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Evaluation of Spatio-Temporal Variogram Models
for Mapping Xco2 Using Satellite Observations:
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Abstract—Greenhouse Gases Observing Satellite (GOSAT),
which measures column-averaged carbon dioxide dry air mole
fractions (Xco2) from space, provides new data sources to improve
our understanding of carbon cycle. The available GOSAT data,
however, have many gaps and are irregularly positioned, which
make it difficult to directly interpret their scientific significance
without further data analysis. Spatio-temporal geostatistical pre-
diction approach can be used to fill the gaps for global and
regional Xco2 mapping. It is important to choose a suitable spatio-
temporal variogram model since modeling spatio-temporal corre-
lation structure using variogram model is a critical step in the geo-
statistical prediction. In this study, three different flexible spatio-
temporal variogram models, including the product-sum model,
Cressie–Huang model, and Gneiting model, are used to model
the spatio-temporal correlation structure of Xco2 over China,
using the Atmospheric CO2 Observations from Space retrievals
of the GOSAT (ACOS-GOSAT) Xco2 (v3.3) data products. The
three models are compared and evaluated using the weighted
mean square errors (WMSE) indicating the fitness between the
empirical variogram surface and the theoretical variogram model,
cross-validation for quantifying prediction accuracies, and the
performance of the three models when used to fill the spatial
gaps and generate Xco2 maps in 3-day temporal interval. The
results indicate that 1) the model fitness of the commonly used
product-sum model is slightly better than Cressie–Huang model
and Gneiting model as indicated from WMSE, and 2) all the three
models present similar summary statistics in cross-validation, all
with a significantly high correlation coefficient of 0.92, and about
83% of prediction error within 2 ppm and about 53% within
1 ppm, and (3) differences between the mapping results using
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the three models are generally less than 0.1 ppm, and no signifi-
cant differences can be identified. As a conclusion from the above
results, all the three variogram models can precisely catch the
empirical characteristics of the spatio-temporal correlation struc-
ture of Xco2 over China, and the precision and effectiveness of
predicting and mapping Xco2 using the three models are almost
the same.

Index Terms—ACOS-GOSAT, carbon dioxide, mapping, spatio-
temporal kriging, spatio-temporal variogram models.

I. INTRODUCTION

C OLUMN-AVERAGED carbon dioxide dry air mole frac-
tions (Xco2) from the Greenhouse gas Observation

Satellite (GOSAT) [1], [2] launched in 2009 has become new
data sources to improve our understanding of carbon sources
and sinks [3], [4]. The Xco2 data retrieved from GOSAT, how-
ever, have many gaps and are irregularly positioned due to the
influences of the clouds and the satellite orbit configurations
[5]. Such data cannot well demonstrate the comprehensive con-
tinuous variations of CO2 in space and time, which makes it
difficult to directly interpret the spatial and temporal character-
istics of atmospheric CO2 concentrations [6]. To address the
problem, both spatial-only and spatio-temporal geostatistical
approach has been applied to fill the gaps [7]–[9]. The corre-
lation structure modeling, including the choice of variogram
model and the estimation of the model parameters, is the most
critical step in the geostatistical approach [10]. It is, therefore,
important to choose a suitable variogram model by taking the
characteristics and behavior of the model into account [11]. The
spatio-temporal geostatistics using spatio-temporal variogram
was adopted for mapping satellite-observed Xco2 [12] because
Xco2 distribution presents both nonconstant spatial trend and a
temporal trend including seasonal cycle and yearly trend [13].
To model the spatio-temporal empirical variogram, exploratory
analysis of the marginal spatial and temporal variogram of Xco2

will be conducted. The spatial-only geostatistical prediction
approach will not be discussed in this paper since the temporal
structures, such as seasonal effect, in the Xco2 data are ignored
in the approach [7], [14]–[16].

