characteristics of the
oil-covered sea surface depends on several contributing factors.
According to their importance, a list of contributing factors are
given below.

1) Substance type (e.g., mixture of organic compounds, vol-
ume, age of the spilled oil).

2) SAR instrument specific parameters (e.g., polarization,
incidence angle, noise floor, imaging mechanism).

3) Geophysical parameters (e.g., local wind vector, presence
of capillary waves, surface currents).

Moreover, even the molecular structure and emulsification
processes of the oil can affect the dielectric properties of oil-
covered waters and their scattering properties.

In case of a fully polarimetric acquisition, the scattering ma-
trix is given by

S =
[

SHH SHV
SVH SVV

]
(1)

where SXX = |SXX | exp(jϕXX), with |SXX | representing the
amplitude and ϕXX representing the phase of the complex
scattering coefficient. Although TerraSAR-X and TanDEM-X
are capable of acquiring fully polarimetric data (experimental
mode), only dual polarimetric data are available operationally.
In case of dual polarimetric TerraSAR-X acquisitions all pos-
sible combinations are available (SHH − SHV ; SVV − SVH ,
and SHH − SVV ). In this study, only SHH and SVV scattering
coefficients are used in order to extract relevant polarimetric
features. Therefore in this case, utilizing only copol channels,
the scattering vector is given by

k =
1√
2

[SHH + SVV , SHH − SVV ] (2)

and copolarized phase difference (CPD) is given by

CPD = ϕHH − ϕVV . (3)

The concept for using polarimetric SAR (PolSAR) data for
oil slick observation was initially assessed in [14] and later on in
[3] for SIR-C/X-SAR data followed by a demonstration on fully
polarimetric ALOS PALSAR data in [5]. The principal concept
was then adapted for X-band by [9] using TerraSAR-X dual-
pol coherent single look complex (SLC) data. The polarimet-
ric electromagnetic model, which is the basis of this proposed
methodology, predicts that the sea surface is governed by Bragg
scattering (or tilted-Bragg scattering), has a high interchannel
(co-pol) correlation and in case of non-Bragg scatter (e.g., oil-
covered sea surface) the correlation is considerably lower [9]
[7]. In [9], the authors demonstrated that the standard deviation

of CPD for a polluted area is significantly higher compared to
the pollution-free background due to significant deviation from
the Bragg scattering mechanism and on the other hand lower
coherence for polluted area due to the same reason. In [3], [5],
[7], [15], the model has been demonstrated to be valid even
at different frequency bands (L-, C-, X-band) making it attrac-
tive for further exploitation. CPD has a probability distribution
(pdf) that depends on two factors, the number of looks � (� = 1
in case of TerraSAR-X Dual-Pol StripMAP data) and the com-
plex correlation coefficient between HH and VV (ρCO , given in
4), where ∗ denotes complex conjugate and 〈·〉 denotes spatial
averaging

ρCO =
|〈SHHS∗

VV 〉|√
〈SHHS∗

HH〉〈SVVS∗
VV 〉

(4)

where

〈SHHS∗
VV 〉 = 〈|SHH ||SVV |ei(ϕH H −ϕV V )〉. (5)

When HH and VV are uncorrelated (in case of oil covered
surface), the pdf becomes uniformly distributed between −180◦

and 180◦. The probability distribution of the CPD in case of
oil-covered sea surface and oil-free sea surface extracted from
TerraSAR-X data can be found in [9].

The coherency matrix for the dual polarization case, rep-
resented by T (d) is given in (6). The superscript (d) is used
throughout this manuscript to distinguish the dual-polarimetric
adaptation, i.e., T (d)

T (d ) =
1√
2⎡

⎣ 〈|SHH + SVV |2 〉 〈(SHH + SVV )(SHH − SVV )∗〉

〈(SHH − SVV )(SHH + SVV )∗〉 〈|SHH − SVV |2 〉

⎤
⎦.

(6)

In [3], the well-known Eigenvalue decomposition is proposed
for an oil spill detection algorithm. Eigenvalue-based polarmet-
ric features, i.e., entropy (H), anisotropy (A), and mean scat-
tering angle (α) [16]–[18] are used in combination with a con-
stant false alarm rate filter for oil spill classification on a single
SIR-C/X-SAR L-band dataset. In a polarimetric approach, one
generally first computes the (locally averaged by 9 × 9 sliding
window) covariance matrix of the scattering vector in order to
compute the eigenvalues. The eigenvalues λ1 and λ2 of T (d)

are used to compute pj = λj /(λ1 + λ2). These are the input for
determining entropy

H(d) = − (p1 log(p1) + p2 log(p2)) (7)

and anisotropy

A(d) =
(p1 − p2)
(p1 + p2)

. (8)

The eigenvectors v1 = (v(1)
1 , v

(2)
1 ) and v2 = (v(1)

2 , v
(2)
2 ) of the

coherency matrix (6) provide

αi = arccos(v(1)
i ), i = 1, 2. (9)
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In this study, we used the α angle for the dual-polarimetric
case which is defined as

