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Object-Based Image Analysis and Digital Terrain
Analysis for Locating Landslides in the

Urmia Lake Basin, Iran
Thomas Blaschke, Bakhtiar Feizizadeh, and Daniel Hölbling

Abstract—The main objective of this research was to establish a
semiautomated object-based image analysis (OBIA) methodology
for locating landslides. We have detected and delineated landslides
within a study area in north-western Iran using normalized dif-
ference vegetation index (NDVI), brightness, and textural features
derived from satellite imagery (IRS-ID and SPOT-5) in combi-
nation with slope and flow direction derivatives from a digital
elevation model (DEM) and topographically oriented gray-level
cooccurrence matrices (GLCMs). We utilized particular combina-
tions of these information layers to generate objects by applying
multiresolution segmentation in a sequence of feature selection
and object classification steps. The results were validated by using
a landslide inventory database including 109 landslide events.
In this study, a combination of these parameters led to a high
accuracy of landslide delineation yielding an overall accuracy of
93.07%. Our results confirm the potential of OBIA for accurate
delineation of landslides from satellite imagery and, in particu-
lar, the ability of OBIA to incorporate heterogeneous parameters
such as DEM derivatives and surface texture measures directly
in a classification process. The study contributes to the establish-
ment of geographic object-based image analysis (GEOBIA) as a
paradigm in remote sensing and geographic information science.

Index Terms—GIScience, gray-level cooccurrence matrix
(GLCM), landslide mapping, object-based image analysis
(OBIA), remote sensing, rule-based classification, textural
analysis.

I. INTRODUCTION

T HE RECOGNITION and delineation of landslides is a
critical task for pre- and postdisaster analysis [1]–[3].

Geoinformation, in particular, satellite imagery, plays a key
role in the detection, analysis, and monitoring of landslides
for hazard and risk analysis [4]. In general, remote sensing
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techniques such as aerial photography interpretation, stereo-
scopic image analysis, and interferometry studies can be used
to detect, monitor, and classify landslides [5]. A wide range
of global observation data available enable rapid and accurate
investigations of landslides to be made, facilitating the gener-
ation of landslide inventory maps and databases [4]. Neverthe-
less, the authors have observed that the majority of applications
still use a “per-pixel” approach to remote sensing data [6], rely-
ing mainly on the reflectance values of the different spectral
bands and multivariate statistics.

Object-based image analysis (OBIA) has gained prominence
in the field of remote sensing over the last decade. It is credited
to have the potential to overcome weaknesses associated with
per-pixel analysis such as, for instance, disregarding geomet-
ric and contextual information [6], [7]. When it is used within
the “geo-domain” or at scales which are related to earth (geo)-
centric applications, it is in scientific literature often referred
to as geographic object-based image analysis (GEOBIA) (see
Blaschke [6] for a comprehensive discussion). OBIA is a
knowledge-driven approach in which a range of diagnostic fea-
tures for a particular object can be integrated on the basis of
expert knowledge [5], [8], [9]. This approach aims to repre-
sent the content of a complex scene in a manner that best
describes the imaged reality, by mimicking human perception
[10]. By incorporating spectral information (e.g., color) and
spatial characteristics (e.g., size, shape), together with textural
data and contextual information (e.g., association with neigh-
boring objects), OBIA approaches the way that humans visually
interpret the information on aerial photos and satellite images
[5], [10], [11]. This ability has been demonstrated by dozens of
applications [6].

In this context, landslide detection and delineation through
earth observation data are considered to be a promising appli-
cation domain. Despite the ability of OBIA to integrate remote
sensing imagery with GIS datasets, object-based approaches to
landslide mapping remain relatively rare. To this end, the poten-
tial of OBIA for (semi-) automated landslide detection has con-
sequently yet to be fully explored or exploited [2], and only
relatively few studies applied OBIA to digital elevation models
(DEMs) and their derivatives [2], [13], [14]. Particularly, while
building on the work of Martha et al. [2] and Hölbling et al.
[4], we hypothesize that OBIA has a high potential for landslide
investigations, as it is able to reflect spectral, spatial, contextual,
and morphological parameters in an integrative manner [4]. In
this paper, we want to take this one step further and to prove
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through our research the ability of OBIA to act as a lynchpin
for the integration of spectral data with spatial data (such as
elevation and thematic data). This includes the combined use
of textural information, shape, size, and neighboring features
whereby all these factors are considered to be relevant for land-
slide detection [5]. Since landslides can occur within diverse
and complex geomorphologic settings, it is essential to con-
sider landslides within the context of their surroundings. We
have therefore used this principle to develop a semiautomated
OBIA workflow, which we then applied to a study area in north-
western Iran.

