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Abstract—To improve theperformanceof cropmodels for regional
crop yield estimates, a particle filter (PF) was introduced to develop a
data assimilation strategy using the Crop Environment Resource
Synthesis (CERES)—Wheat model. Two experiments involving win-
ter wheat yield estimations were conducted at a field plot and on a
regional scale to test the feasibility of the PF-based data assimilation
strategy and to analyze the effects of the PF parameters and spatio-
temporal scales of assimilating observations on the performance of
the cropmodel data assimilation.The significant improvements in the
yield estimation suggest that PF-based cropmodeldata assimilation is
feasible.Winterwheat yields from the field plots were forecastedwith
a determination coefficient ( ) of 0.87, a root-mean-square error
(RMSE) of 251 kg/ha, and a relative error (RE) of 2.95%. An
acceptable yield at the county scale was estimated with a of
0.998, a RMSE of 9734 t, and a RE of 4.29%. The optimal yield
estimates may be highly dependent on the reasonable spatiotemporal
resolution of assimilating observations. A configuration using a par-
ticle size of 50, LAI maps with a moderate spatial resolution (e.g.,
1 km), and an assimilation interval of 20 d results in a reasonable
tradeoff between accuracy and effectiveness in regional applications.

Index Terms—Crop model, data assimilation, leaf area index,
particle filter (PF), remote sensing, yield estimation.

I. INTRODUCTION

C ROP YIELD information is required for sustainable agri-
culture management and national food security assess-

ment, and it is critical that such data be determined on a regional
scale in a timely and accurate manner [1]–[3]. However,

traditional approaches to obtain regional crop yields typically
suffer from the limitations of cost, timeliness, accuracy, and
suitability on a regional scale. Recently, the rapid advancements
of crop growth simulation [4] and observation technologies
[5]–[7] have provided the ability to improve regional crop yield
monitoring and forecasting. [8]. By making better use of crop
growth models, crop growth processes can be effectively simu-
lated under different environmental and management conditions
while accounting for various limiting factors (e.g., soil, weather,
water, and nitrogen) in a dynamic manner [9]. Nevertheless,
improvements in simulation accuracy are often challenging
when a crop model is used on a regional scale due to difficulties
in obtaining regional model input and large uncertainties in
regional parameters, including weather, soil, field management,
crop cultivars, and other variables. The use of spatial observa-
tions from remotely sensed data is an ideal option for reducing
regional simulation uncertainties [10]. Accordingly, data assim-
ilation technologies with the advantage of integrating crop
growth models with remote sensing information have been
proposed and widely used in crop growth models such as World
Food Studies (WOFOST) [11], Erosion Productivity Impact
Calculator (EPIC) [12], and Decision Support System for
Agro-technology Transfer (DSSAT) [13].

To date, several data assimilation strategies have been devel-
oped to reduce the discrepancy between observation and simu-
lation by adjusting either the uncertain model parameters, initial
conditions [14]–[18], or model state variables [19]–[21]. These
strategiesmainly include optimum estimation algorithms such as
ShuffledComplexEvolutionmethod developed at theUniversity
of Arizona (SCE-UA) [22], Simulated Annealing (SA) [23],
POWELL [24], and sequential data assimilation algorithms, i.e.,
ensemble Kalman filter (EnKF) [25]. Early data assimilation
strategies based on optimum estimation algorithms fail to con-
sider errors in observations and the model itself. In addition, the
iterative process of minimization between the modeled and
observed values may require excessive computing time. Thus,
the EnKF-based strategy that has a strong capacity for sequential
data assimilation was introduced into crop growth simulations to
alleviate the shortcomings of the optimum estimation algorithm.
However, it should be noted that EnKF algorithm relies on the
assumption that the posterior density at every time step is a
Gaussian distribution parameterized by amean and a covariance,
resulting in an obvious deficiency when addressing complicated
estimation issues in a realistic, nonlinear, and nonGausses
dynamic system.

