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Abstract—The problem of determining and understanding the
nature of buried objects by means of nondestructive and non-
invasive techniques represents an interesting issue for a great
variety of applications. In this framework, the theory of electro-
magnetic inverse scattering problems can help in such an issue
by starting from the measures of the scattered field collected
on a surface. What will be presented in this communication is
a two-dimensional (2-D) technique based on the so-called Born
approximation (BA) combined with a compressive sensing (CS)
approach, in order to improve reconstruction capabilities for a
proper class of targets. The use of a multiview-multistatic configu-
ration will be employed together with a multifrequency approach
to overcome the limited amount of data due to the single-frequency
technique. Therefore, after a first numerical analysis of the per-
formance of the considered algorithm, some numerical examples
for 2-D aspect-limited configurations will be presented. The sce-
nario is composed of a simplified scene, which consists of two
half-spaces, and with the probes located close to the interface
between the two media. As proposed in the following, it is easy
to observe that the use of CS for this kind of problems may
improve reconstruction capabilities, confirming the validity of the
presented approach.

Index Terms—Compressive sensing (CS), electromagnetic
inverse scattering, ground penetrating radar, microwave
tomography.

I. INTRODUCTION

T HE CAPABILITY of electromagnetic fields to pene-
trate different materials makes them very attractive to

reconstruct, both in a qualitative and quantitative way, the mor-
phological and electrical features of the unknown objects by
means of a ondestructive technique, which starts from the mea-
sures of the scattered field. Such a technique may be applied
in several field, including geophysics [1], characterization of
materials [2], monitoring in biomedical engineering [3], and
demining applications [4].

In the framework of the so-called aspect-limited problems,
an interesting application is related to ground penetrating radar
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(GPR), which employs signals whose frequencies vary from
a few hundreds of megahertz till to some gigahertz according
to the considered scenario. As most of the techniques based
on radar approaches, target information is retrieved from the
two-travel time of a pulse radiated by a source and gathered
by a fixed-offset system between transmitter and receiver [5].
The image obtained by joining the radar echoes collected while
moving the antennas is referred to as a raw data “radargram.”

Unfortunately, what radar techniques usually allow is only
the extraction of qualitative information on the investigated
region that is based on a subjective interpretation of the raw
data and on user experience. Therefore, since in many cases, it
is not possible to provide detailed information on the targets,
several data processing techniques have been proposed, among
which one can find focalization procedures [6] and tomographic
techniques [7].

Among all these techniques, tomographic imaging seems to
be a promising approach to overcome the limitations related to
standard procedures, since it makes possible to achieve not only
information about the shape and localization of buried objects,
but it also allows a quantitative electromagnetic characteriza-
tion of these targets in the imaging domain under test [8].

Nevertheless, the detection performance of GPR largely
depends on a lot of factors, which can partially or totally hide
or distort the response of the buried targets. Among all these
factors, it is remarkable to cite the coupling between antennas
and soil, the electromagnetic features of the background, the
speed and scattering of wave propagation, and the electromag-
netic contrast of the buried objects on which the intensity of the
scattered fields depends [9].

Therefore, there is a need to develop appropriate techniques
for clutter reduction and subsurface imaging. In this category,
detection techniques are employed on a subsurface image built
from a full GPR scan after clutter reduction. They include
advanced algorithms for hyperbola detection [10]–[13], and
migration approaches [14], [15]; their performance mainly
depends on the data set quality and on the preprocessing method
used to subtract the contribution of the background.

In this framework, a great variety of tomographic techniques
may be found in the literature to find a solution to the electro-
magnetic inverse scattering problem previously described [16]–
[20]. More in detail, it is possible to divide these approaches
in two main classes: the first one faces the inverse scattering
problem without any approximation and, in principle, this class
can provide an accurate reconstruction of the region under test,
but it drives into a nonlinear ill-posed inverse problem, and
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a second class of approximated approaches which simplifies
the model. Even though the first class of algorithms may
realize better quantitative reconstructions, the nonlinearity of
the model makes the solution of such problems be usually very
sensitive to the availability of adequate information about the
reference scenario, so that any sensible information about the
scene has to be dealt with: such a feature may limit their appli-
cability since an accurate knowledge of the electromagnetic
features of the scenario is required to model correctly the prob-
lem. Despite the increasing interest in this class of approaches,
the inaccuracy in the knowledge of the reference scenario (soil
permittivity and conductivity) and the not-perfect knowledge
of the antennas radiation characteristics in the presence of the
soil affect the quality of the reconstruction problems. Moreover,
the nonlinearity of the relationship between data and unknowns
may drive into false solutions that still exist, thus affecting
the reliability of the overall solution strategy [21], [22], and
increasing the computational time. The second class of solution
approaches exploits simplified models of the electromagnetic
scattering to develop linear inversion approaches [23]–[25].