Statistical modeling using geostatistics for analyzing the
spatio-temporal process that evolves in space and time is of
great interest in many areas of application, including the envi-
ronmental sciences [17], climate prediction and meteorology
[18]–[20], biology [21], hydrology [22], and medicine [23],
[24]. Spatio-temporal geostatistical modeling depends strongly
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on the choice of the covariance model for characterizing the
spatio-temporal correlation structure. Therefore, there are many
recent advances in developing spatio-temporal variograms and
covariance models to meet the demand for modeling space–
time data [25], [26]. Among them, large efforts have been
focused on the development of nonseparable spatio-temporal
variograms and covariance models that are able to model the
space–time interactions in the environmental and geophysi-
cal processes. A diverse range of models of nonseparable
spatio-temporal autocorrelation structures in spatio-temporal
geostatistics are proposed in the literature [18], [20], [26]–
[29]. Among them, the three models, including the product-sum
model [27], Cressie–Huang model [20], and Gneiting model
[18], are the most commonly used and extensively studied
spatio-temporal variogram models [19], [30], [31]. Cressie–
Huang model is a class of nonseparable covariance functions
constructed using a systematic way based on spectral approach
[20], whereas Gneiting model is constructed using an approach
extended from Cressie–Huang model and provides a general
classes of valid spatio-temporal covariance functions [18]. The
product-sum model, on the other hand, is a class of covari-
ance functions constructed using a convex combination of two
separated spatial and temporal covariance functions [26] and
it is, therefore, flexible and easy to implement [30]. Several
studies have been conducted to compare and evaluate different
spatio-temporal covariance models to investigate their effec-
tiveness and limits in specific case studies [19], [22], [24],
[30]–[32]. De Iaco et al. [30], [32] applied the spatio-temporal
geostatistics to daily ozone data and hourly NO2 data and
found that the product-sum model works the best comparing
to Cressie–Huang and Gneiting models. Martínez-Ruiz et al.
[24] also preferred the product-sum model when assessing the
mortality risk in Spain. In the study of runoff and precipita-
tion, Skøien et al. [22] showed that the product-sum model is a
slightly better fit than Cressie–Huang model. From Huang et al.
[31], Cressie–Huang model, however, showed the best behav-
ior among the other models when analyzing the solar radiation
data. It can be found from these previous studies that the suit-
able spatio-temporal covariance model varies from case to case.
For the modeling of atmospheric greenhouse gases, Zeng et al.
[12] developed a gap-filling approach for the GOSAT data using
the product-sum model to obtain spatio-temporal Xco2 predic-
tions. However, no attempts have been made to investigate the
best covariance model for spatio-temporal geostatistical analy-
sis of the Xco2 datasets from satellite observations. Modeling
the space–time interaction of atmospheric Xco2 with suitable
covariance functions can better characterize and predict the
spatio-temporal variation of Xco2. Therefore, a comparative
study and evaluation of different spatio-temporal covariance
models for satellite Xco2 data is of great importance.

In this paper, the modeling of the spatio-temporal correlation
structure of Xco2 using different spatio-temporal variogram
models for mapping will be evaluated and compared in the
study area over mainland China. The variogram models to
be evaluated include three typical spatio-temporal variogram
models, the product-sum model, Cressie–Huang model, and
Gneiting model. The spatio-temporal trend, including the spa-
tial trend and seasonal effect, of the satellite-observed Xco2

data will be firstly analyzed and quantified. The Xco2 data are
then detrended to generate the residual for further variogram
modeling study. The performance of the three spatio-temporal
variogram models for mapping will be evaluated in the follow-
ing three aspects, including 1) the weighted mean square errors
(WMSE) for comparing the fitness of the theoretical variogram
models to the empirical variogram calculated from data, 2) the
commonly used summary statistics in cross-validation, which
will be defined in Section III-E, for comparing the prediction
accuracies of geostatistical prediction using different variogram
models, and 3) comparison of the mapping results with the three
spatio-temporal variogram models and the corresponding krig-
ing variance indicating the prediction uncertainty. The objective
of this paper is to explore the best variogram models, which
is, on one hand, flexible and effective enough to quantify the
characteristics of spatio-temporal correlation structure of atmo-
spheric Xco2, and, on the other hand, provides the best predic-
tion precision in mapping using spatio-temporal kriging. In the
Section II, we give a description of the data used in this paper.
In Section III, we introduce the basic theories of the method-
ologies used, including spatio-temporal variogram modeling,
space–time kriging prediction, and cross-validation technique
for evaluating model precision. Section IV presents the results
and discussion, and the conclusion follows in Section V.