To address these problems associated with the EnKF algo-
rithm, particle filters (PFs) have received increasing attention
thanks to their improved performance in comparison to that of
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EnKF [26]. Similar to EnKF, PF is also aMonte Carlo technique
that uses samples (i.e., particles) to estimate the underlying
probability density function (PDF) of model states and para-
meters. However, in contrast with EnKF, PF can perfectly
accommodate the propagation of nonGaussian distributions
through nonlinear models. This approach has been successfully
applied to studies on target tracking [27], hydrological parameter
estimation and uncertainty analysis [28]–[32], and land surface
processing simulations [33]–[36]. Accordingly, the PF-based
strategy appears to be a better choice for complicated crop
growth models, i.e., the Crop Environment Resource Synthesis
(CERES)—Wheatmodel.Unfortunately, few studies onPF-based
data assimilation for regional crop yield estimation have been
published.

When PF-based crop model data assimilation is applied in an
operational system for regional crop yield estimation, two pro-
blemsmust be addressed. First, the effect of PF parameters on the
performance of crop model data assimilation should be deter-
mined. In theory, as the particle dimension increases or pertur-
bation variance decrease, the probability distribution of the state
particles may be much closer to the real state with a higher
estimated accuracy [37]. However, the computing time will
increase with increasing particle dimension. Hence, the reason-
able parameters in a PF-based strategy must be provided as a
tradeoff between accuracy and effectiveness in regional applica-
tions. Second, the effects of inadequate spatiotemporal resolu-
tion of remotely sensed productions (e.g., MODIS/LAI) [38],
[39] on the performance of crop model data assimilation should
be determined. Generally, a high frequency of observations is
beneficial for reducing uncertainties in the simulation processes
of crop models, although these satellite-based observations
during the crop growing season are usually limited by frequent
cloud coverage and long revisit periods. On the other hand,
remotely sensed observations with a high-spatial resolution can
provide more informative and higher quality observations [40],
whereas this approach is problematic for large areas due to
the high-computational effort required for data assimilation.
Nevertheless, the effects of the spatio-temporal resolution of
observations on the performance of data assimilation remain
unclear, especially for PF-based crop model data assimilation.

The main objective of this study was to introduce the PF
algorithm into crop model data assimilation and evaluate its
performance. TheCERES-Wheatmodelwas employed to design
a feasible data assimilation strategywith PF because the CERES-
Wheat model is an outstanding agro-ecological dynamic model
that considers the effects of weather, management, genetics, soil
water, carbon, and nitrogen on crop yield simulations [41], [42].
Moreover, LAI observations were also used as an observational
variable to couple observed LAI with simulated LAI. Two
experiments for winter wheat yield estimations were performed
in this study. One experiment was performed using the LAI
measured on field plots; in this test, the feasibility of the data
assimilation strategy was determined, and the effects of the PF
parameters and the observation frequency on the data assimila-
tion performance were evaluated. A second experiment was
conducted that employed remotely sensed LAI with fine spatial
resolutions on regional scale; in this case, regional winter wheat
yields with different spatial resolutions were mapped, and the
spatial scale effects of the LAI on the data assimilation perfor-
mance were analyzed.

II. METHODS

A. Particle Filter

The PF, which is a sequential Monte Carlo method, is a fully
nonlinear filter with Bayesian conditional probability estimation
[26]. The PF generates a probability-weighted posterior sample
set (also called particles) through the direct evaluation of the
Bayesian formula at each prior sample point to approximate the
posterior PDF. In comparison with the well-known EnKF, this
evaluation does not restrict the probability distribution of the
prior sample and the observation as Gaussian [43]. In principle,
PF can be used for any recursive estimation or probability
reasoning of nonlinear, nonGaussian dynamic systems [44].