α(d) = α1p1 + α2p2 . (10)

The coherency matrix (T (d) , in (6)) is used as basis for target
decompositions for extracting some of the features used in this
study. It is worth mentioning that the coherency matrix (T (d))
for dual-pol TerraSAR-X data has two eigenvectors (λ1 and λ2),
and the eigenvector-based parameter used for this study is dif-
ferent from the traditional definition due to the unavailability
of the cross-polarized channels which has a negligible effect in
this scenario [12]. While the classical H − A − α parameters
(cf. [19]) in the fully polarimetric case also permit the physical
interpretation (e.g., about predominant scattering mechanisms
and range values between 0 and 1), it is important to note that
the two-dimensional coherency matrix does not capture the full
physical phenomena of the scatterer, but only part of it. This en-
tails a possible loss of the physical meaning of the subsequent
definition of H − A − α parameters. In case of oil-covered sea
surface, H tends to zero, therefore it is a dominant scatter-
ing mechanism scenario. On the other hand, pollution-free sea
surface is dominated by relatively high entropy, representing
random scattering mechanisms which is also true for the dual-
polarimetric adaptation [6], [20].

Entropy has also been found useful for oil spill detection on
ALOS PALSAR polarimetric data in [21]. In [22], the authors
also used a combination of Cloude–Pottier-based decomposition
features (H − A − α) along with the copol correlation coeffi-
cient (ρCO ) in order to form a feature combination to enhance oil
spill detection capability on UAVSAR L-band fully polarimetric
data. In addition to that, polarimetric Span is also investigated
as a separate feature in that study. Polarimetric Span can be
derived from the summation of eigenvalues, therefore, in dual-
polarimetric case it is given by

Span(d) = λ1 + λ2 . (11)

A recent study [6] evaluated eight well-established and mod-
ified polarimetric features on two C-band RADARSAT-2 fine
quad pol datasets. In that study, geometric intensity, which is
expressed as

μ(d) = det(T (d))1/2 (12)

is used as a polarimetric feature based on the T (d) coherency ma-
trix as a replacement for polarmetric Span(d) . That study claimed
based on empirical results that μ(d) is superior to Span(d) as μ(d)

utilizes all elements of T (d) , i.e., information on the cross prod-
ucts in addition to the main diagonal entries used for the Span(d) .
As expected from (12), dark spots have relatively low value of
μ(d) compared to the background. In addition to the T (d) matrix-
based features, CPD, ρCO and two additional lexicographic-
based features, the copolarization power ratio (γCO ) and real
part of the copolarization cross product (Rco), are evaluated in
[6]. The copolarization power ratio, is given by the ratio between
amplitudes of the complex scattering coefficients in the HH and

TABLE I
TRADITIONAL [23] AND POLARIMETRIC FEATURES USED FOR THIS STUDY

Traditional Features Polarimetric features

Area (km2 ) Stddev Co-Pol Phase Difference σϕ , C O [9], [5]
Perimeter (km) Coherency Coefficient ρC O [9]
Complexity (dimensionless scalar) Real Part Co-Pol Cross Product Rco [5]
Spreading (percentage) Polarimetric Span(d ) [20]
Sddev Object (StdDev_Obj) Copol Power Ratio γC O [6]
Max Contrast (Max_Contr) Geometric Intensity μ (d ) [6]
Mean Contrast (Mean_Contr) Entropy H (d ) [6], [20]

Anisotropy A (d ) [6], [20]
Alpha angle α (d ) [6], [20]

VV polarization channels

γCO =
〈|SHH |2〉
〈|SVV |2〉

. (13)

The copolarization ratio is generally higher over darkspots
(specially over oil) compared to the background and that is
partially due to a lower dielectric constant of oil compared to
sea ([6] and [11]).

The real part of the copolarization cross product (Rco) is
given by

Rco = |�(〈SHHS∗
VV 〉)| (14)

where � stands for the real part. Rco is initially proposed for
oil spill and look-alike discrimination in [15] (also in [21]) as
part of a filter, where oil spills are distinguished from clean sea
and biogenic look-alikes with the help of the ratio between Rco
and 〈|SHV |2〉. In [15], authors described the physical rationale
behind this fact which is, sea surface covered with biogenic
look-alikes still dominated by Bragg scattering, hence indistin-
guishable from clear background. In case of an oil-covered area,
the value of Rco is expected to be nearly zero and in case of a
clear background Rco is expected to have a value greater than
zero [15].

The proposed methodology uses a combination of well-
known traditional features used for operational services [23]
and recently established polarimetric features to characterize
dark spots. All of the features used in this study are given in
Table I. Details of the traditional features used in this study can
be found in [23].