II. DATA

In this study, we collected GOSAT Xco2 data products
released by the Atmospheric CO2 Observations from Space
(ACOS) project in v3.3 over China land region spanning
from April 2009 to July 2012. GOSAT, launched on January
23, 2009, has been observing the reflected sun-light spectra
from space by the thermal and near-infrared sensor for car-
bon observation Fourier transform spectrometer (TANSO-FTS)
to retrieve the concentrations of carbon dioxide and methane,
the two major greenhouse gases [2], [33]. The ACOS project
applied the approaches including the calibration, validation, and
retrieval algorithms which are developed for orbiting carbon
observatory (OCO) to the GOSAT’s calibrated spectra mea-
surements (Level 1B) and generated the ACOS-GOSAT Xco2
dataset [34]–[36]. The ACOS-GOSAT Xco2 data include the
glint ocean data, land high gain data, and land medium data
[37]. Only the land high gain data are used, by the recom-
mendation from the ACOS Level 2 Standard Product Data
User’s Guide, v3.3 [37]. The data is first screened using the
advanced screening criteria described in the user guide to limit
the retrievals to those which have the highest confidence [37],
and then the global biases are removed by applying the bias
correction approach introduced in the data user guide [37]. This
screened and bias-corrected ACOS v3.3 Xco2 data are used in
the following analysis.

Fig. 1 shows the spatial distribution of the used dataset. We
take 3 days as a calculating time unit as the GOSAT orbiting
period is 3 days, in which the temporal variability of Xco2 is
relatively small and, therefore, not considered [13]. In general
there are nearly 122 time units in 1 year (365/3 ≈ 122), and
from June 2009 to May 2012, 366 time units of ACOS-GOSAT
data were used in this study.



378 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 1, JANUARY 2015

Fig. 1. Spatial distribution of used ACOS-GOSAT v3.3 data (black dots) from
June 2009 to May 2012 across study area (gray color).

III. METHODOLOGY

A. Spatio-Temporal Random Field Formalism

We model the GOSAT Xco2 data as a partial realization
of a spatio-temporal random function Z = Z{Z(s, t), (s, t) ∈
D × T} where D ∈ R2 and T ∈ R [38]. As described in the
World Meteorological Organization report [13], atmospheric
CO2 presents both a nonconstant spatial trend and a temporal
trend, including the seasonal cycle and yearly trend. Therefore,
the spatio-temporal random function can be decomposed into a
mean component and a residual component, given by

Z(s, t) = m(s, t) +R(s, t) (1)

where the mean component m(s, t) is a deterministic mean
model in space and time and the residual component R(s, t)
is assumed to be an intrinsically stationary random field [38],
[39]. In this study, the deterministic spatio-temporal mean com-
ponent m(s, t) is further decomposed into a spatial trend m1(s)
and temporal trend m2(t), i.e., m(s, t) = m1(s) +m2(t), as
described in [25]. The estimated spatio-temporal mean com-
ponent is then subtracted from the full dataset to yield the
spatio-temporal residuals component R(s, t), and will be used
in the following analysis.

B. Spatio-Temporal Empirical Variogram

Application of spatio-temporal geostatistical approach to
prediction and mapping of satellite-observed Xco2 includes the
analysis of spatial-temporal correlation structure of regional
variables using the spatio-temporal variogram [38], and the
optimal prediction of Xco2 value at an unsampled location and
time [10]. Spatio-temporal empirical variogram [27], [39] is
calculated from the residual component R(s, t). The empirical
variogram value γ̂ST (rs, rt) at the lag (rs, rt) is given by

γ̂ST (rs, rt) =
1

2 |I (rs, rt)|
×

∑
I(rs,rt)

[R (s+ hs, t+ ht)−R(s, t)]
2 (2)

where hs ∈ D, ht ∈ T, and |I(rs, rt)| are the cardinality of the
set |I(rs, rt)| = {(s+ hs, t+ ht) ∈ H, (s, t) ∈ H such that
‖rs − hs‖ < δs ∧ ‖rt − ht‖ < δt}. (δs, δt) is the spatial tol-
erance and temporal tolerance. The spatial empirical marginal

variogram γ̂ST (rs, 0) is denoted as γ̂S(rs), and the temporal
empirical marginal variogram γ̂ST (0, rt) is denoted as γ̂T (rt).