Schematically, the PF may be viewed as a combination of two
main elements, namely, sequential importance sampling (SIS)
and resampling [45]. SIS is used to select the particle weights
based on the fact that direct sampling from the target density
(posterior), which is often nonGaussian, is generally difficult (if
not impossible). To avoid this difficulty, importance sampling
generates particles from a known function called a proposal
distribution (or importance density) and assigns the weights
(importance weights). A sequential update to the important
weights for each iteration is then achieved by factorizing the
proposal distribution [32].A resampling algorithm ismainlyused
toavoid thedegeneracyof theSISmethod,eliminate sampleswith
lowweights, andmultiply sampleswith high importanceweights
while keeping the total number of particles unchanged [46].
Resampling involvesselectingnewparticlepositionsandweights
such that the discrepancy between the resampled weights is
minimized [45]. Several resampling algorithms have been pro-
posed, such as importance sampling resampling [47], residual
resampling (RR) [48], stratified resampling [49], multinomial
resampling [45], and systematic resampling [26]. In this present
study, the RR algorithm was employed because of its lower
computational cost and smaller variance in comparison to the
other resampling schemes.

B. Crop Growth Model

The CERES-Wheat model was developed and integrated into
DSSAT software in an International Benchmark Sites for Agro-
technology Transfer project sponsored by the United States
Department ofAgriculture [13]. Driven by input data onweather,
soil, field management, and genetic information, the CERES-
Wheat model can simulate daily phenological development,
vegetative and reproductive plant development stages as well
as assimilate partitioning, the growth of leaves and stems,
senescence, biomass accumulation, and root system dynamics
under stressful environments, i.e., those involving light, temper-
ature, water, nitrogen, carbon, and field management interven-
tions [15]. The water and nitrogen sub-models cause feedback
effects on plant growth and development. This model has been
widely applied to field sites to assess crop potential productivity
[50], [51], and the influence of climate change on grain yields
[41, [42], farmlandwater, and fertilizermanagement [52], aswell
as for other purposes.

To obtain accurate predictions, a model calibration is first
performed, i.e., an estimation of the cultivar characteristics using
fieldwinter wheat experimental data. In this study, in situ data for
the study area were employed to estimate the genetic coefficients
in the CERES-Wheat model such that differences between the

JIANG et al.: APPLICATION OF CROP MODEL DATA ASSIMILATION WITH A PF 4423



simulated and measured values were minimized to within
acceptable error limits.

C. Crop Model Data Assimilation Strategy

A sequential data assimilation strategy based on the residual
resampling particle filter (RRPF) was designed to sequentially
correct the simulation process of the CERES-Wheat model using
the observed data to achieve the optimal estimation of crop yield.
A full description of the assimilation process is given below and
illustrated in Fig. 1.

1) Model operator and observation operator. For a discrete-
time dynamic state-space model, the current state of the
dynamic system is only associated with the state at the
previous time, and its evolution can be formulated as
follows [46]:

where R denotes the dimensional state
vector of the system at time t with the initial PDF, which
evolves over time as a first-order Markov process accord-
ing to the conditional PDF . The dimen-
sional observation vector R is conditionally
independent given , and the observation in (2) is
represented by the PDF . Nonlinear opera-
tors and express the system transition in
response to forcing data , time invariant model para-
meters , and the forecasted state variables. Independent
random vectors and represent the model and the
measurement error and consist of a white noise sequence
with a mean of zero and a variance of and ,
respectively.

In the CERES-Wheat model, the LAI at time t is
described as a function expressing the plant leaf area (PLA)
and senesced leaf area (SENLA) (3). PLA is a cumulative

time function related to the plant area growth (PLAGT) (4),
and SENLA is a cumulative time function of plant area
senescence caused by metabolism, cold, tillers, and stress.
Hence, PLA and SENLA are regarded as state variables
whose integrating functions forward with time are consid-
ered to be model operators. The LAI function was used as
an observational operator in the data assimilation process

where LAI is the winter wheat leaf area index, PLA is the
plant leaf area, SENLA is the senesced leaf area, PLAGT is
the growth plant area, and PLAS is the reduced leaf area
because of various stress factors.