III. DATASET

The majority of the images used to develop and validate
the proposed algorithm were acquired over Bombay High
near the west coast of India, hosting a cluster of offshore
oil platforms. Unlike European waters, there are no observa-
tions derived from regular airborne surveillance, so the only
possible way to monitor this kind of area is the use satel-
lite SAR imagery. Bombay High is an offshore oilfield, 160
km off the coast of Mumbai, India, with about 75 m water-
depth and in production since 1974. All of the images ac-
quired are TerraSAR-X SLC dual pol (HH and VV) StripMAP
products with slant range resolution of 1.17 m which is
ideal for monitoring offshore platform clusters like Bombay
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Fig. 1. Footprints of TerraSAR-X dual polarimetric (HH-VV, consecutive
ascending and descending pass) images acquired over Bombay High offshore
platform cluster indicated with red rectangles (approximate location of platfrom
clusters are shown in blue marks).

High. Fig. 1 shows the location of the study area, platform
locations and an overview of the acquired TS-X images. Start-
ing in February 2014 and continuing until the end of 2014,
a total number of 48 images were acquired over the platform
cluster with same day ascending and descending configuration.
The dataset includes different beams of TerraSAR-X StripMAP
mode (e.g., StripFar_006, StripNear_009, etc.) incorporating a
broad range of incidence angles, from 20◦ to 35◦. This inci-
dence angle range was chosen due to its low instrument noise
floor (NESZ range [−19 dB;−26 dB]) which is a critical param-
eter in respect to the polarimetric system performance [9]. Wind
speed estimation was carried out on each image (on VV polar-
ized channel) using the XMOD2 algorithm [24]. A wind speed
range of 3–14 m/s was chosen to obtain the final dataset used in
this study and few images were discarded from the initial dataset
due to low wind condition. Thereafter, the dataset went through
manual interpretation technique to identify oil spill and look-
alike spots in order to prepare training and validation dataset.
The dataset is strongly heterogeneous, containing 226 oil spill
spots, providing fresh and old platform sourced spills and in-
corporating different wind conditions. Moreover, the dataset
contains a comprehensive set of look-alikes (26), such as ship
wakes, low wind areas, and rain cells. A small number of look-
alikes present in the data are not from the study area. Fig. 2
shows an examples of several platform sourced oil spills on a
TS-X StripMAP dual pol (HH-VV, descending orbit) acquired
on April 20, 2014 at 01:15 UTC over the study area. Fig. 2 also
shows us the presence of several offshore installation scattered
throughout the upper portion of the image.

The overall dataset which contains a total number of 252
feature vectors representing both oil spill and “look-alike”
classes are then divided into two datasets, training and vali-
dation dataset. The training dataset contains 142 feature vec-
tors representing 126 oil spill and 16 look-alike spots, on the

Fig. 2. TerraSAR-X dual polarimetric (red-HH, green-VV, blue-HH-VV, mid
incidence angle θ = 29.37◦) StripMAP (stripFar_006) image over Bombay
High offshore platform cluster. One example of ROI is indicated with red
rectangle.

other hand the validation dataset consists of 110 feature vectors
representing 100 oil spills and 10 look-alike spots. It is impor-
tant to note that the training and validation datasets are mutually
exclusive. Initially the training and the validation dataset went
through manual/visual interpretation of SAR images in order to
prepare the reference target.

IV. METHODOLOGY

A complete overview of the proposed methodology is shown
in Fig. 3 where the left-hand side of the figure shows the
flowchart of the proposed methodology and the right-hand side
of the figure shows major steps involved in the proposed method-
ology, i.e., segmentation of a dark spot, extracted features and
final output. First step of the proposed methodology involves
standard preprocessing (including product metadata retrieval,
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Fig. 3. Methodology for near real time oil spill detection processing chain
based on dual polarimetric TerraSAR-X images. The upper right image repre-
sents the segmentation precess and the lower right image shows the final result
where the detected oil spill is indicated with red polygon.

geo-referencing, land-masking, and speckle removal) and cali-
bration. After that, a segmentation process is carried out using
adaptive thresholding technique, based on VV polarized chan-
nel (σ0VV) in order to extract the dark object present within the
“Region of Interest.” Then, from each segmented dark spot, a
set of traditional features (given in [23], see Table I) and a set
of polarimetric features (see Table I and Fig. 4) are extracted. A
sliding window of size 9 × 9 is used for extracting polarimetric
features, as this window size was found to be a good trade-off
between speckle reduction and preservation of resolution. It is
important to note here that the segmentation process is one of
the essential parts of the methodology and affects the overall
performance of the methodology, therefore here we used an al-
ready established methodology reported in [23]. Mean of dark
spot, mean of background and mean contrast between dark spot
and background are taken into account for each polarimetric
feature. In order to further elaborate mean contrast, for a given
polarimetric feature PF, the contrast between background and
dark-spot in SAR imagery, i.e., ζPF , can be defined as the ratio
of the mean value of a dark-spot extracted from ”Region of In-
terest” to the mean value of the background sea surface without
the dark spot (within the “Region of Interest”), therefore

ζPF =
〈PFdarkspot〉
〈PFbackground〉

(15)

Furthermore, we assumed that features related to background
do not carry any class discriminative power by themselves and
most of the time, they are unrelated to dark features. There-
fore, features related to background are only used for generat-
ing contrast-related features (see (15)), but are not included in
the final feature set (Stddev background from traditional fea-
ture set was also excluded). We only considered a total number
of 25 features which include 18 polarimetric and 7 traditional
features for classification stage. Fig. 4 shows us different po-
larimetric features (described in Section II) extracted from a
region of interest indicated with a red rectangle in Fig. 2. These

imagettes give a visual impression of the polarimetric behavior
(i.e., the different features) in one particular instance (oil spill),
which differ for other dark spot detections. On these differ-
ences in the polarimteric features of dark spots we will base our
classification.