C. Marginal and Spatio-Temporal Variogram Modeling

Due to the convex property of both the spatial and the tempo-
ral marginal variograms, as shown in Section IV, the commonly
used exponential model for modeling convex variogram was
used and fit the two marginal variograms in space and time.
The chosen exponential model is given by

γ (h; θ) =

{
0, h = 0
N + C · (1− exp(−‖h‖/a)), h �= 0

(3)

where θ = (N,C, a) with N,C, a ≥ 0 is the parameter vector
to be estimated. h can be hs or ht. In the exponential model,
a is called the range, where the variogram value stabilized at a
value, C is the partial sill. N is called nugget effect, it is the
semivariance when spatial lag h is close to 0.

In this study, three nonseparable models, including the
product-sum model [12], [27], Cressie–Huang model [20], and
Gneiting model [18] are investigated. Their analytical expres-
sions are given below.

1) Product-Sum Model: In this study, the product-sum
model, with exponential marginal variograms (without
marginal nugget) and a global nugget effect [12], is used and
given by

γ (hs, ht; θp)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, (hs, ht) = (0, 0)

NST + CS · (1− exp (−‖hs‖ /a))
+CT · (1− exp (− |ht| /b))
−k · (CS · (1− exp (−‖hs‖ /a)))
· (CT · (1− exp (− |ht| /b))) otherwise

(4)

where θp = (NST , CS , a, CT , b, k) is the parameter vector
to be estimated, with NST , CS , a, CT , b ≥ 0 and 0 < k ≤
1/max{CS , CT } [27]. The parameters are estimated simulta-
neously using the same approach as in [21], to overcome the
limitations of the fitting by marginal variogram procedure used
in [32].

2) Cressie–Huang Model:

γ (hs, ht; θc)

=

⎧⎪⎨
⎪⎩
0, (hs, ht) = (0, 0)

NST + CST · (1− exp (−‖hs‖ /a))
·exp ((−‖hs‖ /a) · exp (− |ht| /b)) , otherwise

(5)

where θc = (NST , CST , a, b), with NST , CST , a, b ≥ 0, is the
parameter vector to be estimated.

3) Gneiting Model:

γ (hs, ht; θg)

=

⎧⎪⎪⎨
⎪⎪⎩
0, (hs, ht) = (0, 0)

NST + CST · (1− exp (−|ht|/b))τ
·exp

(
(−‖hs‖ /a) · exp (−|ht|/b)β

)
, otherwise

(6)
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where θc = (NST , CST , a, b, τ, β), with NST , CST , a, b ≥ 0,
β ∈ [0, 1], τ ≥ β is the parameter vector to be estimated.

The nonlinear weighted least-squared technique [10], [17],
[40] is used to estimate the parameters in the above spatio-
temporal variogram models in this study. This procedure gives
an estimate for the parameters over all the values, by minimiz-
ing the following weighted sum

W (θ) =
∑

I(rs,rt)

|I (rs, rt)| ·
[

γ̂
(
hs, ht

)
γ
(
hs, ht; θ

) − 1

]2

(7)

where I(rs, rt) has been described in (2), and hs and ht

are the average distances that fall, respectively, in the toler-
ance region around rs and rt such that ‖rs − hs‖ < δs and
‖rt − ht‖ < δt}. The minimized sum W (θ), namely WMSE,
measures the performance of fitting the variogram models to
the empirical variogram surface. The smaller the W (θ) is, the
better the fitting will be.

D. Spatio-Temporal Geostatistical Prediction

The space–time ordinary kriging [23], [39], which is a
commonly used geostatistical prediction method, is used to
predict the value R(s0, t0), at unsampled location (s0, t0),
from the stochastic residual component R = R(s, t), (s, t) ∈
D× T. The prediction method predicts R∗(s0, t0) as a linear
combination of residual data local in space and time to the pre-
diction location (s0, t0). Suppose that R∗(s0, t0) is a prediction
of R(s0, t0) and the local data number is n(s0, t0), which will
be defined below, then

R∗ (s0, t0) =
n(s0,t0)∑

i=1

λi (s0, t0)R (si, ti) ,

with

n(s0,t0)∑
i=1

λi (s0, t0) = 1. (8)

The weight λ assigning to each neighboring datum is quan-
tified so as to minimize the mean-squared prediction error
E(R (s0, t0)−R∗ (s0, t0))

2, while maintaining unbiasedness
of the predictor R∗(s0, t0). The minimized mean-squared pre-
diction error is called the kriging variance [10], which is a
measurement of prediction uncertainty [41], [42]. In determin-
ing the optimum weight λ, kriging takes both the variances
between R and R(s0, t0), and the variances of the data R itself
into account, in which the variances value is derived from the
fitted spatio-temporal variogram model in (4)–(6).