2) Initialization of model state variables and forecast. The
model state variables ( ) and
( ) were perturbed by using the Monte Carlo method
to sample the white noise from a uniform distribution
for Np particles, where , 2, ; then, the
particles at time t can be resampled as ,
where , 2, . Each particle was uni-
formly assigned the weight as .

With initial particles of model state variables at time
, the CERES-Wheat model propagates model states

forward in time to obtain the model predicted state
. Correspondingly, the forecasted observation parti-

cles were obtained using the observation operator
.

3) Update model states weights. Particle weights were
updated using forecasted observations and mea-
sured observations at time according to (6) [32],
[37], [46]:

where denotes the posterior PDF,
which is an important term because it significantly influ-
ences the filter performance [46]. Generally, the prior
transition is used as the proposal distribution, where

The weight updating then simplifies to

In this study, we elected to use Gaussian error distribu-
tions for all observation perturbations, partly for simplicity,
partly because we have no knowledge of the appropriate
distribution to use, and partly because a random

Fig. 1. Flowchart for the PF-based CERES-Wheat model data assimilation.
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perturbation with Gaussian distributions does not yield
unrealistic results. A Gaussian observation noise with vari-
ance was assumed [26], [32], [53]–[55]. Thus, the
likelihood estimation can be expressed as

Finally, the updated particle weights were obtained
according to

Consequently, the model state at time can be
approximated by

4) Residual resampling. In this algorithm, for ,
we set , where the operator takes the
integer part of its argument. The normalized residual
weights were then calculated according to

Normalized residual weights were subse-
quently used to construct an empirical cumulative distri-

bution function and sample times to obtain

the remaining particles. The resampling process was per-
formed according to [26] and [32].

5) Perturbation of resampled particles. With all PFs, resam-
pling may be used to avoid the problem of degeneracy.
However, resampling can lead to sample impoverish-
ment, or lack of particle diversity, especially if the
process noise is low under strong constraints in a dynamic
system [29], [31]. Hence, a reperturbation of the re-
sampled particle was conducted with parameterizing
error as a function of the resampled state as
follows, similar to [56].

where is the ith reperturbed state particle at time
is the random noise with a mean of zero and a

variance of , is a parameter that must
be specified, is a weighted approximation to the
resampled particle, and is the truncated number of
resampled particles, .

6) Assimilating process control. The updated state particle is
input as the initial state particle during the next evolution-
ary cycle until all available observations are assimilated
into the CERES-Wheat model. The process of data assim-
ilation then stops and outputs the optimal estimated yield.

D. Assimilation Experiments forWinterWheat Yield Estimation

To introduce the PF algorithm into the crop model data
assimilation and evaluate its performance, two experiments for
winter wheat yield estimation were performed in this study. One
experiment at the field scale was carried out to illustrate the
feasibility of a data assimilation strategy and to evaluate the
effects of PF parameters and the observation frequency on data
assimilation performance. Another experiment conducted on a
regional scale was used to map regional winter wheat yields and
analyze the spatial scale effects of remotely sensed LAI maps on
data assimilation performance.

For the experiments at the field scale, the in situ data for the
field plots were first employed to test the feasibility of the data
assimilation strategy. Subsequently, crop model data assimila-
tion experiments with the state particle size set to 10, 50, 90, 130,
and 170 and the parameter of state particle variance set to 1/2,
1/3, 1/4, 1/5, and 1/6 were performed to evaluate the effects of
both the state particle size and the perturbed variance on yield
estimations. In addition, experiments that assimilated measured
LAI with equal time intervals of 8, 14, 20, 26, and 32 d were also
performed to determine the uncertainties in the yield estimations
for a different combination of the LAI values measured during
the winter wheat growing season.