These extracted feature parameters are then used for training
and calibration of the support vector machine (SVM), which is
designed to discriminate between oil spill and look-alike spots.
Although two-class classification is very common in case of
oil spill-“look-alike” discrimination, a study by [25] proposes
one-class classification (outliers detection problem) for this sce-
nario. There authors pointed out that “look-alikes” itself do not
constitute a single class, as they are created by different physi-
cal phenomena. In our case, we adapt a two-class classification
approach as our training and validation dataset contain a com-
prehensive and representative array of “look-alike” samples (oc-
curring due to the presence of different physical phenomena).
Moreover two-class classifiers managed to produce excellent
results in operational scenarios [1]. In case of the two-class
approach, the SVM embeds (nonlinearly) the original feature
vector into a high-dimensional feature space in order to find an
optimal separating criterion between classes. The SVM clas-
sifier is especially useful for ill-posed problems [26],[27]. A
common ill-posed problem arises when dealing with datasets
with a low ratio between a number of samples and the feature
space dimension. Since the extraction of our array of features
constitutes a mapping from a space of four real dimensions (two
complex dimensions) to 25 real dimensions, the mapped data
clusters can be assumed to be low dimensional as well even
in our high-dimensional feature space. For this reason, we do
not expect the Hughes phenomenon to strongly affect our algo-
rithm. The SVM classification for oil spill and look-alike was
implemented and evaluated with satisfactory result in [27]. The
SVM is initially trained with the training dataset and validated
further with a mutually exclusive validation dataset described
in the previous section. After a decision has been made whether
a dark spot is either oil spill or look-alike, a delivery product
(e.g., kml or shapefile format) is generated according to the user
requirement. The final product usually includes a reduced res-
olution ground range projected image and detailed information
regarding the oil spill polygon. A detailed classification result
using the validation dataset obtained from the trained SVM
classifier is given in Section V.

Besides the overall classification accuracy, naturally the fo-
cus also lies on finding out the contribution of particular features
and/or feature combinations to the classification result. There-
fore, we carried out a mutual information analysis on extracted
features which include both training and testing dataset. One
common approach of a comprehensive statistical investigation
is to analyze redundancies and relevances in terms of mutual in-
formation(see [28], [29]). Besides the theoretical interest, such
a statistical analysis into features’ usefulness generally is con-
ducted to reduce feature dimension. The dimensionality (i.e.,
number of features) is not the biggest obstacle in the current
scenario, but rather the image size. When redundancy or lack of
relevance allows to discard certain features before the classifica-
tion, the computational overhead and memory consumption can
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Fig. 4. Polarimetric features extracted from TerraSAR-X (HH-VV) subscene containing an oil spill spot indicated in Fig. 2. (a) Standard deviation of copolarization

phase difference, σϕ C O . (b) Magnitude of coherence coefficient ρCO . (c) Real part of the copolarization cross product, (log(rCO )). (d) Polarimetric Span(d )

(e) Geometric intensity, log(μ(d ) ). (f) Copolarization power ratio, log(γCO ). (g) Entropy, H (d ) . (h) Anisotropy, A(d ) . (i) Alpha angle α(d ) . The features
μ(d ) , γCO , rCO are log transformed for visualization purpose.

be greatly reduced. Such considerations about prudent manage-
ment of data quantity become ever more relevant, since modern
SAR sensors produce huge datasets (TerraSAR-X SLC SM: 0.9
GB; sentinel SLC IW: 9GB) and any additional feature adds
another image layer that needs to be computed and stored.

Given two random variables X,Y (with joint and marginal
densities, no point masses), the mutual information I of these
variables is defined as

I(X|Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
(16)

where p(x) denotes the probability distribution of X (likewise
p(y) denotes the distribution for Y ), and p(x, y) the joint density
of X and Y . For theoretical details, see [28], [29].

Intuitively,I can be said to describe the portion of information
that is shared by both, X and Y , i.e., their information overlaps.
Put differently, the higher I(X|Y ), the more information one
can infer about X from existing knowledge of Y . In this way, one
can measure in an information theoretical sense, the (nonlinear)
information correlation of X and Y . The symmetry of I in

X and Y , which one would expect for the intuitive concept
of ”shared information,” also holds for the strict mathematical
definition, i.e., I(X|Y ) = I(Y |X). Given I is a dimensionless
quantity, we use it only as a means to put different features
in comparison. The absolute value of I we do not investigate
further here.

