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A Comprehensive Evaluation of Spectral Distance
Functions and Metrics for Hyperspectral

Image Processing
Hilda Deborah, Noël Richard, and Jon Yngve Hardeberg

Abstract—Distance functions are at the core of important data
analysis and processing tools, e.g., PCA, classification, vector
median filter, and mathematical morphology. Despite its key role, a
distance function is often used without careful consideration of its
underlying assumptions and mathematical construction. With the
objective of identifying a suitable distance function for hyperspec-
tral images so as to maintain the accuracy of hyperspectral image
processing results, we compare existing distance functions and
define a suitable set of selection criteria. Bearing in mind that the
selection of distance functions is highly related to the actual defini-
tion of the spectrum, we also classify the existing distance functions
based on how they inherently define a spectrum. Theoretical con-
straints and behavior, as well as numerical tests are proposed for
the evaluation of distance functions. With regards to the evalu-
ation criteria, Euclidean distance of cumulative spectrum (ECS)
was found to be the most suitable distance function.

Index Terms—Image processing, multidimensional signal
processing.

I. INTRODUCTION

Q UANTITATIVELY measuring the difference between
two objects is the core of many important image

processing tasks, e.g., PCA, vector median filtering, mathemati-
cal morphology, etc. While for binary and grayscale images, the
task of measuring distance or dissimilarity is rather straightfor-
ward, it is not the case for images of higher dimension such as
color and hyperspectral images. Vector median filter by Astola
et al. [1] was constructed based on the notion of aggregate dis-
tance which enables the ordering of multivariate data, which
soon after was followed by other constructions of multivari-
ate nonlinear filters using other different distance functions
[2], [3]. Mathematical morphology, a nonlinear image process-
ing framework, relies on the ordering of its input data. The
core of mathematical morphology is therefore similar to that
of nonlinear filter, and one way of ordering multivariate data is
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using distance functions [4], [5]. Different PCA algorithms and
implementations are available, varying by the distance function
behind its classifier [6], [7]. A comparative study on dissimi-
larity measures for the use in content-based image retrieval is
available, trying to identify which among the existing dissimi-
larity or distance functions are suitable for such a task [8]. In
hyperspectral image domain, several distance-based method to
relate two data sets or image regions are available [9]. All the
previously mentioned works which use distance function illus-
trates that a distance function is indeed at the core of image
processing especially for multivariate data.

Distance functions or metrics are particularly essential for
image quality (IQ) assessment. IQ metrics typically compute
quality values locally, either pixel-wise or spatially, resulting
in a quality map. The information given by a quality map will
depend on the IQ metric behind, e.g., simple distortion measure
using Euclidean distance, structural similarity (SSIM) index
[10], blur index [11], and IQ according to human judgment
[12], [13]. Several spectral quality metrics that are in use in
remote sensing are spectral similarity value (SSV) [14] and gen-
eral image-quality equation (GIQE) [15]; Kerekes et al. have
provided the comparative evaluation of them with some other
spectral quality metrics [16]. In general, IQ metrics can be cate-
gorized into no-reference, reduced reference, and full reference
quality metrics. Shresta et al. [17] evaluated several IQ metrics
for the purpose of spectral imaging systems quality assessment.
In their work, existing IQ metrics were categorized into basi-
cally full reference metrics and some task specific metrics. In
most of these existing IQ metrics, the mathematical formu-
lations are typically variations of basic distance or similarity
function, whether with incorporating weighting factors or by
combining basic distance functions.

Before proceeding into the use of distance functions in inter-
mediate or high-level image processing or in IQ assessment,
a careful consideration has to be made regarding which dis-
tance or metric to use and the characteristics of the problem
at hand. Each of the existing distance functions has its inher-
ent assumption that is due to the mathematical construction.
Take the distance functions from the Minkowski family, e.g.,
Manhattan and Euclidean distance functions, as an example.
In many cases, these functions are thought to be general and
useful for any kind of input data. However, Minkowski dis-
tance functions are defined on Euclidean space, and thus are
only valid when the input data is a Euclidean vector. In addi-
tion to that, many distance functions were originally developed
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TABLE I
NOTATIONS

for some specific tasks, e.g., spectral angle mapper [18] and
Levenshtein distance [19]. Last but not least, strictly speaking,
a distance function is not necessarily a metric for there are theo-
retical requirements for a metric which are different from those
of a distance function.