What has been proposed in this paper is an inversion strategy
which belongs to the second class of the approaches presented
before, since it is based on the so-called Born approxima-
tion (BA). Due to the linearity of the problem, the solution is
searched as the global minimum of a quadratic cost function,
for which no false-solutions exist. Moreover, for linear inverse
problems, the adoption of well-assessed regularization schemes
[26] is possible and reconstruction capabilities can be foreseen.

Despite of the advantages said above by the adoption of such
models, the class of targets that may be recovered is limited
to those objects for which the BA is still valid, as for small
objects whose electromagnetic features are very close to those
of the background. In addition, since the aspect-limited nature
of data implies that single-frequency data are not sufficient to
realize effective inversions, a multifrequency approach will be
considered throughout this communication. In order to assess
the actual performance of the approach in a relatively simple
situation, the canonical and significant two-dimensional (2-D)
geometry is considered, together with the use of a regularization
technique based on compressive sensing (CS), which makes it
possible to reduce the number of data considerably.

This paper is organized as follows. In Section II, the
statement of the problem and some basic knowledge about
the employed multifrequency approach are presented by start-
ing from the general nonlinear model of the electromagnetic
scattering phenomenon. Then, in Section III, a simplified, lin-
earized model, and a standard inversion procedure is proposed.
In order to overcome some restrictions, the theory of CS is
quickly described in Section IV and a preliminary analysis of
the performance of such an approach has been proposed for the
ideal case of homogeneous medium in Section V, in which CS
has been used as a regularization strategy. Finally, some numer-
ical results for the GPR applications are shown in Section VI.
Conclusion follows in Section VII.

II. PROBLEM STATEMENT

The reference geometry is represented by the scalar 2-D sce-
nario depicted in Fig. 1. In this framework, a homogeneous

Fig. 1. Reference geometry. Γ represents the measuring line on which all the
probes (transmitters and receivers) are located (medium 1), whereas Ω is the
imaging domain buried in the soil (medium 2).

half-space rather than a multilayered background has been
assumed. The homogeneous medium surrounding the objects
is characterized by a complex permittivity ε2 and all the targets
inside the imaging domain, including the background medium,
have a magnetic permeability that is everywhere equal to μ0.
All the targets are located in the lower half-space, whereas the
sources of the electromagnetic field are located in the upper
medium. Such sources are filamentary z-directed electric cur-
rent (TM polarization) in which the current is constant and
put along a line close to the interface which separates the
two media. Assuming that also scatterers features are invari-
ant along the z-direction, the data are collected by moving the
sources into Nv different positions along the observation line
Γ and, for each illumination, Nm measures at the receiving
probes are picked up along the same line. Therefore, the mea-
surement configuration works in reflection mode and the set-up
is a multiview-multistatic one, in which the scattered field is
measured in several locations along Γ for each position of the
source. The goal of this analysis is to determine the unknown
contrast function χ inside the imaging domain Ω, defined as

χ(r, ω) =
εx(r, ω)

ε2(ω)
− 1 (1)

where εx(r, ω) = ε′x(r)− j σx(r)
ωε0

and ε2(ω) = ε′2 − j σ2

ωε0
are

the complex permittivities of the unknown targets and back-
ground, respectively.

In this framework, due to the aspect limited geometry of
the considered scenario, the electromagnetic scattering problem
can be recast in the following integral relationships [27], [28]:

E
(v)
tot (r, ω) = E

(v)
inc(r, ω)

+ k22

∫
Ω

g22(r, r
′, ω)χ(r′, ω)E(v)

tot (r
′, ω)dr′

= E
(v)
inc(r, ω)+Ai[χE

(v)
tot ], r ∈ Ω, v=1, . . . , Nv

(2)

E
(v)
scat(r, ω) = k22

∫
Ω

g21(r, r
′, ω)χ(r′, ω)E(v)

tot (r
′, ω)dr′

= Ae[χE
(v)
tot ](r, ω), r ∈ Γ, v = 1, . . . , Nv

(3)

in which the time exponential factor ejωt has been omitted. In
the previous equations, E(v)

inc and E
(v)
tot represent the incident

and total fields for each position of the transmitting antennas
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inside the imaging domain Ω, and E
(v)
scat is the scattered field

in the upper medium, whose samples are located on Γ. The
parameter k2 = ω

√
ε2ε0μ0 is the complex wavenumber in the

lower medium, while g2i, with i = 1, 2, are the Sommerfeld–
Green’s functions of the considered geometry, which represent
the field generated by a filamentary source located in medium
2 and observed in the medium “i.” It is interesting to note that
such functions represent the kernel of the integral operators in
(2) and (3), and they are known as the internal and external
electromagnetic scattering operators. It is worth to note that
both these operators can be evaluated in a fast and efficient
way by means of Fast Fourier Transform (FFT) codes, both for
2-D and three-dimensional (3-D) cases. These bilinear opera-
tors are defined as Ai : X × T → Si and Ae : X × T → Se,
with X ⊂ L∞(Ω) the subspace of the possible contrast func-
tions, T ⊂ L2(Ω) a proper subspace for the total electric field
inside the object, and Si ⊂ L2(Ω) and Se ⊂ L2(Γ) two proper
subspaces for the scattered field inside and outside the imaging
domain.