II. METHODS

A. Study Area and Data

The study area formed part of the Urmia Lake basin in north-
western Iran. Landslides are common within this basin [15] due
to unstable slopes in complicated tectonic settings [16], [17]. A
landslide inventory database for this area was available from
the Ministry of Natural Resources, East Azerbaijan Province,
Iran. This database includes records of the occurrence of 109
landslide events whose GPS coordinates were recorded dur-
ing field surveys [18]. A single representative point was stored
for each landslide, but no outlines were recorded for the areas
affected by individual events. Accordingly, one objective of
this study was therefore to derive the spatial coverage of the
individual landslides. For this delineation exercise, we used a
multispectral SPOT-5 satellite image from May 05, 2005 with
10-m spatial resolution, and an IRS-ID P6 panchromatic satel-
lite image from May 21, 2005, which had 5.8-m spatial reso-
lution. A DEM derived from a 1:25 000 scale topographic map
with 10-m spatial resolution was used to extract morphometric
features characteristic of landslides, e.g., slope and flow direc-
tion. The widely used eCognition software environment [6],
[19] was used for the OBIA [6], [20] part. Rule sets were devel-
oped using what is known as the Cognition Network Language
(CNL) or is sometimes referred to as a “developer framework.”

B. Image Segmentation and the OBIA Approach

Segmentation is an important stage in OBIA. It can be
defined as a “partitioning process of an image into homoge-
neous and nonoverlapping regions that are later identified as
objects” [21, p. 7103]. The choice of segmentation parame-
ters affects the size of the image objects [5]. A multiresolu-
tion segmentation algorithm [22] is frequently used in earth
science studies [6], [23]; it minimizes the average hetero-
geneity of image objects by applying a mutual best-fitting
approach [7], [22]. Multiresolution segmentation is a bottom-
up region-merging technique that merges the most similar adja-
cent regions (starting from individual pixels) as long as the
internal heterogeneity of the resulting object does not exceed
the user-defined threshold of the scale factor [19]. The eCog-
nition software performs multiresolution segmentation on the
basis of scale, color, and shape, with the shape including both
compactness and smoothness [24]. Considering the complex
characteristics of landslides, such as variations in land cover,
differences in illumination, diversity of spectral behavior, and

size variability, it is difficult to delineate each individual land-
slide as a single object [2], [12]. Over- and undersegmentation
can, however, be reduced by using a multiscale optimization
approach [10], [12]. Fig. 1 illustrates the overall workflow
which is divided into three major phases.

The multiresolution segmentation approach in the eCogni-
tion software was employed for the initial segmentation. Then,
the data were parameterized according to the specific require-
ments for mapping landslides and incorporated into a multiscale
optimization routine [12]. In this way, we aimed to integrate
the spectral, spatial, and morphometric characteristics of land-
slides. The brightness and normalized difference vegetation
index (NDVI) were calculated from SPOT and IRS images,
while slope and flow directions were derived from the DEM.
These process domains were then segmented yielding several
segmentation levels with consecutively smaller increments. The
segmentation process can sometimes lead to the generation of
objects that are either too small (over-segmentation) or too large
(under-segmentation) and does not fully represent the objects of
interest, especially when dealing with complex natural features
such as landslides. Choosing an appropriate scale parameter is
therefore critical in OBIA [25], [26]. We selected a relatively
small-scale factor in order to be able to detect small landslides,
even though this then results in a large number of objects. Sub-
sequent merging of small objects belonging to an individual
landslide complex seemed to be more straightforward than per-
forming resegmentations on objects that were considered to be
too large. The segmentation was performed using five scale
parameters (5, 7, 8, 9, and 10), with the same shape (0.3) and
compactness (0.5) factors. For a comprehensive discussion of
scale parameters, we refer the reader to [6], [10], [26], and
[27]. In general, a larger scale parameter results in larger image
objects [5], [19]. The results from the previous segmentation
cycle then became the subobject level for the subsequent cycle.
At the next larger scale factor, a number of objects were merged
to create a super-object level, as suggested by Lu et al. [12]. In
subsequent steps, the smaller image objects were merged into
larger objects on the basis of the chosen scale, color, and shape
parameters, which define the growth in heterogeneity between
adjacent image objects. The objects from segmentation using a
scale parameter of 10 were ultimately used for further analysis.