This paper is organized as follows. The objective criteria
needed to evaluate the existing distance functions are provided
in Section II. As we classify the existing distance functions
based on how they consider a spectrum, each of the sections
starting from Sections III to VI is dedicated for each of the
distance categories or families. Finally, the result of this com-
parative study is concluded in Section VII. Table I is provided
to summarize all the mathematical notations used throughout
this article.

II. OBJECTIVE EVALUATION CRITERIA

Before proceeding with each of the criteria, note that the
evaluation will be carried out for reflectance spectra in hyper-
spectral imaging setting. Here, we define hyperspectral image
as having many spectrally contiguous bands.

A. Simulation of Basic Spectra

To evaluate the performance of a distance function with
regard to its theoretical properties, simple artificial reflectance
spectra will be used. A basic reflectance spectrum is simulated
with a theoretical Gaussian distribution function. Gaussian dis-
tribution function is selected with the purpose of showing the
limitations of the existing distance functions and not to model
the nature of a spectrum. More complex distribution will yield
more complex distance response and therefore is not able to
explain the behavior of the distance function or metric under
evaluation.

Based on our previous observation on the spectral
reflectances of pigments, we simulate hue change and bright-
ness or illumination change with basic mathematical transfor-
mations, i.e., translation and magnitude change, respectively.
Simulated spectral reflectances for each case of translation and
magnitude change are shown in Fig. 1. The two sets of sim-
ulated spectral reflectances are going to be used to obtain a
distance response which in turn will be used to evaluate the
corresponding distance function.

B. Theoretical Properties and Numerical Constraints

There are several means to quantify similarity or dissimi-
larity between two objects, i.e., distance, similarity, or diver-
gence measures. In this work, we strictly evaluate the existing

Fig. 1. Simulation of a basic spectrum using theoretical Gaussian function. Hue
change and illumination change in perceptual level is simulated by (a) transla-
tion and (b) magnitude change applied to the basic spectrum, respectively.

measures to theoretical requirements of a distance and met-
ric. Below we can see several theoretical properties. A distance
function must possess the properties of reflexivity, nonnegativ-
ity, and symmetry. A metric is stricter than a distance, it has to
satisfy nonnegativity, symmetry, identity of indiscernibles, and
triangular inequality properties.

Reflexive d(x, x) = 0
Nonnegative d(x, y) ≥ 0
Symmetric d(x, y) = d(y, x)
Identity of indiscernibles d(x, y) = 0 ⇔ x = y
Triangular inequality d(x, y) ≤ d(x, z) + d(z, y)

As a spectrum is translated or magnified further from a refer-
enced spectrum, see Fig. 1, we expect an increase in its distance
response. This then leads to an additional constraint which
is monotonically increasing (nondecreasing is included), see
Fig. 2(b). The relation shown in (1) is induced by three require-
ments, i.e., triangular inequality, identity of indiscernibles, and
monotonically increasing. ηp is translation or magnification
factor evolution and dk(ηp) is the response of distance func-
tion k at ηp. As we will see later, many of the existing distance
functions are not able to respond proportionally to the given
parameter evolution, they saturate after a certain number of evo-
lution. To measure this, saturation point ηsat information as
shown in (2) will be given. Another additional information is
dynamic range dnr of a distance function, see (3).

dk(ηp)

dk(ηmax)− dk(ηmin)
≥ ηp

ηmax − ηmin
(1)

ηsat =
∧

{ηp : argmax dk(ηp)} (2)

dnr = dk(ηmax)− dk(ηmin) (3)

C. Real Pigment Reflectance Spectra

To evaluate the performance of distance measures on real
hyperspectral data with all its spectral noise or variations,
hyperspectral images of two pigment patches as shown in Fig. 3
will be used. Defining a theoretical absolute white reflectance
spectrum as the reference, distance responses to each of the pix-
els located under the yellow horizontal lines will be obtained
for each distance function. This assessment is intended to
qualitatively measure the performance of a distance function
in classifying the pixels into their respective classes of color
shades, in the presence of spectral noise and variations. An ideal
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Fig. 2. (a) Saturation point ηsat as the location where the distance response
reaches its maximum. (b) Saturation of a distance function is in fact related to
the amount of intersection region between two spectra, if it saturates it will be
around the first point of zero intersection.