When X is chosen to be the class property and Y some
polarimetric feature, the mutual information I(X|Y ) indicates
how well one already knows about the class once information
of feature Y is present. Therefore, in this constellation, mutual
information is capable of indicating the classification relevance
of one particular feature. In case both features Y1 and Y2 are
about equally relevant for determining class property X (i.e.,
I(Y1 |X) ≈ I(Y2 |X)), high mutual information I(Y1 |Y2) then
indicates redundancy.

Regarding the feature analysis we include all contrast features
and the feature values obtained for the objects (i.e., xxx_Obj).
The feature values for the background do not carry any class dis-
criminative power by themselves, only in conjunction with those
for the object (in order to compute xxx_contr features). After



SINGHA et al.: COMBINATION OF TRADITIONAL AND POLARIMETRIC FEATURES FOR OIL SPILL DETECTION USING TERRASAR-X 4985

Fig. 5. Distribution of polarimetric features (mean contrast between dark-spot and background) extracted from TS-X (HH-VV) dataset, Red: oil spill, Blue:
look-alike. (a) Standard deviation of co-polarization phase difference, σϕ C O . (b) Magnitude of coherence coefficient ρCO . (c) Real part of the copolarization cross

product, log(rCO ). (d) Polarimetric Span(d ) (e) Geometric intensity, log(μ(d ) ). (f) Copolarization power ratio, log(γCO ). (g) Entropy, H (d ) . (h) Anisotropy,
A(d ) . (i) Alpha angle α(d ) . Histogram bins for oil spill and look-alike were adjusted for visualization purpose.

including the object and contrast features, the background fea-
tures are redundant and excluded from the final feature set
(including Stddev Background from traditional feature set).
Detailed results regarding mutual information analysis are pre-
sented in Section V-B.

V. RESULTS AND DISCUSSIONS

A methodology for the detection of oil spills from X-band
dual polarimetric SAR imagery was described in the previous
section. This section will provide an evaluation of classification
performance of the SVM, along with a quantitative analysis
on the polarimetric and traditional features combining training
and validation datasets, i.e., 252 feature vectors representing
226 oil spill and 26 look-alike spots. Fig. 5 shows the distri-
bution of each polarimetric feature (ζPF ) used in this study

where the red bar shows distribution of oil spill and the blue bar
shows distribution of look-alike spots. While Fig. 4 visualized
how we characterize each dark spot by different character traits
(features), the distributional synopsis over all samples and all
features in Fig. 5 shows that each such feature is by itself not
capable of distinguishing oil spills from look-alikes. One rather
concludes from Fig. 5 that a combination of feature parameters
should be used for oil spill and look-alike classification as one
particular feature is unable to create enough separation between
two classes: The overlap of the distributions of oil spills and
look-alike is so prevalent for any of the features that one cannot
possibly identify a threshold to separate the two classes. Only
by considering the entire array of features one can hope to locate
distinct data clusters in the high-dimensional feature space. To
analyze the discriminative power, the secondary focus of this
section will be an investigation of the information content of the
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Fig. 6. TerraSAR-X Dual polarimetric (HH-VV) StripMAP image showing
weather related look-alike phenomenon.

individual features and possible redundancy in terms of mutual
information content among different features.

As mentioned earlier, the most crucial part of the oil spill
detection process is to differentiate between oil spills and look-
alikes. Fig. 6 shows an example of a weather-induced (probably
due to rain cells) look-alike phenomenon along with some small
look-alikes produced by wind shadow (immediate vicinity of
platforms present at the center of the image) on a TerraSAR-X
(HH-VV) image acquired in a relatively higher incidence angle.
Two large dark spots are most likely due to rain cells (one at the
bottom of the image and another at the top right portion of the
image) and have higher dampening effects than ship wakes or
biogenic substances. This kind of look-alike produces similar
radar backscatter compared to oil spill, however, with the help of
combined feature set those dark spots were classified as look-
alikes. Fig. 7 shows an example of a dark spot classified as
oil spill. With the help of contextual information (presence of
confirmed offshore platforms), it can be concluded that this is
offshore platform scoured pollution which is very frequent in
this particular geographic area.

Fig. 7. Detected oil spill (represented with red polygon) on TerraSAR-X
dual polarimetric images acquired over Bombay High offshore platform cluster.
Presented background SAR image is VV polarized.