C. Identifying Potential Landslide-Affected Areas

Following the various optimization steps, the resulting image
segments were analyzed with respect to their spatial, spectral,
and textural parameters. They were then classified into either
“potential landslide” or “no landslide” on the basis of expert
knowledge. Most of the known landslides within the study area
are rotational landslides [16], [17]. The morphological char-
acteristics of these rotational slides exhibit abrupt changes in
slope morphology, with concavity in the depletion zone of the
landslide and convexity in the accumulation zone [5], [27], [28].

An analysis of the landslide inventory map revealed that
all of the 109 landslides shown occurred at high elevations
(>1600 m) in areas with slopes (>7%), and all appeared in
the two land-use classes pasture or dry-farming agricultural
lands. Accordingly, in the first stage of the rule-based landslide
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Fig. 1. Location of the Urmia Lake basin study area in north-western Iran (rectangle).

classification, areas above 1600 m and with a slope greater than
7% were therefore considered to be areas that might be affected
by landslides, and only these “possibly affected by landslides”
areas were considered further for the detection and delineation
of landslides during the subsequent classification stages.

D. Rule-Based Classification of Satellite Imagery

1) Brightness-Based Classification: One important charac-
teristic that can be commonly observed in postevent panchro-
matic images is an increase in the brightness of areas that have
been affected by landslides, due to a loss of vegetation and
exposure of fresh rock and soil [2], [29], [30]. This character-
istic can be captured in an object-based environment through
change analysis of pre- and postlandslide images, in order to
detect where landslides have occurred [29]. As mentioned pre-
viously, most of the landslides in our study area can be clas-
sified as rotational slides. The contrast in vegetation between
landslide-affected areas and their surroundings, together with
light-toned scarps, is considered to be the diagnostic features of
rotational slides [5]. The brightness parameter can therefore be
used to detect landslides on the basis of these characteristics.
Brightness for the IRS panchromatic image, and subsequently
for the SPOT image, was calculated using the following equa-
tion [31]:

B =
1

nvis

nvis∑
i=1

C̄i(vis) (1)

where B is the mean brightness of an object and C̄i(vis)is the
sum of all the mean brightness in the visible bands divided
by the corresponding number of bands nvis [31]. The same
spectral bands were then considered in calculating MaxDiff
for each object, which is defined as the absolute difference
between the minimum object mean (min(C̄i(vis))) and the max-
imum object mean (max(C̄i(vis))) divided by the mean object
brightness B [31]

MaxDiff =
|min(C̄i(vis))−max(C̄i(vis))|

B
. (2)

In order to detect brightness anomalies, we used a func-
tion in the eCognition software developer environment called
“brightness contrast to dark neighbors” in order to detect tonal
variations between landslide-affected areas and adjacent areas
[29]. The calculated brightness thresholds for landslide-affected
objects indicated a value of 134 for the IRS-ID satellite image
and 104 for the SPOT satellite image, respectively. Only objects
with a brightness value above these thresholds were therefore
considered as landslide candidate (LC) in the second step of the
classification. Fig. 2 shows the satellite images and calculated
brightness with two examples of landslide objects.

2) NDVI-Based Classification: The NDVI is commonly
used to assist in landslide detection. Areas affected by natural
landslides generally exhibit low NDVI values due to signif-
icant features that are observable on the ground following a
landslide, such as areas devoid of vegetation and exposures
of fresh rock or soil [29]. Vegetation differences between
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Fig. 2. Logical workflow and major steps of the analyses divided in three phases.

“possible landslide areas” and “nonlandslide areas” are clearly
detectable on satellite images using the NDVI, which is able
to reflect even minor changes in vegetation cover. This feature
was therefore utilized to carry out a rule-based classification
of the SPOT multispectral image. The NDVI was obtained
using the infrared and red bands [see Fig. 3(a) and (b)]. The
mean NDVI was selected as a threshold for the assumption
that landslide objects appear darker than the background
and have a lower NDVI than the mean NDVI. This iterative
algorithm is a special one-dimensional case of the k-means
clustering algorithm, which has been proved to converge to a
local minimum. NDVI thresholding was performed using the
following three steps [30]:

1) Tv = mean NDVI (3)