Fig. 3. Two spectrally acquired pigment patches to be used to evaluate distance
measures performances. The pixels under the yellow horizontal lines will be
used to see whether a distance measure is able to separate pixels into groups of
different color shades. (a–c) 23800, patch and spectra; (b–d) 44450, patch and
spectra.

distance function is expected to give a response such that is
shown in Fig. 4, i.e., a step function. As the hyperspectral
images of both pigment patches have noise and variations,
the step function is expected to fluctuate as well. However,
the fluctuations must not be significant such that the intraclass
variations are smaller than the interclass distance.

III. SPECTRUM AS VECTOR IN EUCLIDEAN SPACE

A. Hypothesis of Validity

In Euclidean space, a vector is represented as n-tuples where
each of the axes or dimensions is orthogonal to each other.
Thus, it inherently assumes that the spectral bands or channels
are orthogonal and do not correlate. Furthermore, in Euclidean
space, the bands are said to have no particular order, or in other
words, distance between two spectra will remain unchanged
whatever spectral bands ordering is used. Such assumptions are,
however, false, because it is known that in hyperspectral imag-
ing the neighboring bands are highly correlated [20]. Using dis-
tance functions that fall into this category would then ignore the
higher order relationship or correlation between neighboring
spectral bands and will result in inaccurate measurement.

Fig. 4. Distance function is expected to give this response, i.e., a noisy step
function, when given a theoretical absolute white reflectance spectrum as
reference and spectral reflectance signals from the pigments patches in Fig. 3.

B. Distance Functions

Many of distance functions in this category can be gen-
eralized as variations of Minkowski formula, see (4). By
varying the Minkowski order p, we obtain Manhattan (p = 1),
Euclidean (p = 2), and Chebyshev (p = ∞) distance functions,
which are also metrics. Chebyshev distance function can also
be written as in (5). Another variation is fractional Minkowski
p < 1, which was shown by Aggarwal et al. [21] to signifi-
cantly improve the effectiveness of clustering algorithms for
high-dimensional data; fractional Minkowksi is, however, not
a metric as it violates triangular inequality [22].

Other than varying the order of Minkowski, other distance
functions vary on the weighting function. Canberra in (6) [23],
Sørensen [24], Gower [25], Kulczynski [23], and Lorentzian
[23] are variations of weighted Manhattan distance functions.
Examples of weighted Euclidean are root mean square error
(RMSE) in (7) and the two χ2 distances in (8) and (9). Geman-
McClure function in (12) [26] can be considered as squared
Euclidean distance but normalized individually. Among all
these distance functions, only several will be evaluated as
mathematically they are very similar.

dp(S1, S2) =

(∑
λ

|s1,λ − s2,λ|p
) 1

p

(4)

dChe(S1, S2) = max
λ

(|s1,λ − s2,λ|) (5)

dCan(S1, S2) =
∑
λ

|s1,λ − s2,λ|
s1,λ + s2,λ

(6)

dRMS(S1, S2) =

√
1

nb

∑
λ

(s1,λ − s2,λ)2 (7)

dχ2
1
(S1, S2) =

∑
λ

(s1,λ − s2,λ)
2

(s1,λ + s2,λ)2
(8)

dχ2
2
(S1, S2) =

1

2

∑
λ

(s1,λ − s2,λ)
2

s1,λ + s2,λ
(9)
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Fig. 5. Distance responses of distance functions that consider a spectrum as a
vector in Euclidean space, shown in normalized values for (a) translation and
(b) magnitude change cases. All distance function saturates for the translation
case. Spectral angle, cosine, and χ2

2 distance responses lie below the ideal linear
response and therefore are not metrics.

dCos(S1, S2) = 1−
∑

λ s1,λ · s2,λ√∑
λ s

2
1,λ

√∑
λ s

2
2,λ

(10)

dSAM (S1, S2) = cos−1

⎛
⎝ ∑

λ s1,λ · s2,λ√∑
λ s

2
1,λ

√∑
λ s

2
2,λ

⎞
⎠ (11)

dGMC(S1, S2) =
∑
λ

(s1,λ − s2,λ)
2

1 + (s1,λ − s2,λ)2
(12)

Some other distance functions calculate the difference
between two spectra based on angular information. Two of such
distance functions are cosine distance in (10) and spectral angle
in (11). Spectral angle was initially used in spectral angle map-
per [18] and has since been used extensively in remote sensing
field.