For the regional-scale experiments, regional winter wheat yields
were mapped using remotely sensed LAI maps with pixel sizes of
30, 300, 600, 900, 1200, 1500, 1800, and 2100m. The spatial scale
effects of the LAI maps on performance of data assimilation were
then analyzed. In these experiments, the time interval of the
assimilatedobservationwas11d, thedimensionof the state particle
was 50, the parameter for reperturbed state particle was 1/6,
and other settings were identical to field-scale experiments.

In the data assimilation experiments described above, the crop
management parameters in the CERES-Wheat model were set
using the regionalmean value. The planting datewasOctober 10,
2008, the sowing population was 450 plants per square meter,
and the row spacing was 15 cm. Irrigation at a volume of 65 mm
was conducted three times on March 10, April 1, and May 10 of
the following year. The nitrogen fertilizer volumewas 120 kg/ha.
The soil and weather parameters were derived from field
observations.

III. STUDY AREA AND DATA

A. Study Area

Hengshui (37°03′–38°23′N; 115°10′–116°34′E), the primary
planting area for winter wheat, is located in the Huang-Huai-Hai
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Plain of China. This area has a temperate sub-humid continental
monsoon climate. The annual average temperature is between
12 and 13 , the annual cumulative temperature above 0 is
between 4 200 and 5 500 , the annual average precipitation
is between 500 and 900 mm, the annual cumulative radiation is
between and , and the frost-free
season lasts between 170 and 220 d. There are abundant water
resources, with nine tributaries belonging to four rivers of the
Haihe River system. In this region, the anthropogenic soil types
were generally categorized as fluvo-aquic soil, sandy fluvo-aquic
soil, wet fluvo-aquic soil, salinized fluvo-aquic soil, andmeadow
saline soil. The main vegetation includes crops such as winter
wheat, maize, and cotton. For winter wheat, the developmental
period occurs from early October to early June of the next year.
The re-greening period begins in early March, the heading stage
lasts from the end of April until early May, and the harvest
usually occurs in mid-June.

B. Regional Soil, Weather, and Crop Information

The soil map for the study area was derived from the Soil and
Terrain database for primary Chinese data at a scale of 1:1
million; this map was compiled using enhanced soil information
within the framework of the FAO’s Land Degradation Assess-
ment in Drylands (LADA) program (http://www.isric.org/data/
soil-and-terrain-database-china). Data on the physical and chem-
ical properties of the soil profiles were collected from the Soil
Species of Hebei Province [57].

Meteorological data were derived from the National Meteo-
rological Information Center, China Meteorological Adminis-
tration (http://cdc.cma.gov.cn/), and included a daily estimation
ofmaximum andminimum temperatures, precipitation, sunshine
hours, wind speed, and relative humidity. In addition, radiation
was estimated at the station level based on sunshine duration
[58]. In this study, daily meteorological parameter data for the
study area were interpolated as a raster map with grid cells using
ANUSPLIN software [59].

Detailed crop management information was also surveyed,
including the dates of planting and harvest, planting depth and
spacing, planting density, irrigation dates and volumes, fertili-
zation date and volume, phenological calendar, and other data.
Winter wheat yield data were measured at 53 field plots, and the
regional statistical yields for 11 counties were obtained from the
Hebei Rural Statistic Yearbook (2010) [60].

C. Remotely Sensed LAI Maps

Remotely sensed imageswith four bands (blue, green, red, and
near-infrared) at a 30-m spatial resolutionwere acquired from the
Environment and Disaster Monitoring and Forecasting based on
the Small Satellite Constellation A and B satellites (HJ-1A/B
satellites) (http://www.cresda.com/n16/index.html) from March
to June of 2009. A series of pre-processing step was performed
using ENVI software [61] and included radiometric calibration,
atmospheric correction, and geometric correction to convert
HJ CCD radiance to reflectance with the correct geographic
information.