2) f(object) =

{
LC, if f(object) ≤ Tv)

VA, if f(object) > Tv)
(4)

3)
T ′
v =

mean NDVILC + mean NDVIVA

2
(5)

where T ′
v is an average of the mean NDVI values for “LC” and

vegetated areas (VA). The NDVI, which has a value between
−1.0 and +1.0, was used to describe the vegetation density of
the observed object. Since the mean NDVI value was used as a
threshold in the classification of LC, i.e., areas with no signif-
icant vegetation cover, the identified target features exhibited
low NDVI values similar to those for roads, river sand, built-
up areas, and barren rocky lands, which were also detected.
Accurate identification of false positives is therefore essential
to reduce misidentification errors [29]. Objects with high NDVI
values were considered to be spectral anomalies, and a thresh-
old of mean NDVI > 0.05 was defined in order to exclude these
anomalous false positives [see Fig. 3(b)]. We also used spatial
properties such as compactness, the shape index, and round-
ness to characterize the morphometric properties of landslides
in order to exclude nonlandslide objects.

E. Incorporating Textural Algorithms Into the Classification
Process

A landslide changes the morphology of the affected area. The
texture of a landslide-affected area on satellite imagery relates
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Fig. 3. Areas classified as “potentially affected by landslides” (highlighted in red) superimposed on the IRS panchromatic satellite image.

to the surface disturbance and the presence of cracks and/or
ridges [32], with landslide-affected surfaces often showing tex-
tural patterns that are orientated down-slope. Such morphologi-
cal features and their associated reflectivity patterns on satellite
imagery are potential diagnostic features that could be used to
distinguish them from surfaces with textural patterns that are
oriented perpendicular to the slope direction [31]. Textural fea-
tures were therefore selected to improve landslide classification
and we used OBIA methodology to address such textural char-
acteristics in a rule-based classification. One parameter that was
found to be very useful was the “mean difference to neighbor-
ing objects,” which revealed the degree of contrast between an
object (such as a scarp or an accumulation zone) and its neigh-
boring objects (such as the environment around the scarp or
accumulation zone) [32].

In order to analyze textures we developed a rule-based clas-
sification using gray level cooccurrence matrices (GLCM). The
use of GLCM can enhance the classification of single features
on high resolution images [48]. A GLCM is a tabulation of
how often different combinations of pixel brightness values
(gray levels) occur within an image [33]. GLCMs are used
to calculate the different directional components of the textu-
ral parameters [34]. A GLCM is a symmetrical (n× n) matrix
containing the relative frequencies of two pixels, linked by a
spatial relationship within a local domain of the image, one
of which has a gray level of i and the other a gray level of j,
with i, j ∈ �0 . . . n− 1�, where n is the gray-level number with
which the image has been coded [34]. Several parameters can
affect the textural measurements, including the window size,
the statistical method used, the vector displacement, and the
number of gray levels used to calculate the index. All of these
parameters are related to the spatial and spectral resolution of
the image, and to the spatial characteristics (e.g., dimensions,
shape) of the different textures to be detected [34]–[36].

Stumpf and Kerle [31] have previously demonstrated the
potential of directional flow-texture measurements to improve

the assessment and quantification of landslide patterns. We
have followed a similar approach to develop rule-based GLCM
texture parameters based on flow directions (see Fig. 4). The
combined directional texture parameter was derived from two
different applications of directional GLCMs, one computed
along the hydrological flow direction (GLCMflowdir) and one
perpendicular to it (GLCMflowdir) [31], [33]. However, GLCM
values do not make sense for nominal data. One solution is to
use probabilities [33], which involves transforming the GLCM
values into a close approximation to probabilities, a process
known as normalizing the matrix. It is only an approximation
because a true probability would require continuous values but
the gray levels are integer values. This normalization can be
calculated as follows [33]:

Pi,j =
Vi,j∑N−1

i,j=0 Vi,j

(6)

where Pi, j is the probability value from the GLCM (i.e., how
many times the reference value V occurs in a specific combi-
nation with a neighbor pixel), i is the row number, and j is the
column number. The i and j numbers keep track of pixels by
their horizontal and vertical coordinates. Since these numbers
for the first cell in the upper left corner of the GLCM are (0, 0),
the i value (0) of this cell is the same as the value of the ref-
erence pixel (0). Similarly, the second cell down from the top
has an i value of 1 and a reference pixel value of 1. The range
of summation (i, j = 0 to N− 1) means simply that each cell
in the GLCM is considered; it is shorthand for a double sum-
mation: once from i = 0 to i = N− 1 and once from j = 0 to
j = N− 1. A count would usually be expected to start with the
number 1, with the summation running from 1 to N, but by
designating the coordinates of the cell in the upper left corner
of the matrix as i = 0 and j = 0 rather than i = 1 and j = 1, the
i value remains the same as the actual gray level of the reference
cell, and the j value remains the same as the gray level of the
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neighbor cell. Following the normalization of the GLCM five
textural parameters were identified that could be used to reveal
any correlations between GLCMs and flow directions:

1) Contrast (Con): The contrast is also known as the “sum
of squares variance” and can be calculated as follows:

N−1∑
i.j=0

Pi,j(i− j)2. (7)

When i and j are equal, the cell lies on the diagonal of the
matrix and (i− j) = 0. These values represent pixels that are
entirely similar to their neighbors and hence they are ascribed
a weighting of 0. Some other conditions also apply, such that if
i and j differ by 1, there is little contrast and the weighting is
1. If i and j differ by 2, the contrast is higher and the weighting
is 4. The weighting then continues to increase exponentially as
(i− j) increases [33]. Results for the contrast GLCMflowdir are
shown in Fig. 4(b).

2) Correlation (Cor): The correlation texture measures the
linear dependency of gray levels on the gray levels of neighbor-
ing pixels and is calculated (following [33], [36]) as

N−1∑
i.j=0

Pi,j

⎡
⎣ (i− μi)(j − μi)√

(σ2
i )(σ

2
j )

⎤
⎦. (8)

When calculating the GLCM variance, Pi, j = 0 for each
value except for the single entry of 1, µi, and µj are the means
of row i and column j, and σi and σj are the standard deviations
of row i and column j. The formula collapses to = 1(i− µ)2,
but since μ = i, this becomes 1 (i = i)2 = 0. In a normalized
GLCM, a uniform image area will have a single entry of 1 on
the diagonal of the matrix, in a position corresponding to the
row and column numbered with the original gray level (GL)
value of the pixels in the image (e.g., if all GL values are equal
to 2, then the number “1” will appear in position i = 2, j = 2
in the GLCM). The mean then becomes µ = i = j (= 2 in the
example given) [33]. Correlation results for GLCMflowdir are
shown in Fig. 4(c).

3) Entropy (Ent): Entropy refers to the quantity of energy
that is permanently lost to heat (or “chaos”) every time a reac-
tion or a physical transformation occurs. It is equal to [33]
and [36]

N−1∑
i,j=0

Pi,j(−1nPi,j). (9)

The term P ∗ ln(P) is maximized where its derivative with
respect to P is 0. By the product rule, this derivative is
P ∗ d(ln(P))/d(P) + d(P)/d(P) ∗ ln(P), which simplifies to
1 + ln(P) = 0, yielding P = 1/e. This means that the maxi-
mum of the term to be summed occurs when P is 1/e, which
is about 0.378. However, the sum of Pi, j = 1, by definition.
Under this constraint, the overall maximum of the sum (i.e. of
Ent) is 0.5. This maximum is reached when all probabilities are
equal [33]. Entropy values computed from GLCMflowdir are
shown in Fig. 4(d).

4) Standard Deviation (StdDev): In order to calculate the
standard deviation GLCMflowdir, the GLCM variance was first
calculated. The GLCM variance is equal to [36]

σ2
i =

N−1∑
i,j=0

Pi,j(i− μi)
2σ2

j = (j − μi)
2. (10)

The standard deviation was then computed from these results
using the following equations:

σi =
√

σ2
i (11)

σj =
√

σ2
j . (12)

The GLCM variance for textural measurements is based on
the mean, and the dispersion around the mean, of cell values
within the GLCM. The GLCM variance in textural measure-
ments is based on the mean, and the dispersion around the
mean, of cell values within the GLCM; it deals specifically with
the dispersion around the mean of combinations of reference
and neighbor pixels [33]. Fig. 4(e) depicts the standard devia-
tion GLCMflowdir results calculated on the basis of the GLCM
variance.