Fig. 6. Responses of category 1 distance functions on two pigment patches
in normalized values, i.e. (a–b) Minkowski on 23800 and 44450, and (c–d)
Chebyshev on 23800 and 44450. Different variations of Minkowski distances
behave identically, with magnitude being the only difference. Chebyshev is,
however, shown to be rather unstable.

C. Evaluation

Two sets of simulated spectral reflectance signals as shown
in Fig. 1 are used to evaluate the theoretical properties of dis-
tance functions in this category. Distance responses for both
cases of translation and magnitude change are provided in
Fig. 5. For an increasing standard deviation or magnitude
change, we are expecting a proportionally increasing distance
response. However, as shown in Fig. 5(a) none of the distance
functions is giving the desired behavior as all of them satu-
rates, which as mentioned before is related to the intersection
between two spectra, see Fig. 2(b). From observing distance
responses for magnitude change in Fig. 5(b), we know that
spectral angle, cosine, and χ2

2 distances are not metrics as their
responses are below the ideal linear response. To be specific, χ2

2

violates triangular inequality, while spectral angle and cosine
distance violate identity of indiscernibles due to their zero
responses.

Regarding many variations of Minkowski distances, sev-
eral points can be concluded. Even though all these distance
functions saturate for translation case, functions with larger
Minkowski order p will saturate at an earlier point than those
with smaller p. Variations on the weighting function would not
only affect the saturation but also curve shape of the distance
response and therefore it will affect whether the function is
a metric or not, e.g., χ2

2 distance in Fig. 5(b). If we observe
Fig. 6(a) and (b), which are distance responses to the two sets
of pigment spectral reflectances, it is clear that variations of
Minkowski either in its order or weighting function result in
similar behavior, differing only by its magnitude. Chebyshev
distance is, however, not stable as compared to, e.g., Euclidean
distance, as seen in Fig. 6(c) and (d) where in 23 800 it fails in
correctly classifying the spectral reflectances.

Spectral angle and cosine distance also show unstable behav-
iors on the two pigment patches. In Fig. 7(a), both distance



3228 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

Fig. 7. Responses of angular distance functions (category 1) on pigment (a–c)
23 800 and (b–d) 44 450, shown in normalized and real response values.

functions are able to identify the different classes, with some
expected spikes due to the variations in the signals. However
in Fig. 7(b) both functions are not able to tell the difference
between classes. Spectral angle itself was originally used such
that the magnitude differences between spectra caused by illu-
mination change or shading effect have little significance on
the resulting distance response [18]. With magnitude differ-
ence being the most prominent difference between spectra in
pigment 23 800 and 44 450 [see Fig. 3(c) and (d)] and know-
ing that cosine distance and spectral angle represent distance
in values between 0 and 1, it is expected that the dynamic
ranges of distance responses to 23 800 and 44 450 are rather
small (see Fig. 7(c) and (d). The reason why both cosine dis-
tance and spectal angle completely fail at 44 450 is because
the spectral reflectances of 44 450 contain two Gaussian
curves and angular distances are proven to be limited in
such case.

To summarize, so far in this category we are not able to
find a single distance function that responds proportionally to
the increasing parameter evolution, mainly for translation case;
they always saturate when there is no overlapping between two
spectra. The summary of theoretical and numerical properties
of the distance functions is provided in Table II.

IV. SPECTRUM AS N-DIMENSIONAL DATA IN MANIFOLD

A. Hypothesis of Validity

While assuming that a spectrum is a vector in Euclidean
space is incorrect, it can be assumed as an n-dimensional
data whose spectral variations form a manifold. With this
assumption, two different approaches in computing a distance
function can be explored. The first approach addresses a dis-
tance function as a direct measure between two spectra, e.g.,
Goodness-of-fit coefficient (GFC) [27]. On the other hand, the
second approach explores this question within the dimensional-
ity reduction purpose [28]–[30].