To extract regional winter wheat LAI maps, A Two-Layer
Canopy Reflectance Model (ACRM) [62] was employed to
establish the Lookup Table (LUT) [63]. To avoid an ill-posed
inversion, the estimated LUT was regularized according to the

image statistical information and a priori knowledge fromwinter
wheat observations. To eliminate inversion distortion from
clouds, moisture, aerosols, and mixed pixels, a Savitzky-Golay
filter [64], [65] was used to smooth the time series of the LAI
maps. Finally, acceptable LAI maps of winter wheat were
extracted with a of 0.82, a RE of 10.75%, and a root-
mean-square error (RMSE) of 0.46.

IV. RESULTS

A. Experiments for Winter Wheat Yield Estimations
at the Field Scale

1) Winter Wheat Yield Estimation at the Field Scale: Initial
parameters and conditions concerning soil, weather, and crop
management were significantly different and were difficult to
collect on a regional scale. There were often many uncertainties
regarding the simulation in CERES-Wheat if a general model
was configured for the study area, especially for aspects of crop
management such as planting, irrigation, and fertilization. These
factors led to lower accuracy in regional crop growth simulation
and yield estimations [Fig. 2(a) and (b)], which limited the
potential application of the crop model. To improve the
accuracy of the yield estimation, the PF-based data assimilation
strategy was first introduced to improve the CERES-Wheat
simulation process. The incorporation between the observed
and modeled LAIs was performed under the dynamic frame-
work of the winter wheat growth process such that the LAI
simulation was sequentially optimized, which led to an optimal
yield estimation. A series of LAIs measured at 53 field plots were
assimilated into CERES-Wheat. Consequently, the yield
estimations were dramatically improved, with a of 0.87, a
RMSE of 251 kg/ha, and a RE of 2.95% [Fig. 2(c)]. The LAI
simulated more closely agreed with the actual LAI, with a
of 0.95, a RMSE of 0.39, and a RE of 8.56% [Fig. 2(d)]. The
experimental results support the technical and practical feasibility
of a PF-based crop model data assimilation.

2) Effects of PF Parameters on the Yield Estimation: In the PF
data assimilation, the residual resampling and reperturbation
were performed to improve the selection of the model state
samples in an appropriately representative and diverse manner.
The optimal yield estimates also support the improvements on
impoverishment and diversity of resampled particles by
employing a lower dimension of state particles and consum-
ing less computing time. As shown in Fig. 3(a), there was not a
substantial improvement in the yield estimation as the model
state particle increased, although the computing cost increased
several-fold. The accuracy of winter wheat yield estimations
tended to slightly improve as the particle dimension increased:
the normalized RMSE (NRMSE) decreased from 3.54% (for a
particle dimension of 10) to 3.43% (for a particle dimension of
170), the RE correspondingly decreased from 3.02% to 2.95%,
and the computing time needed to complete a yield estimation
increased from 8.20 to 134.77 s.

With increasing perturbing variance, the local diversity of the
state particle was somewhat reduced, which resulted in the
increasing error of the analysis state and, consequently, a loss
of accuracy in the data assimilation of yield estimation. Nearly,
identical yield estimation accuracies (RE 2.92%–2.98%,
NRMSE 3.39%–3.49%) were obtained when the parameter

of perturbing variance increased from 1/6 to 1/3
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[Fig. 3(b)]. However, there appeared to be a clear decreasing
trendwhen the parameter of perturbing variance increased to
half the state value ( , ).