TABLE II
FRAMEWORK OF THE CONFUSION MATRIX USED FOR QUANTITATIVE

ASSESSMENT OF THE PROPOSED ALGORITHM USING COMBINATION OF

TRADITIONAL AND POLARIMETRIC FEATURES (ALGO: PROPOSED

ALGORITHM; REF: REFERENCE DATASET)

Oil Spill ALGO Look-Alike ALGO

Oil Spill REF A = 90, (90%) B = 10, (10%)
Look-Alike REF C = 2, (20%) D = 8, (80%)

A. Classification Accuracy Analysis

In order to test the reliability and efficiency of the proposed
methodology, a validation dataset was compiled to produce oil-
spill and look-alike target database. As mentioned in Section III,
the validation dataset consists of 110 feature vectors represent-
ing 100 oil spill and 10 look-alike spots identified by a visual
interpretation technique. These 110 feature vectors contain dif-
ferent kinds of anomalies detected under a variety of sea con-
ditions. The validation dataset is highly complex and in some
cases, the image contains multiple look-alikes and oil spill spots.
Here, it is important to note that most of the previously devel-
oped polarimetric oil spill detection algorithms were not tested
extensively using a large dataset representing different situa-
tions and complexity. More often, image subscenes containing
a single dark-spot representing an oil spill on a uniform back-
ground were taken into account, wherefore the limited com-
plexity of such subscenes does not show the full capability of
the algorithm (e.g., [15], [22]). The capabilities of the proposed
algorithm have been tested on whole images rather than subsec-
tions of images. After processing all the images present in the
validation dataset with the proposed algorithm, a detailed com-
parison with reference dataset was carried out on spot-by-spot
basis by visual interpretation. The popular method of using a
confusion matrix was employed for quantitative assessment of
the proposed algorithm. Separate confusion matrices were con-
structed for each image, the framework of the confusion matrix
is shown in Table II, similar to the evaluation technique used
in [1].
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TABLE III
FRAMEWORK OF THE CONFUSION MATRIX USED FOR QUANTITATIVE

ASSESSMENT OF THE PROPOSED ALGORITHM USING ONLY TRADITIONAL

FEATURES (ALGO: PROPOSED ALGORITHM; REF: REFERENCE DATASET)

Oil Spill ALGO Look-Alike ALGO

Oil Spill REF A = 82, (82%) B = 18, (18%)
Look-Alike REF C = 6, (60%) D = 4, (40%)

Explanation of the matrix in Table II (OS: Oil spill; LA:
Look-alike)

A) OS(REF): OS(ALGO)—Number of co-located detec-
tions both by visual interpretation technique and proposed
algorithm (ALGO).

B) OS(REF): LA(ALGO)—Dark spots classified as oil spills
by visual interpretation technique but not by ALGO—
“False Negatives.”

C) LA(REF): OS(ALGO)—Dark spots classified as oil spill
by ALGO but not by visual interpretation technique —
“False Positives.”

D) LA(REF): LA(ALGO)—Dark areas visually detected
that could lead to false positives (look-alike). Classified
as look-alike both by visual interpretation technique and
ALGO, indication of degree of complexity present in par-
ticular image.

Although “B” and “C” both are the misclassified spots by
proposed algorithm, “B” is considered to be the more serious
misclassification event compared to “C.” Table II shows over-
all classification accuracy and as well as individual accuracy
assessment for oil spills and look-alikes, which indicates the
degree of agreement between reference dataset and proposed
algorithm. Although the test dataset is highly complex and con-
tains multiple look-alikes and oil spills, agreement between the
proposed algorithm and the reference dataset was found to be
satisfactory. The object-based SVM classifier correctly identi-
fied 90% of oil spills (i.e., A/(A + B) ) with overall classifica-
tion accuracy of 89% (% of correctly classified dark-spots, i.e.,
(A + D)/(A + B + C + D)) for a large validation dataset con-
taining full-swath test images. Despite the satisfactory overall
accuracy, one still has to consider the false positive rate of 20%
in the case of combined features. However, the false positive
rate for combined features is considerably lower compared to
those of purely traditional and polarimetric features. As one of
the main objectives of the study is to evaluate the performance
of different kinds of feature parameters, we also carried out clas-
sification using only traditional (see Table III) and polarimetric
(see Table IV) features separately. Using only traditional fea-
tures, a classification accuracy of 82% and 40% was obtained for
oil spill and look-alike, respectively, whereas using only polari-
metric features a classification accuracy of 85% and 60% was
obtained for oil spill and look-alike, respectively. After consult-
ing Tables II, III, and IV, it is indisputable that a combination of
traditional and polarimetric features improved the overall clas-
sification accuracy, especially in terms of detecting look-alike
spots.

TABLE IV
FRAMEWORK OF THE CONFUSION MATRIX USED FOR QUANTITATIVE

ASSESSMENT OF THE PROPOSED ALGORITHM USING ONLY POLARIMETRIC

FEATURES (ALGO: PROPOSED ALGORITHM; REF: REFERENCE DATASET)

Oil Spill ALGO Look-Alike ALGO

Oil Spill REF A = 85, (85%) B = 15, (15%)
Look-Alike REF C = 4, (40%) D = 6, (60%)

While it is challenging to compare different methodologies
without using exactly the same dataset, a nonexhaustive com-
parison of our final results with previous work is carried out. It
is important to note that only few recent studies reported some
classification accuracy assessment and those methodologies are
built on “pixel-based” classification techniques. Moreover, those
studies exploited only polarimetric features and used a limited
number of datasets and look-alike types, e.g., [6]. In [6], authors
investigated the standard k-means classification technique using
log(rCO) and log(μ(d)), where the Wishart classification of the
covariance matrix was used as a reference dataset. Authors re-
ported an overall classification accuracy of 79.8% using only
log(rCO), 84.1% using only log(μ(d)), and 83.6% combining
both log(rCO) and log(μ(d)).