In order to recover the geometrical and electromagnetic
features of the unknown targets in the lower medium in a quan-
titative way, one has to solve the system of (2) and (3) and
determine the contrast function χ. Unfortunately, the formal
inversion of such a system of equations is not easy, due to the
nonlinear relationship between data and unknowns. Moreover,
it is well known that such a problem is also ill-posed in the sense
of Hadamard, both in the single-view and multiview cases.
Therefore, false solutions may occur easily [29], [30], and in
order to restore the well-posedeness, a regularization procedure
is required. It is important to note that the ill-posedness of the
problem is due to the finite dimensionality of the scattered field,
as extensively discussed in [21].

The nonlinear equations (2) and (3) relating data and
unknowns may be recast in [16]

E
(v)
scat = Ae

[
(I − χAi)

−1 · χE(v)
inc

]
, v = 1, . . . , Nv (4)

which has been achieved by substituting the domain equation
(2) into the data equation (3) (“I” is the identity operator).
Equation (4) clearly shows the nonlinearity of the relation
between data Escat and unknowns χ; such a nonlinear mapping
can be linearized [31], exploiting the well-known BA, which
amounts to assume the total field inside the imaging domain
Ω equal to the incident field. Therefore, using the previous
approximation, (4) becomes

E
(v)
scat = Ae

[
χE

(v)
inc

]
= L(v) [χ] , v = 1, . . . , Nv. (5)

The operator “L(v),” incorporating E
(v)
inc in Ae, is a linear map-

ping between data E
(v)
scat and unknown χ. It has to be pointed

out that the linearization of model (4) into (5) does not over-
come the ill-posedness of such an inverse problem, due to the
finite-dimensional nature of the scattered field. The order of
the finite-dimensional nature reduces further when account-
ing the aspect-limited nature of the considered problem. The
more critical the aspect-limited is, the lower the order of the
finite dimension and the more critical the capability to recover

profiles is. Hence, in order to improve the reconstruction per-
formances of the tomographic approach, one may collect more
information using multifrequency data, since monochromatic
data may be too poor to guarantee good results, as shown in the
spectral coverage of the multiview-multistatic multifrequency
configuration shown in the following (see Section VI).

In choosing a multifrequency approach, some attention has to
be paid in defining the unknown of the problem, since the con-
trast function, which represents the unknown of our problem,
does not change with the illumination, but it changes with fre-
quency. Nevertheless, the fact that the contrast function changes
with the frequency would imply to solve more monochromatic
inverse scattering problems, but since the dependence on the
frequency in the complex permittivity of the media and buried
objects is supposed to be as

ε(r, ω) = ε′(r)− j
σ(r)

ωε0
(6)

where ε′(r) and σ(r) represent the permittivity and conductiv-
ity of the second medium and buried targets, with the hypoth-
esis that they are independent from the frequency. Keeping in
mind what has been said previously, it is possible to exploit
the multifrequency data to improve the amount of indepen-
dent information to gain better reconstructions. By means of
simple changes in the expression of the contrast function, one
can recover the unknown profile at a certain frequency (e.g.,
the maximum one) using all the bandwidth information. In
this framework, the unknown contrast function can be written
as [22]

χ(r, ω) =
1

2

(
1 +

ω

ω

)
χ(r) +

1

2

(
1− ω

ω

)
χ∗(r) = Bω [χ]

(7)

where χ(r) = χ(r, ω) is the value of the contrast function at
the selected frequency, the mathematical symbol “∗” repre-
sents the conjugate operation, and Bω [·] is a linear operator.
Therefore, by looking at (7), by knowing the contrast function
at the frequency ω, it is possible to evaluate the contrast func-
tion at any frequency in the chosen bandwidth. According to
this approach, it is possible to benefit to have more data (multi-
frequency) at expenses of increasing of both measurements and
computational burden, but leaving unchanged the same number
of unknowns of the single-frequency case. As we will see in the
following sections, in order to mitigate the burden, we will try
to use as few as possible the number of frequencies in the widest
allowable frequency bandwidth. Therefore, it is convenient to
use a multifrequency approach rather than a monochromatic
one, even though this leads to an increase of both measurements
and computational burden, and this is the reason for collecting
the data at a few frequencies in the widest allowable frequency
bandwidth.