3) Effects of the Assimilated Observation Frequency on the
Yield Estimation: The assimilation of the LAI observed during
the growing season could effectively correct the simulated
trajectory of LAI in CERES-Wheat, especially with respect to
shifts and underestimates of the LAI top value during the booting
and flowering stages. Hence, modest increases in the frequency
of assimilating observations may improve yield estimations. The
experimental results showed that the accuracy of the yield
estimation tended to significantly improve as the frequency of
assimilating LAI increased from 26 to 8 d, the NRMSE dropped
from 5.63% to 3.43%, and the RE decreased from 3.78% to

2.95% (Fig. 4). A comparison of the accuracy of yield
estimations with the assimilating observation interval of 26 d
(Julian days 76, 102, and 128) showed that a more effective
adjustment of the simulating process was achieved using the
observed LAI with a frequency of 32 d (Julian days 76, 108, and
140), which more accurately described the typical state change
during winter wheat growing season over field plots, leading
to the better yield estimation despite a lower frequency of
assimilating observations.

In addition, as the assimilating observation frequency
decreased, the computing time clearly decreased from 8.20 s
(for an assimilating observation frequency of 8 d) to 3.73 s (for an
assimilating observation frequency of 32 d) for the data assimi-
lation process of the yield estimation for a field plot (Fig. 4).

B. Experiments for Winter Wheat Yield Estimations on a
Regional Scale

Remotely sensed LAI maps with a spatial resolution of 30 m
were used to map regional winter wheat yields. The yield map

Fig. 3. Performance of data assimilation for different PF parameters.

Fig. 4. Performance of data assimilation for different frequencies of assimilating
observations.

Fig. 2. Estimated yield and LAI of winter wheat with no data assimilation (a, b)
and with the PF-based data assimilation (c, d).
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shows that the yield per unit area tended to decrease from the
northwest to the southeast of Hengshui [Fig. 5(a)]. The average
yield over the study region was 6716 kg/ha, the yield range was
5039 to 8324 kg/ha, and the coefficient of variationwas 0.14. The
winter wheat yield of 94.82%was between 5759 and 7813 kg/ha.
The maximum productive capacity was observed in Gucheng
county (7723 kg/ha) followed by Wuqiang (7481 kg/ha) and
Jingxian (7335 kg/ha). The minimum yield was 6112 kg/ha in
Raoyang.

An accuracy verification was performed on a pixel scale and
on a county scale. The estimated yields of 53 pixels better
corresponded to the actual yields of field plots, with a of
0.57, a RMSE of 447 kg/ha, and a RE of 4.95% [Fig. 5(b)]. The
statistic results of yields for 11 counties showed that the was
0.998, the RMSE was 9734 t, and the RE was 4.29% [Fig. 5(c)].

In general, as the spatial resolution of the assimilatedLAImaps
decreased from300 to2100m, the spatial distributiondetail of the
yields showeda remarkable roughness; inaddition, the accuracies
tended to decrease, and the RE and NRMSE decreased from
4.19% and 7.78% to 11.26% and 12.38%, respectively (Fig. 6).
Specifically, when the spatial resolution of the LAI maps de-
creased from 300 to 1200 m, equivalent yield accuracies were
obtained for the average changing rateswith aRE andNRMSEof
0.59% and 1.49%, respectively. As the spatial resolutions of the
LAI maps decreased from 1500 to 2100 m, the yield estimation
accuracies dropped sharply in concert with a fluctuation in the
uncertainty. In these scenarios, the average decreases in the RE
and NRMSE were 2.19% and 1.17%, respectively. The decreas-
ing trend in the computing time was fitted by a power-exponent
model, and the time was reduced from 71.89 to 1.79 h.

V. DISCUSSION AND CONCLUSION

Crop model data assimilation is a promising approach for
monitoring crop growth and predicting crop yield on a regional
scale [19]. Alternatively, dynamic agroecosystemmodels can be
used to simulate temporal changes according to the climate-soil-
crop-management system of diagnosing and forecasting crop
growth status during different developmental stages. On the
other hand, remote sensing can provide actual information on
regional crop growing states in real time. Each of these
technologies addresses the shortcomings of the other to accu-
rately and efficiently estimate crop yields on a regional scale.
The experimental results in this work showed that significant
improvements in yield estimation were observed on a field plot
and on a regional scale when the measured LAIs as well as
remotely sensed LAI maps were assimilated. In addition to the
yield, other critical information on regional crop growthmay also
be estimated, including the biomass, harvest index, soil organic
nitrogen, organic carbon, and evapotranspiration. These results
suggest that crop model data assimilation is feasible and has a
potential application in operational systems for monitoring
regional crops in the near future.