5) Mean: The GLCM mean was calculated as follows:

μi =
N−1∑
i,j=0

i(Pi, j), μj =
N−1∑
i,j=0

j(Pi, j). (13)

Equation (13) on the left calculates the mean based on the
µi reference pixels, while the equation on the right uses the
neighboring µ(j) pixels. For the symmetrical GLCM, in which
each pixel in the window is counted once as a reference and
once as a neighbor, the two values are identical [34]. The mean
GLCMflowdir results are shown in Fig. 4(f).

These GLCM parameters were computed in symmetric
matrices for pixels that neighbored each other directly to the
north, south east, and west, and to the NE, SE, SW, and NW.
Based on the research by Stumpf and Kerle [31], the rotational
invariance of a GLCM derivative can be determined by calculat-
ing its mean or minimum value in all four directional GLCMs
(GLCMalldir) prior to calculating the derivative. Five rotation-
ally invariant textural parameters were thus calculated for land-
slide detection, based on the observation that landslide-affected
zones typically show textural patterns with a down-slope align-
ment that are potential diagnostic features with which to
distinguish such zones from unaffected land surfaces with tex-
tural patterns that are oriented parallel to the strike of the
slope [32].

In order to utilize these patterns, further directional textu-
ral parameters were derived from two directional GLCMs, one
computed along the hydrological flow direction (GLCMflowdir)
and the other perpendicular to it (GLCMflowdir). The results
of this stage were used to determine the correlation between
the hydrological GLCMflowdir, rotationally invariant and topo-
graphically controlled GLCM Cor derived in previous stages.
GLCM parameters were subsequently calculated for each raster
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Fig. 4. Typical landslide complex within the study area [16].

cell, simply as the quotient of the texture parameters computed
in flow direction and their counterparts computed in a direc-
tion perpendicular to the flow direction. The contrast, corre-
lation, entropy, standard deviation, and mean values derived
from GLCMflowdir, together with their respective GLCMratios,
are referred to as topographically guided texture parameters.
These results were converted into raster layers and these lay-
ers, together with the texture parameters from GLCMalldir,
used to further refine the landslide detection. Finally, the
identified landslide objects were refined using flow direction-
based GLCM texture parameters. Fig. 5 shows the two

landslide objects detected and their GLCM textural parameter
values.

III. RESULTS AND ACCURACY ASSESSMENT

Fig. 6 shows the results of the semiautomated object-
based delineation of landslides for the study area. A total of
147 landslide objects were identified. The total area affected
by these landslides was computed to be approximately 67.5
ha. The detected landslides vary in size between 310 and
5786 m2.
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Fig. 5. (a) SPOT satellite image, (b) brightness calculated from SPOT image, (c) IRS-ID satellite image and (d) brightness calculated from the IRS-ID image
(with maximum brightness shown as black and minimum brightness as white). Two examples of landslides are outlined in red.

When analyzing satellite images it is crucial that the accu-
racy of any classifications should be assessed [37]. Following
Gao [38], we aimed to measure the quality of our methodology
with respect to its suitability for the given application. The qual-
ity of landslide detection is evaluated on the basis of its spa-
tial accuracy, and also on the type and accuracy of information
shown on the resulting map [3], [39]. Defining the accuracy
of a landslide inventory is not straightforward and no general
standards exist [1], [3], [39]. For our study in northern Iran,
we evaluated the accuracy of the OBIA-derived landslides by
comparing them to an existing landslide inventory map of the
study area as described in Section II-B. Although this inven-
tory may not be exhaustive, it is considered to provide a good
reference dataset for the situation that existed in 2005. The
database consists of coordinates for representative points within
known landslide areas. (As mentioned in Section II-B, it does
not include the spatial footprints of the landslides and it was
this absence that provided the motivation for this research.) The
accuracy assessment could therefore only be conducted on the
basis of a point-to-polygon comparison in GIS. Fig. 7 shows
an area that has been affected by many landslides. This figure
also shows a comparison between the detected landslides and
the known landslide events (i.e., from the existing landslide
inventory database). A total of 109 sets of GPS landslide coor-
dinates were used as ground truth data with which to measure
the accuracy of the semiautomatically detected landslides. The
accuracy assessment reveals commission and omission errors,
which are measurements of both the user’s and the producer’s

accuracy [18]. The landslides delineated in our study yielded a
user’s accuracy of 92.8% and a producer’s accuracy of 91.9%.
By statistically summarizing the total number of landslides,
user’s and producer’s accuracies of 93.01% and 92.8%, respec-
tively, were achieved. The overall accuracy of the resulting map
is 93.07% (see Fig. 7).