III. LINEARIZED SCATTERING MODEL

According to the previous section, let us consider Nf

working frequencies spanning a total bandwidth (ωmax − ω1)
and let us assume as reference the maximum frequency
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in the selected bandwidth, that means to assume that
χ (ωmax) = χ

(
ωNf

)
= χ (ω) = χ. Then, starting from (5), for

the single-frequency case and moving toward a multifrequency
approach, it is possible to write the system (8) shown at the
bottom of the page which can be recast in a compact form that
generalizes (5) to the multifrequency case for all the views

EMF
scat (r) = AMF

e

[
Bω [χ (r)] · EMF

inc (r)
]
= LMF [χ] . (9)

The considered problem is still ill-posed and needs a regu-
larization technique to achieve a reliable solution. Moreover,
in order to tackle the ill-posedness, due to the finite amount of
data, one has to look for a finite dimensional representation of
the unknown profile. More in details, the contrast function χ
may be represented as a finite-dimensional version χ̂ on the
grid defining the discrete version of the imaging domain Ω.
Although the contrast function should be referred to use the hat
accent in a rigorous fashion, here we will omit such a symbol to
simplify the notation. With these assumptions, we can express
the contrast function as

χ(r) =

P∑
p=1

cpφp(r) (10)

where {φp}Pp=1 is a suitable set of basis functions and the cp is
the coefficient of the unknown contrast. In a continuous space,
the truncation index “P ” should be infinite, but since we are
dealing with a discrete version of the contrast function, in case
of lack of any a priori information and additional forms of
regularization, this number has to be lower than the essential
dimension of data (i.e., the degrees of freedom) and can be
determined by means of an analytic or numeric criterion (as
it will be shown very quickly in the following).

In this paper, due to the aim of such a preliminary anal-
ysis and to the targets features, a pixel-fashioned basis will
be adopted in order to define the scatterers in the imag-
ing domain since such a basis fits well with the proposed
CS-based approach, whose details will be presented in the fol-
lowing section. After the discretization of (9) on a certain grid
[21] and introducing the multifrequency multiview-multistatic
tomographic operator LMF : L2(Ω) → L2(Γ), the mathemati-
cal model in presence of additive noise drives in

eMF
scat = LMFχ2Ncells

+w (11)

where eMF
scat and w are the vectors collecting all the samples

of the scattered field (multifrequency and for all views) and
noise, respectively, LMF is the matrix which defines the lin-
ear model employed and χ2Ncells

= [χRe;χIm] is the vector
of size 2Ncells × 1 which includes real and imaginary parts

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E
(v)
scat (r, ω1) = Aeω1

[
χ (r, ω1)E

(v)
inc (r, ω1)

]
= Aeω1

[
Bω1

[χ (r)]E
(v)
inc (r, ω1)

]
E

(v)
scat (r, ω2) = Aeω2

[
χ (r, ω2)E

(v)
inc (r, ω2)

]
= Aeω2

[
Bω2

[χ (r)]E
(v)
inc (r, ω2)

]
v = 1, . . . , Nv, r ∈ Ω

. . . . . . . . . . . .

E
(v)
scat (r, ω) = Aeω

[
χ (r, ω)E

(v)
inc (r, ω)

]
= Aeω

[
[χ (r)]E

(v)
inc (r, ω)

]
(8)

of contrast profile at reference frequency. More in detail, the
generic element of the matrix LMF is

lhn = lvmn (ωf ) = E
(v)
inc(rn, ωf )

∫∫
Ω(rn)

g21(rm, r′, ωf ) dr
′

rm ∈ Γ, rn ∈ Ω, n = 1, . . . , Ncells

lhn = lvmn (ωf ) = j · α · E(v)
inc(rn−Ncells

, ωf )

·
∫∫

Ω(rn−Ncells
)

g21(rm, r′, ωf ) dr
′, rm ∈ Γ

rn−Ncells
∈ Ω, n = Ncells + 1, . . . , 2Ncells (12)

where h = 1, . . . , (Nm ×Nv ×Nf ), m = 1, . . . , Nm, f =
1, . . . , Nf and v = 1, . . . , Nv , with Ncells equal to the num-
ber of cells in the grid of Ω and Nf equal to the number of
frequencies employed (see Appendix for more details). Note
that, for n = 1, . . . , Ncells, Ω(rn) represents the nth cell of the
considered imaging domain.

Since what we are going to propose is a preliminary analy-
sis of a GPR technique for demining applications and due to
the fact that mines in the soil are small enough compared with
the wavelength at the operating frequencies, such targets can be
described by using a few pixels in the discretized grid of a rect-
function basis: this makes it possible to assume the sparseness
of the targets and use the theory of CS.

IV. CS THEORY: BASICS

CS theory represents a good strategy for solving linear
inverse scattering problems under some assumptions. It is based
on the observation that many types of signals have a sparse
expansion in terms of a suitable basis or frame; therefore, there
is only a small number of expansion coefficients that are signif-
icant (i.e., nonvanishing entries). Therefore, such a technique
is able to recover the unknown signal from very undersam-
pled measurements. More in detail, CS relies on two principles:
sparsity, which pertains to the signal of interest; and incoher-
ence, which represents a classical way of analyzing the recovery
capabilities of a measurement matrix.