TABLE II
SUMMARY OF THE THEORETICAL PROPERTIES OF SEVERAL DISTANCE

FUNCTIONS IN CATEGORY 1, I.E., THOSE THAT CONSIDER A SPECTRUM

AS A VECTOR IN EUCLIDEAN SPACE

*Reflexivity, nonnegativity, and symmetry are all satisfied.

B. Distance Functions

GFC is one example of the straightforward distance expres-
sions in this category. It was originally used to test the accuracy
of reconstructed daylight spectra [27]. It is based on Schwartz’s
inequality and in Euclidean space it is basically the cosine dis-
tance or the cosine of spectral angle. Since GFC is a similarity
function, the distance function is as shown in (13).

dGFC(S1, S2) = 1− |∑λ s1,λ · s2,λ|√∣∣∣∑λ s
2
1,λ

∣∣∣√∣∣∣∑λ s
2
2,λ

∣∣∣ (13)

In parallel, Tenenbaum et al. [28] and Roweis et al. [29] pro-
posed a new way to consider a set of spectra, i.e., as manifolds
where each spectrum is represented by a node in a graph. With
this new point of view, the dimensionality of spectral variations
can be reduced using the proposed algorithms, i.e., isometric
feature mapping (Isomap) [28] and locally linear embedding
(LLE) [29]. Several more advanced algorithms are locally linear
coordination (LLC) [30] and manifold charting [31].

In Isomap, a distance between two spectra can be expressed
as a sum of local distances between these two spectra and their
immediate neighbors in a trusted set of spectra; local distances
are typically computed with Euclidean distance or dot prod-
uct. Isomap is considered as a global method as it preserves
the global geometric features of the initial spectral set. Several
applications of Isomap for hyperspectral images are available
[31], [32]. The LLE algorithm considers that each spectrum is
a weighted combination of a trusted set of nearest neighbors.
It then computes the minimally distorting low-dimensional
barycentric embedding [29], [31]. The main idea behind the
previous algorithms is that the n-dimensional values mostly
consist of noise or inaccurate features and that the lattice or
neighborhood structure is more important than the values of
the data.

d(Sa, Sb) = min
P−1∑
i=0

d2(Si, Si+1) (14)
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Fig. 8. Theoretical behavior evaluation of category 2 distance functions with
regard to (a) translation and (b) magnitude change, shown in normalized values.
Their numerical responses to spectral reflectances of pigment 23 800 and 44 450
are shown in (c) and (d), respectively.

As the second approach of distance function in manifold
is centered around the assessment of local distance between
neighboring spectra, we are only going to evaluate and con-
sider as valid measure the Isomap construction as it preserves
the global structure of the lattice of spectra. Let S = {Si, i =
[0, L− 1]} be a set of spectra, the distance d(Sa, Sb) between
two spectra Sa and Sb is expressed as the sum of local dis-
tances between Si and Sj , where the list of Si forms the shortest
path P between Sa and Sb. Or in other words, the shortest path
between Sa and Sb is formed by a chain of P spectra, see (14),
where S0 = Sa, SL = Sb, P ≤ L, and Si �= Sj , ∀i �= j.

C. Evaluation

Theoretical evaluation on GFC with regards to translation
and magnitude change is as shown in Fig. 8(a) and (b), respec-
tively. It is shown that for translation GFC is not able to
proportionally reflect the input parameter evolution; it saturates.
For magnitude change, it completely fails at measuring distance
between two spectra that only differ in magnitude. Such station-
ary response for magnitude change implies that it violates the
property of identity of indiscernibles, and therefore GFC is not
a metric (see Table III).