In this study, PF was first introduced to design the data
assimilation strategy within the CERES-Wheat model. The
PF has been successfully applied in data assimilation with a
process-based agroecological model due to its strong ability to
address nonlinearity and nonGaussian issues [66]. PF can sample
particles and update particle weights according to any distribu-
tion function. The use of a resampling and reperturbation of
resampled particles in our strategy can effectively multiply

Fig. 5. Winter wheat yield mapwith a resolution of 30m× 30m and an accuracy
evaluation. (a) Yield map with spatial resolution of 30 m. (b) Yield estimation in
pixel. (c) Global yield estimation in county.

Fig. 6. Performance of data assimilation for different spatial resolutions for
assimilating LAI maps.
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particles with high-importance weights and avoid a lack of
particle diversity under the constraints of a dynamic system by
using fewer particles. In addition, compared to a traditional four-
dimensional variation strategy [67], the PF-based data assimila-
tion strategy is able to express themodel estimation as a recursive
process that avoids the higher dimensions of control variables
and a high-computational burden. The experimental results
presented here also support the strong performance of the PF
in the case of nonlinear agroecosystems. When the measured
LAIs were assimilated at a field plot, the of the forecasted
yields was 0.87, the RMSE was 251 kg/ha, and the RE was
2.95%. When remotely sensed LAI maps were assimilated on a
county scale, the , RMSE, and RE of the forecasted yields
were 0.998, 9734 t, and 4.29%, respectively.

Unfortunately, few studies have focused on the application of
PF-based crop model data assimilation to yield estimations. In
this work, the uncertain effects of the PF parameters and spatio-
temporal scales of assimilating observation were given greater
emphasis. The experimental results showed that the particle
dimension and perturbing variance in PF appear to be not
significantly sensitive to the accuracy of yield estimation because
of a reperturbation of resampled particles, especially when the
particle dimension increased above a certain threshold value,
which is of great significant for regional applications. The
optimal yield estimates may be highly dependent on the reason-
able spatiotemporal resolution of assimilating observations,
which implies an uncertainty of remotely sensed data in a grid.
Observations with a high temporal and spatial resolution may
significantly improve the accuracy of crop yield estimations,
although the increased computing time may be problematic for
regional applications. In our study, the use of PF-based CERES-
Wheatmodel data assimilationswith an ensemble size of 50, LAI
maps with moderate spatial resolution (e.g., 1 km), and assimi-
lation interval of 20 d appears to be a reasonable tradeoff between
accuracy and effectiveness in regional applications.

In addition to the factors assessed in our study, other uncertain
elements, e.g., the soil, weather, regional field management
information, multi-source remotely sensed observations, and
perturbations of observational errors with possibly unknown
distributions, may also lead to a poor performance of crop model
data assimilation. Unfortunately, the analysis of these problems
has received little attention in previous studies. These uncertain-
ties will be analyzed in our further research. To achieve this goal,
the methods of improving the observational perturbation and
resampling state particle [28], [29], the strategies of simultaneous
state-parameter estimation [21], [32], [68], multi-source data
assimilation [69], and ensemble-based four-dimensional varia-
tional algorithms [70]–[72], will be introduced to improve the
performance of cropmodel data assimilation. In the coming years,
significant advances in remote sensing technologies may improve
upon vegetation products (e.g., LAI) [73]–[75], especially
addressing limitations in temporal and spatial resolutions due to
the limits of the revisit circle, cloud coverage and/or mixed-pixel
errors [76]. All of these factors will lead to new advances and
challenges in our future work.
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