During the prediction process using spatio-temporal kriging,
the kriging neighborhood recommended by Zeng et al. [12] will
be used in order to make it computationally practical and pre-
serve the local variability of Xco2. Assume that the location
(s0, t0) is the datum to be predicted, the prediction procedure
can be briefly summarized as follows. First, the kriging neigh-
borhood is defined by setting the initial search range to 300 km
in space and 20 time units, and if the number of points within
the search range is less than 20, then the neighborhood will
expand until the number is larger than 20 while the radii of the
search range do not exceed the limits, which are set to 500 km in

space and 40 time units in time. Second, the residual at (s0, t0),
denoted as R∗(s0, t0), is predicted using the space–time krig-
ing described above. Finally, the predicted Xco2 denoted as
Z∗(s0, t0) at the location (s0, t0) is obtained by adding the
spatio-temporal trend m(s0, t0) to the R∗(s0, t0).

E. Evaluation of Prediction Accuracies

Cross-validation [10], [17], [43] is adopted to compare the
performance of the three spatio-temporal variogram models
fitted to the data. Throughout the cross-validation procedure,
the full ACOS-GOSAT dataset in mainland China, denoted
as {Z (si, ti) : i = 1, . . . , n} (n = 23 120), is used to gener-
ate the prediction dataset {Z∗ (si, ti) : i = 1, . . . , n}, obtained
by using spatio-temporal geostatistical prediction on the basis
of the above three variogram models. The leave-one-out cross-
validation [10] is implemented in the following repeating cal-
culation procedure. For each calculation, the datum Z (sj , tj)
is excluded from the full dataset and then is predicted with
the neighboring data points choosing from the remaining data-
set {Z (si, ti) : i = 1, . . . , j − 1, j + 1, . . . , n} (n = 23 120)
[10]. Using the prediction and the original dataset, we calculate
seven summary statistics [12], [23], [43] in cross-validation,
including the correlation coefficients (CORR), the mean abso-
lute prediction errors (MAPE), the slope of regression (SR), the
intercept of regression (IR), the mean prediction errors (MPE),
the variance of prediction errors (VPE), and the percentage of
prediction error (PPE) within 2and 1 ppm, to assess the differ-
ent spatio-temporal kriging prediction accuracies with the three
fitted models. As shown in Houweling et al. [44], the highest
precision of 1 ppm of the global Xco2 data would best address
the largest number of carbon science questions; Miller et al.
[45] estimate that the precision of 1–2 ppm is necessary to
monitor carbon fluxes at regional scales. Therefore, both the
statistics of the PPE within 1 and 2 ppm will be important for
further analysis of the mapping dataset.

IV. RESULTS AND DISCUSSION

A. Trend Analysis

Fig. 2(a) and (b) shows the GOSAT Xco2 values along
longitude and latitude directions, respectively, and Fig. 2(c)
shows the same data in three-dimensional (3-D) perspective.
Exploratory analysis by fitting the data using second-order
polynomial shows that, the study area presents a minor decrease
trend along the latitude, and along the longitude, the trend val-
ues in both sides are slightly higher than that in the middle.
We found the spatial distribution of Xco2 over the study area
presents a spatial trend that varies generally with the latitudinal
and longitudinal gradient. Therefore, we modeled the large-
scale spatial structure model of Xco2 using a full second-order
polynomial trend surface, given by

p(x, y) = p00 + p10x+ p01y + p20x
2 + p11xy + p02y

2 (9)

where x is the latitude value and y is the longitude value
of the GOSAT data. p is the parameter vector to be
estimated. As a result, the parameter vector estimation is p =
(p00=397.900, p10=0.028, p01=−0.178, p20=2.714× 10−5,
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Fig. 2. Distribution of ACOS-GOSAT Xco2 data (blue dots) along (a) latitude direction and (b) longitude direction, and their corresponding fitted trend (red line)
using second-order polynomial function over the study area; (c) the spatial and temporal trend (red lines) shown in 3-D perspective; and (d) the time series of
spatial-trend removed ACOS-GOSAT Xco2 data (blue dots) over the study area and fitted temporal trend (red line).