Regarding Isomap, due to the particular nature of the met-
rics on lattice, distance between two spectra must be assessed
inside a lattice. Consequently, all the possible spectrum trans-
formations including translation and magnitude change need to
be combined to construct the lattice support. Only after this,
the distance between two spectra can be computed using the
Isomap algorithm. Isomap relies on other distance functions to
measure local distances, which in this case are Euclidean dis-
tance and Euclidean distance of cumulative spectrum (ECS),
see (17). Fig. 8(a) and (b) shows the responses of distances in
lattice using Isomap. Using the lattice structure allows assessing

TABLE III
SUMMARY OF THE THEORETICAL PROPERTIES OF SEVERAL DISTANCE

FUNCTIONS IN CATEGORY 2, I.E., THOSE THAT CONSIDER A SPECTRUM

AS AN N-DIMENSIONAL DATA IN MANIFOLD

*Reflexivity, nonnegativity, and symmetry are all satisfied.

spectral distance with Euclidean expression when the transla-
tion transformations are applied. As the the lattice is relatively
dense, due to the closeness of the transformed spectra, there
are only few differences between the behavior of the two local
distances, i.e., Euclidean distance and ECS.

Using spectral reflectance signals of pigment 23 800 and
44 450, the behaviors of GFC and Isomap are evaluated on
real spectra with known properties. As mentioned before, the
expected response is a step function as shown in Fig. 4. The
actual responses are as shown in Fig. 8(c) and (d), where for
GFC only the response to 23 800 matches the expected one.
Having identical behavior to that of angular distances due to
GFC’s similar mathematical construction, the failure of clas-
sifying signals in 44 450 is due to its bimodal construction,
including the two Gaussian functions which reduce the sense of
angle measurement. For Isomap, the responses to both pigment
patches are as expected. Note that due to the lattice density,
the distance responses are more directly related to the local
distances rather than to Isomap algorithm. A more complete
study should be developed to assess the relationship between
the lattice density and the distance accuracy, and evidently, the
computational cost that is due to the shortest path computation
in Isomap algorithm.

V. SPECTRUM AS DISTRIBUTION

A. Hypothesis of Validity

By assuming that a spectrum is a distribution, one assumes
that spectral bands are ordered and that closer spectral bands
have more correlation than those which are further away.
Such assumptions do agree with the common knowledge about
spectral data and its high correlation between neighboring spec-
tral bands [20]. As a distribution, a spectrum could then be
represented as either a probability density function (pdf) or
cumulative distribution function (cdf).

R(S1, S2) =

∑
λ(s1,λ − s1,λ)(s2,λ − s2,λ)√∑

λ(s1,λ − s1,λ)2
√∑

λ(s2,λ − s2,λ)2

dCor(S1, S2) = 1− 1 +R(S1, S2)

2
(15)

dSmi(S1, S2) = 1−
∑

λ min(s1,λ, s2,λ)

min(
∑

λ s1,λ,
∑

λ s2,λ)
(16)

dECS(S1, S2) =

(∑
λ

∣∣∣∣
∫

s1,λdλ−
∫

s2,λdλ

∣∣∣∣
2
) 1

2

(17)
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dJef (S1, S2) =
∑
λ

(
s1,λ log

2.s1,λ
s1,λ + s2,λ

+s2,λ log
2.s2,λ

s1,λ + s2,λ

)
(18)

dPea(S1, S2) =
∑
λ

(s1,λ −mλ)
2

mλ
; mλ =

s1,λ + s2,λ
2

(19)

dSqC(S1, S2) =
∑
λ

(√
s1,λ −√

s2,λ
)2

(20)

B. Distance Functions

Spectral correlation, initially used for spectral correlation
mapper (SCM) [33], is a similarity function that is used in
remote sensing. Aiming at suppressing the effect of shading
in distance computation of remote sensing data, spectral cor-
relation does not take into account the magnification difference
between spectra. Although spectral angle also aims the same
purpose, spectral correlation was said to be more accurate to
spectral angle. To fit our context of distance, the mathematical
formulation of spectral correlation is changed into that is shown
in (15). The most common distance functions for distribution
are those that measure the amount of intersection between two
pdfs or histograms, e.g., Smith distance in (16). Other dis-
similarity measures that will be taken into account are Jeffrey
divergence in (18) [34], Pearson χ2 in (19) [35], squared chord
distance in (20) [36], and ECS in (17). Among all the previous
measures, ECS uses cdf and other measures use pdf. A different
approach to measure dissimilarity between spectra is by using
transformation cost based distance, i.e., Earth Mover’s distance
(EMD) [37] and combined EMD [38].