B. Discriminative Power of Polarimetric
and Traditional Features

As mentioned in the Section IV, we investigate the discrim-
inative power of the features in terms of relevance and redun-
dancy. The 25 features are listed in Table V in descending order
of relevance (i.e., I(X|Y ), mutual information of each feature
Y and the class property X). To remind the reader about the
intuitive meaning of relevance, we restate that the ranking in
Table V reflects the information content of the different fea-
tures with respect to classification. A first general observation
from Table V is that (dual-)polarimetric contrast features tend to
have a stronger discriminative power than both classical (single-
pol) intensity-based features and dual-polarimetric object fea-
ture values. Only the comparison of polarimetric features in
objects against these values for background yields a high infor-
mation content in terms of classification. From Table V, we also
conclude that the only polarimetric contrast feature in the lower
third is Rco Contr. This finding corroborates the observation
that the histogram of Rco Contr in Fig. 5 has little discrimina-
tive power since it is strongly dominated by one point mass at
Rco Contr = 1.0. However, this observation differs from the
findings of [7] (a follow up study from [6]) where three dual-
pol TerraSAR-X scenes were evaluated. A possible explanation
may lie in the fact that our study comprises a rather wide inci-
dence angle range (20◦ to 35◦) along with various met-oceanic
conditions as compared to the three TerraSAR-X scene used in
[7] containing only one type of look-alike category (plant oil).
On the other hand, our findings regarding Geom_Int_Contr (ζμ )
of being the most relevant feature closely matches the results
obtained in [6] and [7]. Its important to note that this observation
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TABLE V
RELEVANCE VALUES IN TERMS OF MUTUAL INFORMATION I(Yi |CLASS) FOR

DIFFERENT TRADITIONAL AND POLARIMETRIC FEATURES Yi AND CLASS

PROPERTY CLASS, SORTED IN DESCENDING ORDER; NO NORMALIZATION

WAS CARRIED OUT

Feature Yi (Derived From) I(Yi |Class) Feature Category

Y1 9 = Geom_Int_Contr (μ (d ) ) 0.43435536 Dual polarimetric-contrast
Y1 5 = Pw_Ratio_Contr (γC O ) 0.43030952 Dual polarimetric-contrast
Y1 7 = Span_Contr (Span(d ) ) 0.41153182 Dual polarimetric-contrast
Y1 4 = Pw_Ratio_Obj (γC O ) 0.39556791 Dual polarimetric-object
Y2 3 = A_Contr (A (d ) ) 0.38074514 Dual polarimetric-contrast
Y6 = Max_Contr (σ0 VV) 0.37435768 Traditional
Y5 = StdDev_Obj (σ0 VV) 0.37396138 Traditional
Y2 4 = Alpha_Obj (α (d ) ) 0.37385888 Dual polarimetric-object
Y9 = CPD_Contr (σϕ , C O ) 0.36981304 Dual polarimetric-contrast
Y1 1 = Corr_Contr (ρC O ) 0.36836651 Dual polarimetric-contrast
Y7 = Mean_Contr (σ0 VV) 0.36487212 Traditional
Y3 = Complexity (Geometry) 0.36091791 Traditional
Y2 1 = H_contr (H (d ) ) 0.35548907 Dual polarimetric-contrast
Y2 0 = H_Obj (H (d ) ) 0.34583747 Dual polarimetric-object
Y1 0 = Corr_Obj (ρC O ) 0.34455698 Dual polarimetric-object
Y2 5 = Alpha_Contr (α (d ) ) 0.33402118 Dual polarimetric-contrast
Y8 = CPD_Obj (σϕ , C O ) 0.31725307 Dual polarimetric-object
Y2 2 = A_Obj (A (d ) ) 0.31501395 Dual polarimetric-object
Y1 8 = Geom_Int_Obj (μ (d ) ) 0.28707119 Dual polarimetric-object
Y1 3 = Rco_Contr (Rco) 0.28407560 Dual polarimetric-contrast
Y2 = Perimeter (Geometry) 0.26252907 Traditional
Y1 = Area (Geometry) 0.24698244 Traditional
Y1 6 = Span_Obj (Span(d ) ) 0.24439306 Dual polarimetric-object
Y1 2 = Rco_Obj (Rco) 0.21920133 Dual polarimetric-object
Y4 = Spreading (Geometry) 0.14384433 Traditional

is only valid for X-band and the outcome form C-band might
produce different result.

The object features Spreading, Rco_Obj, Span_Obj, and
Geom_Int_Obj are likewise found to be of inferior relevance. A
close look at the histograms in Figs. 9, 10, and 11 reveal that
the overlap of occurrences of feature values for lookalike and
oil spill throughout the feature range makes discrimination of
classes by these features comparably difficult. Only the com-
parison with the background really gives the observer a greater
insight into the possible class. We also conclude from Table V
that most of the nonpolarimetric features are less relevant than
the polarimetric contrast features, emphasizing the importance
of using dual-pol data in such applications.