IV. DISCUSSION

Since landslides are complex natural phenomena a range
of parameters needs to be considered for their semiautomated
detection. They represent complex geomorphologic processes,
spectral characteristics from satellite images alone may not be
sufficient for accurate identification of landslide locations [5].
Semiautomated object-based classification appears to be very
suitable for this task. In order to maintain the transferability of
this approach [39], [40], we used as few spectral parameters as
possible (i.e., brightness and NDVI), complemented by spatial,
morphometric, and textural parameters.

Three main stages were involved in the detection of land-
slides. In the first stage, slope and DEM parameters were used
for rule-based classification of “possible landslides areas” and
“nonlandslide areas.” A total of 2662 image objects were identi-
fied as landslide candidates. In the second stage, spectral infor-
mation including brightness and NDVI were used to classify
the possible landslides. We then integrated textural parameters,
based on the observations that landslides change the morphol-
ogy of the affected areas and that landslide-affected surfaces
often show downslope-aligned textural patterns.
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Fig. 6. (a) SPOT satellite image and (b) NDVI values derived from the SPOT
image, averaged for each segmentation object. Bright areas indicate a high
NDVI, darker areas indicate lower NDVI values.

NDVI values have previously been used by several
researchers for semiautomated detection of landslides, in both
pixel-based and object-based methods [2], [4], [5], [30]. Bare
rock or debris are naturally exposed following a landslide
(although at times mixed with remaining or dislodged vegeta-
tion), giving a bright appearance to landslide-affected areas on
satellite imagery [2]. Fresh landslides can be well captured by
remote sensing data, where the absence of vegetation cover can
be used as a primary criterion for their recognition. The NDVI
is useful for detecting land cover changes, and is even sensitive
to small alterations in vegetation density [2].

In our study, the NDVI proved to be a very effective
parameter for the detection of landslides, and in particular for
recognizing landslide events within tuff formations character-
ized by low pasture vegetation cover. However, since NDVI
uses only spectral information, objects with similar or even
lower NDVI values (e.g., rocky outcrops, roads, water bod-
ies, and river beds) are sometimes misclassified as landslides
[2]. We found that the NDVI was very effective for recog-
nizing landslide zones in tuff formations but tended to also
include rock outcrops in the landslide classification. In order to
reduce misclassifications, we incorporated additional rules, i.e.,
shape and textural parameters, which led to a clear improve-
ment in accuracy. The integration of topographical GLCMs
in particular, significantly reduced the misclassification of
objects.

Methodologically, this study is one of the few to date that
defines texture of individual objects—rather than being based
on moving window kernels, as is common in the published
literature [33]. The OBIA methodology and the programming
environment (CNL in the eCognition software) allowed textu-
ral parameters to be computed for each object. These included
GLCM homogeneity, GLCM dissimilarity, GLCM contrast,
GLCM standard deviation, GLCM entropy, GLCM second
angular momentum, GLCM correlation, and GLCM mean.
GLCMs have only recently been adopted for landslide mapping
[2], [5], [31], but our results have confirmed that (as pointed out
by Stumpf and Kerle [31]), the use of GLCMs and their calcu-
lated derivatives offers a significant enhancement that makes
the use of object metrics suitable for the incorporation of geo-
morphological phenomena. Topographically oriented GLCMs
appear to be very efficient at landslide detection. In partic-
ular, the GLCM contrast between landslide areas and sur-
rounding areas proved to be decisive. In addition, within the
rule-based classification process the flow direction GLCM tex-
tural parameters were also useful to distinguish landslide areas.
The optimal choice of the textural parameters depends on
the application [31], and hence the method will remain only
semiautomated.

Through the integration of these methods we have been able
to achieve on overall accuracy of about 93%, obtained by com-
paring our results with the existing landslide inventory. How-
ever, it is important to point out that some information from the
existing landslide inventory database was used to support the
determination of a few of the thresholds (e.g., for slope, bright-
ness) that were used during the semiautomated landslide detec-
tion. This had a minor positive influence on the accuracy values.
The reliability of such inventory databases should be seen criti-
cal to their use as reference material as they are often outdated,
inaccurate, or incomplete [4]). They are, however, often the
only reference dataset available. Due to the lack of other ref-
erence data for the study area, we were only able to conduct a
point-to-polygon comparison for assessing the accuracy of the
detected landslides. To make more reliable statements about the
quality of the landslide detection and delineation, more ade-
quate reference data should be used in future; either collected
through field investigations and GPS measurements or created
by manual interpretation of landslides based on orthophotos.
By integrating optical satellite imagery from different sensors
with DEM data and its derivatives, we have been able to detect
and to delineate landslides more efficiently than by relying on
single data sources only. Nonetheless, some uncertainty may be
introduced as a result of the DEM data representing a differ-
ent point in time from the satellite imagery, and hence possibly
excluding some recent landslides.