C. Evaluation

The response of distance functions in this category to the-
oretical evaluation is as shown in Fig. 9 and Table IV. With
regards to translation, we obtain three distance functions that
do not saturate, i.e., EMD, combined EMD, and ECS. In the
case of magnitude change, only combined EMD and ECS sat-
isfy the triangular inequality and identity of indiscernibles, as
the responses are exactly on top of the ideal response, while
the other functions are below it. Spectral correlation and Smith
distance are giving zero responses, which violate the identity
of indiscernibles property. For spectral correlation, this result
is expected as it was designed to remove the effect of shading
or magnitude difference. For Smith distance, if two spec-
tra are only different by magnitude, due to the mathematical
formulation the similarity would be 1 and the distance 0.

To further evaluate the performances of distance functions
in this category, as it was carried out for the previous cate-
gories, we test them on pigment 23 800 and 44 450 and the
corresponding results are as shown in Fig. 10. In this results,
however, EMD and Combined EMD were not evaluated, for
a reason that will be explained later. With regard to the two
pigments, most of the evaluated distance functions are able to
classify the signals to their respective color shades, except for

Fig. 9. Responses of distance functions that consider a spectrum as a dis-
tribution with regard to theoretical evaluation. For both (a) translation and
(b) magnitude change cases, only Combined EMD and ECS that are able to
give responses that do not saturate and lie on top of or above the ideal response.

TABLE IV
SUMMARY OF THE THEORETICAL PROPERTIES OF SEVERAL DISTANCE

FUNCTIONS IN CATEGORY 3, I.E., THOSE THAT CONSIDER A SPECTRUM

AS A DISTRIBUTION

*Reflexivity, nonnegativity, and symmetry are all satisfied.
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Fig. 10. Responses of distance functions in category 3, except EMD and
Combined EMD, to real spectral reflectance signals taken from pigment
(a) 23 800 and (b) 44 450.

spectral correlation and Smith distance. The results for these
two distances agree with their corresponding theoretical eval-
uation as the spectra of the two pigments are predominantly
different only by magnitude.

In the implementation of EMD, an optimization loop is
used to obtain a distance value. With simulated spectra using
Gaussian functions, this distance worked as expected. When
the real spectral data were used to test it; however, the func-
tion failed to give any result because it reached the limit of
optimization loop. Such behavior is due to the nature of real
hyperspectral data that has a lot of noise and variations. To
support this statement, we simulate several spectral reflectance
signals using Gaussian functions with additive uniform noise.
As our pigment spectral data are essentially different by their
magnitude, we simulate the spectra only for the case of
magnitude change [see Fig. 11(a)], in which a stationary or
all-zero response is expected from EMD. The response is,
however, showing an unpredictable behavior when noise or
variations are present, see Fig. 11(b). Such response is due
to the noise or variations that were added to the simulated
spectra.

As a conclusion, in this category we find that according to
the theoretical evaluation, two distance functions are giving the
desired response, i.e., they do not saturate for the case of trans-
lation and magnitude change. The two functions are combined
EMD and ECS. EMD was found to be unstable when dealing
with noisy data. Since the core of combined EMD is EMD, in
this category it is only ECS that is the most suitable distance
function for hyperspectral data. Nevertheless, regarding the def-
inition of distribution function, a remark must be added to the
fact that a spectrum cannot be defined as a distribution because
the integral of its energy or intensity across the wavelength is
not equal to 1.

VI. SPECTRUM AS SEQUENCE

A. Hypothesis of Validity

This category is inspired by distance functions that are used
in DNA matching. If a spectrum is considered as a sequence, it
means that spectral bands or channels are ordered by its position
in the sequence. Another inherent assumption that is taken is
that the values of the signals come from a finite set. The latter
assumption is incorrect as spectral data are represented by real
numbers which is an infinite set of values.

Fig. 11. Simulated spectra with additive uniform noise used to test the behav-
ior of EMD when noise or variations are present. (a) Noisy simulated spectra.
(b) EMD response.