To interpret the redundancy (see the definition in Section IV),
the readers are reminded that this value indicates how similar the
information content of two features is, i.e., how much informa-
tional overlap the features have. This is not to be confused with
the information content of the individual features. Concerning
this redundancy, we computed the mutual information for all 25
mentioned features. In order to interpret the results in a compre-
hensive way, we displayed the normalized mutual information
(Inorm(X;Y ) = I(X;Y )/(

√
H(X)

√
H(Y )) in a color coded

matrix (see Fig. 8). H(Y ) is defined as the statistical entropy
of a random variable Y by H(Y ) =

∑
y∈Y p(y) log(p(y)). The

features that appear to be highly uncorrelated (in terms of in-
formation theory) to all other features are Rco_Contr, Rco_Obj,
Span_Obj, and Geom_Int_Obj. Keeping in mind that the dis-
tribution of Rco_Cont is highly concentrated around a certain
value, the low correlation (in terms of information theory) comes

Fig. 8. Normalized mutual information Inorm (X |Y ) = I(X |Y )/
(
√

H(X )
√

H(Y ) of polarimetric features X, Y . Color scale ranges
from black (0.0) to white (1.0), where lighter tones of blue indicate a
higher value of Inorm . 1 Area, 2 Perimeter, 3 Complexity, 4 Spreading, 5
Std_Dev_Obj, 6 Max_Contr, 7 Mean_Contr, 8 CPD_Obj, 9 CPD_Contr, 10
Corr_Obj, 11 Corr_Contr, 12 Rco_Obj, 13 Rco_Contr, 14 Pw_Ratio_Obj,
15 Pw_Ratio_Contr, 16 Span_Obj, 17 Span_Contr, 18 Geom_Int_Obj,
19 Geom_Int_Contr, 20 H_Obj, 21 H_contr, 22 A_Obj, 23 A_Contr, 24
Alpha_Obj, 25 Alpha_Contr.

Fig. 9. Histogram of spreading (traditional feature).

at no surprise but owes to this very distributional characteristic.
However, since we found the relevance of Rco_Contr to be rel-
atively low, this does not imply that it carries valuable unique
information. The histogram of Rco_Obj exhibits a similar char-
acteristic that is dominated by contributions into one particular
bin (see Fig. 5). So, an analogous argument concerning (infor-
mation) correlation of Rco_Obj holds. Both Rco-based features
are (in terms of information) unrelated to all other features which
may very likely be due to mentioned dominating point mass (see
above discussion for low relevance of Rco-based features). The
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Fig. 10. Histogram of Span_Obj.

Fig. 11. Histogram of Geom_Int_Obj feature.

low correlation of Spreading, Span_Obj, and Geom_Int_Obj
does not have an explanation as direct as that for the Rco-
based features. What can also be directly inferred from Fig. 8
is that most polarimetric features (except for Span_Obj and
Geom_Int_Obj) share a lot of common information, i.e., their
may well be a high degree of redundancy among them (entries
of the lower right part of the matrix are greater than 0.70). From
Fig. 8, we cannot, however, conclude that any particular features
can be discarded because of high redundancy. Empirical tests,
where one classifies with a reduced subset of features to reduce
computational overhead, may still prove that certain features are
discardable. This has to be investigated in future work.

VI. CONCLUSION

A combination of traditional and polarimetric features is
exploited for the first time to characterize dark spots on X-
band coherent dual-polarization SAR data using support vector
machine. Classification accuracy assessment shows our pro-
posed methodology correctly identifies 90% oil spills and 80%

look-alikes from validation dataset with an overall accuracy of
89%. Combining traditional and polarimetric features improved
the classification accuracy compared to classification results
obtained from traditional and polarimetric features separately.
The contributions of geometric intensity contrast (ζμ ), Co-
polarization Power ratio contrast (ζγC O ), span contrast (ζspan )
and eigenvalue-based polarmetric features to the classification
stage are most noteworthy, along with some traditional features
like backscatter contrast between object and background. These
features clearly deserve attention in future studies, in particular
whether they produce a statistically significant improvement of
classification on a much larger sample array. Additionally, the
proposed methodology is tuned for operational NRT services
with average processing time of 7–8 min for a standard dual pol
TS-X StripMAP scene. Initial evaluation of the classifier shows
considerable improvements over the classifiers based only on
traditional features. It has been shown that a combination of tra-
ditional and polarimetric features needs to be utilized in order
to develop a robust classifier. In particular, contrast-based po-
larimetric features exhibit outstanding classification relevance
that can add to the classification quality. A first analysis of re-
dundancy among these features indicates the directions for fur-
ther investigation on selection of optimal features combinations
(which can help to avoid computational and memory overhead).
An extensive evaluation of features and performance estimation
of the classifier for C and L band polarimetric SAR images
in different environmental conditions is foreseen in the near
future.
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