A classical approach to solve linear problem is represented
by the least squares (LS) approach, in which the estimator is
chosen to minimize a proper functional. When the number of
data is equal to the number of unknowns and the matrix that
describes the model is nonsingular, the considered problem can
be solved properly by inverting such a matrix; unfortunately
inverse problem can be ill-posed, and thus the LS solution could
not work properly. In order to overcome this difficulty, reg-
ularization methods are required to make the solution more
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Fig. 2. Minimization of (a) L1-norm and (b) L2-norm problems.

stable. The basic idea of regularization is to replace the orig-
inal ill-posed problem with a “nearby” well-posed problem
whose solution approximates well the required one. Among all
the various regularization techniques, the well-known Tikhonov
regularization can be adopted. It consists in a quadratic penalty
added to the objective function

x̂Tik = arg minx{‖Ax− b‖2L2 + γ‖x‖2L2} (13)

where the matrix A represents the forward model of the
considered problem, and b the measured data. The previous
regularization procedure establishes a restriction on the kind
of the solution by enforcing its energy to be the lowest one.
The regularization parameter γ > 0 provides a tradeoff between
fidelity to the measurements and noise sensitivity. The previous
functional can be properly minimized even if the number of
data is lower than or equal to the number of unknowns, while in
under-determined linear systems (i.e., m << N ) without any
kind of regularization, it is impossible to recover the unknown
signal without any further information.

The use of standard regularization strategies, such as the
Tikhonov one, which belongs to the class of the energy-
constrained techniques, results in a very smooth reconstruction
with poor spatial resolution. In this framework, if the addi-
tional assumption of sparse signal is assumed, then a L1-norm
regularization technique can considerably help us in finding a
stable solution to our problem. In this case, the functional to be
minimized becomes

x̂CS = arg minx{‖Ax− b‖2L2 + γ‖x‖L1}. (14)

In the previous equation, the presence of the L1-term forces
the solution to be the sparsest one, according to the regular-
ization parameter γ. Another advantage of L1 regularization is
linked to its feature of being less sensitive to the presence of
outliers. The intuitive reason for which CS is able to recover
sparse signals better than L2-norm minimization is shown in
Fig. 2 by using simply a 2-D example. In this figure, both L1

and L2 balls are depicted and given the linear problem we are
dealing with, the solution to such an inverse problem may be
found, from a graphical point of view, by gradually expanding
the ball until it bumps with the line, which represents the set
of all the x that have the same measurements. The first point
of intersection is by definition the vector that solves the mini-
mization procedure. It can be easily noted that one obtains the
sparsest solution to the considered problem if the line does not
intersect the ball in more than one point (for more detail, see
[32] and [33]).

According to the previous information, in this paper, we
propose a CS approach based on the class of iterative shrinkage-
thresholding algorithms (ISTA) for solving problem (14), in
which for each iteration a matrix–vector multiplication involv-
ing the model matrix and its transpose is used, and it is followed
by a shrinkage/soft-threshold step [34]. More in detail, the
general step of ISTA is

xk+1 = Tγt

(
xk − 2tA† (Axk − b)

)
(15)

where “t” is an appropriate stepsize, “Tγt” is the shrinkage
operator, and “†” represents the transpose operation. In the opti-
mization literature, this algorithm belongs to the gradient-based
method and goes back till proximal forward–backward iterative
scheme introduced in [35]. For such an algorithm, there is a
widespread literature for the theoretical evaluation of the con-
vergence rate that will not be dealt with in this paper (for more
information, see [36] and [37]).

Therefore, if the hypotheses of CS hold true, then such a
theory can be applied as an interesting alternative to classic
regularization methods, most of which are based on quadratic
terms (e.g., Tikhonov), entropy-type, or penalty functions, in
order to improve reconstruction capabilities. In the framework
of the linearized models, it is possible to apply the theory of
CS that, according to the notation and symbols employed pre-
viously, drives in assuming A = LMF , b = eMF

scatt, and x =
χ2Ncells

.

V. A CS-BASED APPROACH FOR MICROWAVE IMAGING:
PERFORMANCE EVALUATION

After a quick review of some basics of CS theory, we are
going to realize a numerical analysis of the performance of the
proposed approach. As a first set of tests, let us consider the
ideal situation of a free space environment, where the back-
ground is a homogeneous lossless medium with the imaging
domain and targets located inside it. According to the prelim-
inary results proposed in [38], in which a first coarse analysis
of the robustness of the algorithm versus the noise has been
proposed, we decided to choose as reference SNR the value of
20 dB for the noisy simulated data proposed in the following
examples (the noise employed is an additive zero-mean white
Gaussian one). Moreover, all the data have been generated by
using a full-wave forward scattering model using a grid that is
different from the one used to recover the contrast functions, in
order to generalize the considered problem and avoid any kind
of “inverse crime” [8].