B. Distance Functions

Distance functions that fall into this category are those that
are used mainly for string matching. Hamming distance [39]
measures the difference between two sequences based on the
minimum number of character substitutions required to trans-
form one string into another. This distance is only applicable
if the two sequences are of the same length. In Levenshtein
distance [19], instead of only taking into account character sub-
stitution, it considers all the single character edit, i.e., insertion,
deletion, and substitution. Levenshtein distance is therefore
suitable for spectra or sequences of unequal length. Damerau–
Levenshtein [40] add another operation to those considered
in Levenshtein, i.e., transposition of two adjacent characters,
saying that it corresponds to human misspelling.

C. Evaluation

The responses of distance functions in this category to the-
oretical evaluation are as shown in Fig. 12 and Table V. For
translation case, all three distance functions saturate. For mag-
nitude change case, all the distance functions saturate as soon
as the magnification factor is bigger than 1. This behavior is not
unexpected. All three distance functions measure the difference
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Fig. 12. Responses of distance functions in category 4 to theoretical evalua-
tions for the case of (a) translation and (b) magnitude change, as well as to real
spectral data from pigment (c) 23 800 and (d) 44 450. The first two figures are
shown in normalized values.

TABLE V
SUMMARY OF THE THEORETICAL PROPERTIES OF SEVERAL DISTANCE

FUNCTIONS IN CATEGORY 4, I.E., THOSE THAT CONSIDER A SPECTRUM

AS A SEQUENCE

*Reflexivity, nonnegativity, and symmetry are all satisfied.

between two sequences by means of character operations. For
the magnitude change case, there is no shifting of the curve
involved and therefore only values coming from the first and
last spectral bands or channels remained having the same val-
ues. For this reason, the three distance functions are giving
the results as shown in Fig. 12(a) and (b). As the theoretical
behavior has been explained, the reason to why testing these
functions with real spectral data results in Fig. 12(c) and (d)
becomes clear. Spectral data are represented by real numbers.
Furthermore, noise and variations are present in real spectral
data. Such is the limitation of distance functions in this cate-
gory as they assume that there are repetitions in the occurring
values, which are not the case due to real numbers being an infi-
nite set of values and noise that are present in the data making
repetition of values even more unlikely.

VII. CONCLUSION

Distance functions are at the core of many image process-
ing tasks, e.g., PCA and nonlinear filtering. However, in many
cases, the use of a distance function is not carefully considered
and adapted to the problem at hand. This would result in inaccu-
rate measurement as the underlying assumptions of a distance
function are ignored. Aiming at identifying the most suitable
distance function for hyperspectral images, existing distance

TABLE VI
SUMMARY

Legend
Fun Function name M Metric
Var Variation ηsat Saturation point
D Distance dnr Dynamic range

functions were classified into several categories based on their
spectrum definition. Several evaluation criteria were defined,
from theoretical evaluation with simulated spectra to numerical
evaluation using real spectra of known properties.

The summary of theoretical properties of the evaluated dis-
tance functions is provided in Table VI. From this table, we
can see that many of the distance functions are in fact not met-
rics. Even though a metric is not always necessary, it allows
us to estimate the distance of a target to a reference point
using distances obtained from other points (triangular inequal-
ity property). If we are looking for a metric, quite many
candidates are available. However, information given in this
table is only with respect to theoretical spectral data. After
testing the metrics on real spectral data, we could eliminate
Chebyshev, EMD, and combined EMD from the candidates as
they were incapable of dealing with noise or variations.

Finally, the most suitable distance function for hyperspectral
data, one that is a metric and responds proportionally without
saturating in both cases of translation and magnitude change is
ECS. Putting a less strict constraint on the selection, we could
still select those metrics that saturate with preferably bigger sat-
uration point. Therefore, we obtain Canberra and χ2

1 distances.
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Even though the metrics in category 4 saturate at the same
point for translation case, they were not selected as they sat-
urate as well for magnitude change case. We are aware that in
applications in remote sensing, there is often a need to ignore
magnitude change information. In such case, distance func-
tions that give all-zero responses for magnitude change case can
be used, i.e., Smith distance and spectral correlation. Angular-
based distance functions, including GFC, are not chosen as
they were shown to be unstable when given real spectral data
as input. Manifold distances appear to be a possible choice.
Nevertheless, their computational costs are a big limit for the
use at a low-level image processing.
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