In summary, an OBIA methodology has been established
based on the integration of remote sensing satellite imagery
with GIS topographical datasets. The most suitable spectral,
spatial, morphometric, and textural parameters gathered from
different datasets were utilized in a rule-based classification,
for semiautomated landslide identification and delineation. Due
to the exposure of outcrop and fresh rock (although at times
mixed with remaining or dislodged vegetation; [2]), landslide
scarps and zones generally tend to have high brightness values
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Fig. 7. Flow direction and its computed parameters: (a) flow direction, (b) contrast, (c) correlation, (d) entropy, (e) standard deviation, and (f) mean.

in satellite imagery, typically yielding higher reflectance val-
ues in the visible bands than surrounding areas with soil and
vegetation cover [2], [41]. Roads or geological formations such
as tuffs may also exhibit similar spectral reflectance charac-
teristics to landslide areas, but the use of OBIA facilitates the
discrimination and delineation of landslides by allowing addi-
tional parameters (other than spectral values) to be incorpo-
rated. Shape-based parameters such as shape index, roundness,
and compactness were able to effectively characterize the mor-
phometric properties of landslides. The particular novelty and
flexibility of this method lies in its ability to combine the use
of spectral information, shaped-based information, and topo-
graphically oriented GLCMs.

V. CONCLUSION

Landslides are destructive natural phenomena that frequently
lead to serious problems in hilly areas, resulting in injuries or
fatalities, economic losses, and high infrastructure maintenance
costs, as well as causing severe damage to natural resources
[2], [42]. The availability of new remote sensing technologies
for the detection and mapping of landslides may facilitate the
production of landslide maps, as well as the definition of suit-
able criteria for evaluating the quality of such maps [3]. OBIA
offers comprehensive and flexible methods for landslide detec-
tion and mapping as it allows the integration of data from
different sources, taking into account the most appropriate spec-
tral, spatial, contextual, or textural properties while at the same
time reducing the influence of single pixel reflectance. Within

this study, a semiautomated object-based method was devel-
oped for the detection and delineation of landslides in north-
western Iran. Our results indicate that a combination of various
parameters, and especially the integration of textural charac-
teristics, leads to a high accuracy of landslide detection. The
calculated overall accuracy amounted to approximately 93%
which is very high. There is, however, potential to improve
the accuracy either by considering additional parameters during
the rule-based classification, or by using satellite images with a
higher spatial resolution.

We consider GEOBIA to be a remarkable paradigm shift in
remote sensing and geographic information science in recent
years [6], [21], [22], [46]. We conclude that OBIA offers a
unique opportunity to exploit spectral information from satel-
lite imagery in combination with topographic information from
DEMs and thus provides a suitable framework for landslide
mapping. While the need for such integration has been previ-
ously recognized (see [42]–[46]), OBIA is today able to provide
the necessary flexible computing environment. Our approach
is semiautomated but incorporates a way of capturing com-
plex information in a systematic and repeatable manner. In this
respect, considerable progress has been made toward a spatially
explicit information extraction workflow.

We conclude from this study that OBIA provides a partic-
ularly suitable framework for landslide mapping using a com-
bination of remote sensing and GIS datasets. Information on
spatial extent of landslides is known to be crucial for assess-
ing landslide risk and for decision making that aims to reduce
risk and mitigate further hazards. In this regard, a landslide
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inventory map should record the locations, the dates (if known),
and the types of all mass movements that have left discernible
traces in an area [3]. In the absence of proper landslide
inventories, OBIA can be used to detect and delineate landslides
very efficiently. Since the landslide inventory database used for
the study presented herein was limited to point-based GPS data
recorded during field surveys, the delineation of landslide foot-
prints was of great importance to (a) identify landslides that
had not yet been documented, and (b) allow further information
to be obtained on the delineated areas, e.g., through GIS-based
overlays with other data sources.
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