p11 = −0.001, p02 = 0.001). Moreover, Fig. 2(d) shows the
time series of the GOSAT Xco2 data in which the modeled
spatial trend is excluded. It can be indicated from Fig. 2(d) that
the temporal variation of spatial trend removed GOSAT Xco2

presents a strong seasonal effect, which is in agreement with
the description in [13]. A combination of annual harmonic
functions is used to model the temporal trend, as described in
[12] and [13]. The used annual harmonic functions is given by

m2(t) = a0 + a1t+

4∑
i=1

(αisin (iωt) + βicos(iωt)) (10)

where ω = 2π/T , and T is the period. The parameters are
estimated using least squared techniques and the results are:
a0 = −3.049, a1 = 0.017, α1 = −0.727, β1 = 2.945, α2 =
1.538, β2 = 1.091, α3 = 0.425, β3 = − 0.261, α40.103, β4 =
0.014. The spatio-temporal trend is then subtracted from
the full ACOS v3.3 mainland China dataset to yield the
ACOS v3.3 Xco2 residual dataset R(s, t), an intrinsically
stationary spatio-temporal error process used in the following
section.

B. Variograms

Fig. 3 shows the empirical spatial and temporal marginal var-
iograms, which are convex in both ‖hs‖ and |ht| for small
spatial and temporal lags. It is reasonable to fit the empiri-
cal variograms with the commonly used exponential variogram
model, which is applicable for convex variogram [30]. As a
result, the estimated parameters in (3) are (NS = 1.674, CS =
3.978, as = 1594.407) for spatial marginal variogram and

(NT = 1.666, CT = 5.987, aT = 71.606) for the temporal
marginal variogram. The corresponding optimal fitted vari-
ogram models are illustrated in Fig. 3, from which significant
spatial and temporal correlation in the Xco2 observations can
be identified, because the ratio, N/(N + C), is less than 0.75
for both the spatial and temporal cases.

As indicated in Fig. 3, the empirical variograms and the
fitted variogram modeling using exponential model show
a good agreement. We further model the empirical spatio-
temporal variogram using the product-sum, Cressie–Huang,
and Gneiting models in (4), (5), and (6) with exponential
marginal structure. We can see that the two margins behave
differently at infinity. It is worth highlighting, as specified in
[32], that the product-sum model in (4) can naturally catch this
characteristic, while the Gneiting model constructed as in (6)
does not have this feature [32].

Fig. 4 shows the empirical spatio-temporal variogram of
the residual component and the corresponding fitted variogram
models using the product-sum, Cressie–Huang, and Gneiting
models, respectively. Table I shows the estimated parameters
and the WMSE of the fitting.

As indicated from the results of W (θ) given in Table I,
the difference between the three variogram models is small.
As a result, both the product-sum model and Gneiting model
present a slightly better fit than Cressie–Huang model, which
has the largest W (θ). The fit near the origin (NST ) of the
product-sum model is 1.695, while for Cressie–Huang model
and Gneiting model, they are 1.731 and 1.699, respectively.
From the calculations of empirical spatio-temporal variogram,
as shown in Fig. 4(a), the empirical value at the origin should
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Fig. 3. Marginal (a) spatial and (b) temporal empirical variogram of ACOS-GOSAT Xco2 residuals over the study area, and the corresponding fitted marginal
variogram models.

Fig. 4. (a) Spatio-temporal empirical variogram and (b) the three fitted spatio-temporal variogram models using the product-sum model; (c) Cressie–Huang model;
and (d) Gneiting model.

be slightly lower than the sample variogram at the first spatio-
temporal lag, γ̂ST (50 km, 3 days), which is 1.695. Therefore,
the product-sum model well fit the variogram value near the
origin and is slightly better than the other two models in the
fitness near the origin. Because kriging is carried out in local
neighborhood and data closer to the prediction location will
have more substantial weights, the fitting of variogram at small
lags is therefore important in prediction and mapping [10].