Let us consider a first example at the operating single-
frequency of 300 MHz, and consider a homogeneous, lossless
background whose relative dielectric permittivity is equal to 1.
The imaging domain is a square of size equal to 2λ× 2λ in
which three square scatterers whose side is λ/5 are located, and
λ is equal to the wavelength in the background medium. Such
scatterers have relative permittivities which belong to (1.1–1.2)
and conductivities which belong to (0.8,1) mS/m (see Fig. 3).
According to [39], the number of degrees of freedom for this
example is about (2βa+ 1)

2
/2 ≈ 180, which represents the

maximum amount of independent data for this kind of config-
uration, with β = 2π/λ representing the wavenumber in the
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Fig. 3. Reference geometry for data reduction. (a) Real and (b) imaginary parts
of contrast function.

homogeneous medium and a the radius of the smallest circle
which completely includes the scatterers.

What we are going to show in this section is an evaluation of
the potential performance of CS, since one can use such a the-
ory to move toward two main directions: the first one wants
to reduce the number of data but keeping good reconstruc-
tion capabilities compared with standard approaches, whereas
the second one drives in gaining super-resolution, but without
decreasing the number of data. Therefore, there is a kind of
tradeoff between these two options.

In Figs. 4 and 5, a comparison between our approach and
standard Tikhonov regularization procedure as function of the
number of data is presented. In Fig. 4, we employed a num-
ber of data that is higher than the degrees of freedom for the
considered geometry, and in this case, both CS and the stan-
dard Tikhonov regularization procedure manage to retrieve at
least the support of the unknown objects; moreover, CS man-
ages to retrieve in a quantitative way the values of the contrast
profile quite well, whereas Tikhonov cannot manage such an
issue. Looking at the numerical results depicted in Fig. 5, one
can easily see that CS is still able to recover the unknown profile
without losing so many details, even though we are dealing with
a number of data that are much lower than the one established
by the degrees of freedom. By having a look at Table I, one can
see that even though the Tikhonov case seems to be also stable
while reducing the number of data, it results that, from a quan-
titative point of view, CS is still working better than standard
L2-norm regularization. About Tikhonov regularization, all the
examples considered in this work have been achieved by using
a regularization parameter that has been chosen by means of a
L-curve procedure.

The normalized reconstruction error is defined as

err =
‖χ̃− χtrue‖2L2

‖χtrue‖2L2

. (16)

All the errors of the previous and following examples are listed
in Table I.

As it has been said before, another possible application of
a CS-based approach is related to gain super-resolution in tar-
gets recovery. Let us consider a second example again using
a single-frequency approach in which two square scatterers,
whose size is equal to λ/5, are located inside the same imaging
domain described in the previous example at an initial distance
equal to λ/2, as shown in Fig. 6. Such a distance between the
two scatterers is gradually decreased, till it reaches the value
of λ/10. Reconstruction results are shown in Figs. 7 and 8.

Fig. 4. Performance evaluation in a free space configuration: real and imag-
inary parts of reconstructed profile for both CS and standard Tikhonov regu-
larization. Number of data: 14× 14. (a) and (b) Proposed approach with CS
(err = 0.06). (c) and (d) Tikhonov regularization (err = 0.47).

Fig. 5. Performance evaluation in a free space configuration: real and imag-
inary parts of reconstructed profile for both CS and standard Tikhonov reg-
ularization. Number of data: 8× 8. (a) and (b) Proposed approach with CS
(err = 0.1). (c) and (d) Tikhonov regularization (err = 0.53).

TABLE I
VALUES OF THE RECONSTRUCTION ERROR FOR THE EXAMPLES

PROPOSED IN THE FREE SPACE CASE

Again, one can easily see that by using CS theory is possible
to gain in terms of resolution by keeping fixed the number of
involved data (which has been fixed at 14× 14 for this example,
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Fig. 6. Reference geometry for gaining super-resolution. (a) Real and imagi-
nary (b) parts of contrast function.

Fig. 7. Performance evaluation in a free space configuration: real and imagi-
nary parts of reconstructed profile for both CS and standard Tikhonov regular-
ization. Distance between the targets: λ/2. (a) and (b) Proposed approach with
CS (err = 0.12). (c) and (d) Tikhonov regularization (err = 0.41).

Fig. 8. Performance evaluation in a free space configuration: real and imag-
inary parts of reconstructed profile for both CS and standard Tikhonov regu-
larization. Distance between the targets: λ/10. (a) and (b) Proposed approach
with CS (err = 0.23). (c) and (d) Tikhonov regularization (err = 0.46).

since we have a multiview-multistatic configuration). Indeed, as
conventional microwave imaging approaches suggest, standard
resolution is about λ/4; conversely using CS, it is possible to
go down till to a resolution of λ/10, preserving the capabilities

Fig. 9. Reference geometry for GPR applications. (a) Real and (b) imaginary
parts of contrast function.

Fig. 10. Performance evaluation in an aspect-limited configuration: real and
imaginary parts of reconstructed profile for both CS and standard Tikhonov
regularization in the single-frequency case. (a) and (b) Proposed approach with
CS (err = 0.49). (c) and (d) Tikhonov regularization (err = 0.96).

of the system to separate the two objects. Also for this example,
reconstruction errors are reported in Table I.

VI. GPR APPLICATIONS: NUMERICAL RESULTS

After the evaluation of the theoretical performance of the
CS-based algorithm in the ideal free space environment, let us
move on a more difficult case, which is the one proposed for
GPR applications. Conversely to the previous analysis, in GPR
applications, there is no longer a single homogeneous medium
in which the targets are located, but the scenario is composed,
again in an approximated fashion, by two homogeneous media
that are separated by a planar interface, as shown in Fig. 9.

The first medium is air (ε1 = 1 and σ1 = 0 S/m), whereas
the second one represents a sandy lossless soil (ε2 = 4 and
σ2 = 0 S/m). The operating frequency is still 300 MHz and the
imaging domain size is 2λ× λ, inside which two rectangular
scatterers of size λ/3× λ/6 with permittivity equal to 3.2 and
conductivity equal to 10−3 S/m are buried. The line on which
transmitters and receivers are located extends for a length equal
to 4λ and consists of seven transmitters and seven receivers
equally spaced and located in the same positions. As in the
previous examples, in order to perform this numerical analy-
sis, the data have been generated using a grid different from the
one employed to realize the inversion, so to avoid any inverse
crime. Moreover, the background medium has been corrupted
by a 5% random inhomogeneity and also data for getting the
results have been corrupted by 20-dB additive white Gaussian
noise. In Fig. 10, some results are shown and a comparison with
the standard Tikhonov regularization is proposed. Again, CS
works better than the standard Tikhonov regularization, as con-
firmed by looking at the reconstruction errors. It is interesting
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Fig. 11. Comparison between single-frequency and multifrequency
approaches. (a) and (b) Reference profile, real and imaginary parts. (c) and
(d) Proposed approach with CS (real and imaginary parts)—single-frequency
(err = 0.72). (e) and (f) Proposed approach with CS (real and imaginary
parts)—multifrequency (err = 0.64).

Fig. 12. Extension of the spectral coverage of the external operator as a func-
tion of the length of the measuring line. Red dotted line: short measurement
line (λ). Brown dashed line: medium measurement line (4× λ). Black line:
long measurement line (10× λ).

to note that in case of GPR applications, compared to the previ-
ous analysis developed in the ideal free space scenario, here the
imaginary part of the reconstructed contrast profile differs from
the reference one, since it mainly consists of two spots, which
are located along the edges of the targets: such a behavior is due
to the filtering properties of the external operator when consid-
ering the z-direction, i.e., the depth direction, that is the reason
for observing this pattern [40]. As it can be easily seen, also in
this example, Tikhonov regularization fails.

Let us show how it is possible to improve reconstruction
capabilities, but in order to reach such an aim it is mandatory to
add more independent information, and one can manage in such
an issue by means of a multifrequency approach. As it has been
said before, we employed a multifrequency CS-based approach
to overcome the limitations due to a single-frequency method.

Let us consider the following example, in which the two
media have the same electromagnetic features as those ones
proposed in the previous subsurface reconstruction, but now the
soil is a lossy one, with σ = 1mS/m. Furthermore, the num-
ber of data employed in this example is equal to 25, since five
transmitters and five receivers are used and data belong to the
frequencies (100, 150, 200, 250, 300) MHz. The reference pro-
file that we want to recover and the reconstructions obtained

Fig. 13. Spectral coverage of the external operator: multiview-multistatic
single-frequency (a) and multifrequency (b) configurations.

Fig. 14. Comparison between the singular values for the single-frequency and
multifrequency approaches.

by using single-frequency and multifrequency approaches are
sketched in Fig. 11. It is easy to note that the latter method
works better than the former one. In order to understand why
multifrequency works better than single-frequency, it is useful
to think an example in which the background is lossless and
the scatterers are buried at some wavelengthes in depth, since
under these assumptions it is possible to evaluate analytically
the relationship between data and unknowns (see [41]) that con-
sists in a 2-D Fourier transform after using a nonlinear mapping
for the Fourier variables (see [40]). Such a piece of informa-
tion depends also on the length of the measuring line, which
changes the spectral coverage of the external operator (see
Fig. 12). More in details, the upper edge of the extension of the
spectral coverage for the single-frequency case is represented
by the red dotted line shown in Fig. 12, and the lower edge
changes according to the length of measuring line. Moreover,
the extension of the region in the Fourier domain, which rep-
resents the spectral coverage, varies according to the kind of
considered configuration. As a matter of fact is depicted the
spectral coverage for both the single-frequency and multifre-
quency multiview-multistatic cases for a measurement line of
length 10λ in Fig. 13, supposed that both the previous hypothe-
ses are valid. But since we are considering situations in which
the targets are shallow enough and the kind of considered soil
may be a lossy one, no analytical analysis can be proposed.
Nevertheless, the numerical tool of the singular value decom-
position (SVD) can help us to still prove the validity of the
previous statements, even though the relationship between data
and unknowns is no longer a Fourier transform. In Fig. 14,
a comparison between the numerical SVD of the single and
multifrequency cases is proposed. By looking at these figures,
one can easily understand that for the multifrequency example,
the number of singular values that are upon a certain thresh-
old is greater than the one in the single-frequency case: such
a behavior justifies the better reconstruction obtained using
the multifrequency approach. However, the high values of the
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reconstruction error are justified by the high error on the imag-
inary part of contrast function, and this is due to the nature of
external operator.