C. Evaluation for Prediction Precision of Different Variogram
Models

In Table II, some descriptive statistics computed on cross-
validation results are given. Note that all the three models

present similar summary statistics in cross-validation. All of
them present significantly high correlation coefficient (CORR)
of 0.92 which indicates high correlation between the original
dataset and the prediction dataset. Their MPE are all 0.005,
and the PPE within 2 ppm is about 83% and within 1 ppm
is about 53% in the cross-validation results. The product-sum
model has a slightly better performance in terms of MAPE,
VPE, and PPE. As a conclusion from the results of Table II,
all the three models can precisely catch the empirical charac-
teristics of the spatio-temporal correlation structure of Xco2

in China, and therefore the precision and effectiveness of pre-
dicting and mapping Xco2 using the three models are almost
the same.
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TABLE I
PARAMETERS ESTIMATES FOR PRODUCT-SUM, CRESSIE–HUANG, AND GNEITING MODELS AND CORRESPONDING

WMSE, DENOTED AS W (θ)

TABLE II
SUMMARY STATISTICS FROM CROSS-VALIDATION, INCLUDING CORR, MAPE, MPE, VPE, SR, IRS, AND PPE WITHIN 2 PPM

AND WITHIN 1 PPM FOR PRODUCT-SUM, CRESSIE–HUANG, AND GNEITING MODELS

Fig. 5. Temporal variation of the averaged kriging standard deviations of prediction (PSD) using product-sum, Cressie–Huang, and Gneiting models for the whole
of the study area from June 2009 to May 2012, and the temporal variation of the number of used original Xco2 data points (purple dots).

TABLE III
MEAN VALUE OF TEMPORALLY AVERAGED KRIGING PREDICTION

STANDARD DEVIATION

D. Performance of Models in Mapping Xco2

The study area is divided into 1◦ × 1◦ regular grids, Xco2
value at the center of each grid box is predicted in 3-day inter-
val using the spatio-temporal kriging with the above three fitted
variogram models using the full dataset of ACOS-GOSAT data
to generate the gap-filled maps of Xco2. The kriging standard
deviation (root kriging variance) is also calculated to quantify
the prediction uncertainty corresponding to the Xco2 mapping
results.

Fig. 5 shows the temporal variation of kriging standard devi-
ations, which are averaged for the whole study area from
June 2009 to May 2012, using the predictions with product-
sum, Cressie–Huang, and Gneiting variogram models, and also
shows the number of Xco2 observations used within each time

unit. It can be seen from Fig. 5 that the prediction uncertainty
for the three variogram models presents almost the same tempo-
ral variation pattern and their differences of standard deviations
are small. The maximum difference of standard deviations
is about 0.010 between the product-sum model and Cressie–
Huang model in December 2009, when the number of available
Xco2 data points is very limited. It can be found from Fig. 5 that
the fewer number of used original Xco2 data points, the greater
the prediction standard deviation for all of three variogram
models, which implies that the kriging standard deviation of
prediction has a negative correlation with the number of used
Xco2 data points. As a result of mean prediction standard devi-
ation shown in Table III, there are no significant differences
between results from three variogram models, in which the
minimum value is 1.633 from the product-sum model and the
maximum value is 1.641 from Cressie–Huang model.

Fig. 6 shows the distribution of the averaged prediction stan-
dard deviations in August 2010 when the number of used Xco2
data points is relatively few. The averaged prediction standard
deviations are calculated by averaging the kriging standard
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Fig. 6. Distribution of the averaged prediction standard deviations in August 2010, which is obtained by averaging the kriging standard deviation at all the grids
in the study area over all time units (3-day interval) within August 2010, using (a) the product-sum model; (b) Cressie–Huang model; and (c) Gneiting model.

Fig. 7. (a) Map of averaged Xco2 concentration in August 2010, which is derived by averaging all the time units (3-day interval) Xco2 within August 2010 based
on the kriging predictions with the product-sum model in 1◦ × 1◦ grid. (b) shows the differences between the predicted Xco2 with Cressie–Huang model and (a);
(c) shows the differences between the predicted Xco2 with Gneiting model and (a).

deviation value of each grid over all time units (3-day inter-
val) within August 2010 for the three variogram models. From
Fig. 6, it is shown that the spatial variations of the predic-
tion standard deviations from the three variogram models are
similar, and the prediction standard deviations for all mod-
els are generally lower in the northern region, where there
are relatively more Xco2 observations available than that in
the southern region. This implication is in agreement with the
results assessed using the model in the previous studies [46].