VII. CONCLUSION

In this paper, a preliminary analysis of the performance of
a CS-based approach for the detection and quantitative char-
acterization of buried objects within the framework of a linear
approximation has been proposed. In particular, an analysis of
the performance of the CS-based algorithm in the canonical free
space configuration has been discussed, in order to explore the
two main strategies available to exploit the potentialities of such
a theory. Moreover, these results have been compared with stan-
dard inversion procedures based on Tikhonov regularization
and then improved by using a multifrequency approach. Due
to the numerical tool of the SVD, the capabilities of the mul-
tifrequency and single-frequency approaches have been tested
and compared in more complicated aspect-limited scenarios,
confirming the improved qualities of the multifrequency recon-
structions rather than the single-frequency ones by means of
a numerical analysis of the spectral coverage of the external
radiating operator.

APPENDIX

Let us start from (9), that is an operator equation which
relates the data of the considered problem in the multifre-
quency framework with the unknowns at a fixed frequency
(i.e., the maximum one in the selected bandwidth). In order to
define explicitly the operator LMF , let us rewrite the equation
mentioned before as

E
(v)
scatt(rm, ωf ) = k22

∫∫
Ω

g21(rm, r′, ωf ) ·Bωf
[χ (r′)]

· E(v)
inc(rv, r

′, ωf ) dr
′, rm, rv,∈ Γ∀m = 1, . . . , Nm

∀v = 1, . . . , Nv, r′ ∈ Ω (A1)

where rm and rv are the vectors defining the positions
of receivers and transmitters, respectively, both supposed to
belong to the same measurement line.

We can now discretize the imaging domain by using a
grid of pixels whose size is small enough to let us assume
that both the incident field and the contrast function can be
considered constant inside each cell of the imaging domain
[42], i.e., E

(v)
inc(rv, r

′, ωf ) = E
(v)
inc(rv, rn, ωf ), and χ (r′) =

χ (rn) ∀r′ ∈ Ω(rn), with rn being the vector pointing at the
center of the nth cell. With these assumptions, it is possible to
write

E
(v)
scatt(rm, ωf )= k22

Ncells∑
n=1

∫∫
Ω(rn)

g21(rm, r′, ωf )·Bωf
[χ(rn)]

· E(v)
inc(rv, rn, ωf ) dr

′ = k22

Ncells∑
n=1

Bωf
[χ (rn)]

· E(v)
inc(rv, rn, ωf )·

[∫∫
Ω(rn)

g21(rm, r′, ωf ) dr
′
]
. (A2)

Let us focus on the operator

Bωf
[χ (rn)] =

1

2

(
1 +

ω

ωf

)
·χ (rn) +

1

2

(
1− ω

ωf

)
·χ∗ (rn)

(A3)

the issue consists in rewriting (A3) to express the opera-
tor Bωf

[·] as a function of the real and imaginary parts
of the reference contrast function χ, i.e., Bωf

[χ (rn)] =
Bωf

[χRe (rn) , χIm (rn)]. To reach this aim, let us start from
the equation which defines the contrast function at the selected
reference frequency

χ (rn) =
εeq (rn)

ε2 (rn)
− 1 =

ε′x (rn)− j σx(rn)
ωε0

ε′2 (rn)− j σ2(rn)
ωε0

− 1 (A4)

from equation (A4) and omitting the dependence on rn to
simplify the notation, one can easily find that

Bωf
[χ] =

Re [(χ+ 1) · ε2] + j · ω
ωf

· Im [(χ+ 1) · ε2]
Re [ε2] + j · ω

ωf
· Im [ε2]

− 1

(A5)

and after a few manipulations, observing that χ = Re [χ] +
j · Im [χ] = χRe + j · χIm and ε2 = Re [ε2] + j · Im [ε2] =
ε2,Re + j · ε2,Im, we have

Bωf
[χ] = χRe + j · ω

ωf
·
ε2,Re + j · ω

ωf
· ε2,Im

ε2,Re + j · ωf

ω · ε2,Im · χIm

= χRe + j · α · χIm (A6)

which relates the unknown profile at the reference frequency
ω to the generic frequency ωf in the selected bandwidth.
Therefore, in order to write the operator LMF in (11) properly,
one can handle real and imaginary parts of contrast profile at
reference frequency separately, and this results in doubling the
number of columns in the discrete version of such an operator.
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