Fig. 7(a) presents the map of monthly averaged Xco2 pre-
dicted using the product-sum model in August 2010, which is
obtained by averaging the kriging predictions of all time units
(3-day interval) within August 2010 for each grid, and Fig. 7(b)
and (c) demonstrates the differences of monthly averaged Xco2
predictions in August 2010 calculated by subtracting average
Xco2 predicted by the product-sum model from those predicted
by Cressie–Huang model and Gneiting model, respectively. It
can be seen from Fig. 7(b) and (c) that most of Xco2 predicted
by the product-sum model are slightly lower than those Xco2
predicted by the other two models, but the differences between
them are less than 0.26 ppm. On the other hand, Xco2 predicted
by the product-sum model is slightly larger than those Xco2
predicted by the other two models with the differences from
−0.03 to −0.26 ppm around the unpredicted blank areas shown
in the south-western part of Chinese land where the less Xco2
observations are available.

As the results show, the difference within the range (−0.1,
0.1) accounts for more than 96%. When compared with
the retrieval error, with mean bias of 1.34 ppm [37], of

ACOS-GOSAT data, the very small difference between the
mapping results using the three models is not significant, and
can therefore be ignored. The very small difference is largely
due to the mapping using difference variogram models, since
other kriging mapping processes are the same for the mapping
results. Therefore, it can be concluded that no significant dif-
ferences are identified for mapping Xco2 using prediction with
the three variogram models.

V. CONCLUSION

The objective of this study is focused on the evaluation
of different well-known types of spatio-temporal nonseparable
covariance functions, which are used to model the spatio-
temporal correlation structure of data for kriging predictions
and mapping of Xco2 using satellite observations from ACOS-
GOSAT. To begin with, the spatial trend and seasonal effect
of Xco2 in the study area over China are analyzed and then
removed to obtain the residual component. The three typi-
cal spatio-temporal variogram models, the product-sum model,
Cressie–Huang model, and Gneiting model, are then used to
fit the empirical spatio-temporal variogram using a nonlinear
weighted least square technique. The WMSE is used to mea-
sure the performance of fitting the variogram models to the
empirical variogram surface. As a result, the model fitness of
the product-sum model and Gneiting model is almost the same,
and is slightly better than Cressie–Huang model, while the fit-
ness near the origin with the product-sum model is slightly
better than the other two models. Furthermore, the prediction
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accuracies of spatio-temporal kriging with the three variogram
models are assessed and compared using seven summary statis-
tics of cross-validation results, including the CORR, the MAPE,
the SR, the IR, the MPE, the VPE, and the PPE within 2 ppm.
As a result, all the three models present similar summary statis-
tics in cross-validation, all with a significantly high correlation
coefficient of 0.92, and about 83% of predictions error within
2 ppm and about 53% within 1 ppm. Finally, performance of
the three models when used to map Xco2 in 1◦ × 1◦ grid and
3-day temporal interval and corresponding prediction uncer-
tainty is also discussed. It is found that the Xco2 differences
between the mapping results using the three models are gen-
erally less than 0.26 ppm, and no significant differences can be
identified. As a conclusion from above results, all the three vari-
ogram models, namely the product-sum model, Cressie–Huang
model, and Gneiting model, can precisely catch the empiri-
cal characteristics of the spatio-temporal correlation structure
of Xco2. We could obtain almost the same Xco2 mapping
results by the spatio-temporal kriging prediction using the three
spatio-temporal variogram models when applied in China land
region.

As regards computational aspects, though all the three var-
iogram models present similar performance in modeling, pre-
diction, and mapping, we found that the product-sum model,
generated simply as a convex combination of spatial and
temporal covariance [32], is relatively flexible and easy to
implement. However, implementation of the fitting process of
Cressie–Huang and Gneiting models need an iterative param-
eter optimization technique as specified in [30]. Moreover, to
construct an appropriate spatio-temporal variogram model, it
is important to study the main features of the marginal spa-
tial and temporal variograms, such as the behavior near the
origin. In this study, the results indicate that the exponential
model with a nugget effect, which is convex in both the spatial
and temporal cases, performs well by examining the shapes of
empirical spatial and temporal variograms. Therefore, exponen-
tial function is specified as the spatial and temporal structure for
the three spatio-temporal variogram models, the product-sum
model, Cressie–Huang model, and Gneiting model.

Future studies will contribute to extending this comparison
to other regions to further verify the conclusions drawn in this
study, and interpretation and further validation of the map-
ping results to understand the spatio-temporal distribution and
variability of Xco2 in China.
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