2746

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 7, JULY 2014

X- and C-Band SAR Surface Displacement for the
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Abstract—In this paper, we applied the differential interferomet-
ric synthetic aperture radar (DInSAR) technique to investigate and
measure surface displacements due to the My, 5.3 (MM, 5.2), June 21,
2013 earthquake, occurred north of the Apuan Alps (NW Italy), in
the discontinuity zone between the Lunigiana and Garfagnana area.
Two differential interferograms showing the coseismic displace-
ment have been generated using X-band and C-band data, taken
from COSMO-SkyMed and RADARSAT-2 satellites, respectively.
Both interferograms highlighted a clear pattern of subsidence of few
cm located between the Lunigiana and Garfagnana basins. We then
modeled the observed SAR deformation fields using the Okada
analytical formulation and found them to be consistent with an
extensional fault plane dipping toward NW at about 50°. The
integrated analysis of DInSAR, geological data, modeling, and
historical seismicity suggest that the fault responsible for the June
2013 earthquake corresponds to a breached relay ramp connecting
the Lunigiana and Garfagnana seismogenic sources.

Index Terms—Earthquakes, inversion modeling, normal fault,
relay ramp, remote sensing, seismogenic source, surface
displacement.

1. INTRODUCTION

HE NORTHERN Apennines are affected by the north-

western prolongation of the Etrurian Fault System (EFS),
a NW-SE trending normal fault system, which extends for
about 350 km from Umbria to Tuscany [1]. Historical and
instrumental seismicity in the northwestern termination of the
EFS, hereafter the Lunigiana and Garfagnana area, testify that
it is an active and seismogenic zone. The fault responsible for
the strongest earthquake of this region, the 1920 earthquake
(M, 6.5), is a segment of this regional fault system [2], about
18 km long. Most of the largest (M > 5) historical earthquakes
are located close to the transfer zone [3] of the EFS, between
the extensional Lunigiana (to northwest) and the Garfagnana (to
southeast) basins.
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Here, we present the outcomes concerning the June 21, 2013,
My, 5.3 Lunigiana earthquake, occurred in such discontinuity
zone, during an ongoing seismic sequence. We inverted the
surface displacement field stemmed from synthetic aperture
radar (SAR) in order to retrieve the geometry, kinematics, and
the slip distribution of the seismic source. Such analyses allowed
us to characterize the accommodation of extension between the
Lunigiana and Garfagnana normal fault segments.

II. SEISMOTECTONIC FRAMEWORK

On June 21,2013 (10:33 UTC), an M, 5.3 (M, 5.2) event has
been located at about 5 km depth, north of the Apuan Alps, a
mountain range of the Northern Apennines [4] (Fig. 1). The main
event was preceded by a foreshock on June 15 (M; 3.4), and has
been followed by more than 2450 aftershocks with a maximum
magnitude of 4.4. The whole sequence is located toward NE of
the mainshock [4]. The area affected by the seismic sequence is in
Tuscany region, between the Lunigiana area to NW and the
Garfagnana to SE. The mainshock was felt over a broad area in
Northern Italy (if compared with its magnitude) [5], but with
minor damage in the epicentral area (maximum intensity VI
MCS) [6].

The focal mechanism of the main event and of its aftershocks
suggests that slip occurred along a ~45° dipping fault plane, with
a prevailing extensional sense of motion [7]-[10].

The Lunigiana and Garfagnana area is historically character-
ized by a dense intermediate to damaging seismicity (Fig. 1). On
April 11, 1837 an M,, 5.8 earthquake occurred north of the
Apuan Alps, causing severe damage in Minucciano village and
its surroundings (IX MCS intensity) and was felt over a broad
region reaching up the Po Plain [11], [12]. The strongest earth-
quake known in this region occurred on September 7, 1920 (M,
6.5) and reached a very high epicentral intensity (X MCS),
devastating a wide area of Garfagnana and Lunigiana [11],
[12]. Moreover, on October 15, 1939, an M,, 4.8 earthquake
occurred about 10 km to the northeast of the June 21, 2013 event
[12]. More recently, on October 10, 1995, an M, 5.1 earthquake
of with strike-slip kinematics [13]-[15] occurred about 10 km to
the southwest of the 2013 seismic sequence.

From a geological point of view, Lunigiana and Garfagnana
regions are characterized by a marked complexity due to the
coexistence of different geological structures and by the presence
of superimposed tectonic units, particularly the metamorphic and
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Fig. 1. Structural sketch of the Lunigiana and Garfagnana area with the June 21,
2013 earthquake, its focal mechanism (http://cnt.rm.ingv.it/tdmt.html) and the
2013 sequence [4]. Squares: historical earthquakes having magnitude larger than
5.3[12]; hatched lines: normal faults [21]; dashed lines: lineaments, EL: Enza line
[23], SL: Sarzana-Equi Terme line [3]; dark polygon: composite seismogenic
sources projection on the ground surface, black boxes: individual seismogenic
sources projection onto the ground surface; black lines: up-dip projection of the
seismogenic sources onto the surface 1) ITISO85-Pontremoli; 2) ITIS067-Aulla;
3)ITIS050-Garfagnana North; and 4) ITIS05 1: Garfagnana South [2]; black stars:
thermal springs. Inset shows the structural framework of the Etrurian Fault
System (redrawn from [1]).

nonmetamorphic Tuscan Succession, the Apuan Alps structure
and the Ligurian units. These units are overlying by Pliocene to
Holocene lacustrine and fluvial deposits [16]. The Lunigiana and
Garfagnana areas are the northwestward termination of the
regional, NW-SE trending EFS, marking the northwestern
extensional border of the Northern Apennines. The NE dipping,
low-angle normal EFS is rather well known in the literature due
to field data and seismic reflection profiles (e.g., [1], [17]). The
EFS straddles the northern Apennines for about 350 km and,
south of the study area, include the Mugello, Casentino, and
Tiber extensional basins (inset in Fig. 1; [18]). Historical and
recent seismicity show that two seismogenic normal faults border
the Lunigiana and Garfagnana basins (respectively, ITCS026
and ITCS083 composite seismogenic sources in Fig. 1;e.g.,[19],
[2]). The Lunigiana ITCS026 Source extends for about 50 km to
the northern side of the Apuan Alps. Two individual sources (IDs
1 and 2 in Fig. 1) are part of this Composite Source (e.g., [20],
[21]), and are believed to be responsible for the 1834 and the
1481 earthquakes, respectively [2]. The Garfagnana ITCS083
source extends for about 40 km to the eastern side of the Apuan
Alps, and is left-stepped compared to the Lunigiana. Also, the
Garfagnana includes two individual sources [21]: 1) the source
responsible for the destructive 1920 earthquake (ID 3; Fig. 1);
2) the southeastern source (ID 4; Fig. 1) not associated with a
known historical or instrumental earthquake, whose existence is
based on geological and structural evidence [2]. Between the
Lunigiana and Garfagnana sources there is a complex and poorly
known shear zone that locally forms the northern boundary of the
Apuan Alps. Here falls the Equi Terme thermal spring (tempera-
ture about 24°C), probably because the transfer zone enables
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water to reach deeper portions of the crust [22]. This zone is
affected by two key transversal structures, inferred from remote
sensing data and surface geology, known in the literature as the
NE-SW trending Sarzana-Equi Terme Lineament (SL in Fig. 1)
and the NNE-SSW trending Enza Lineament (EL in Fig. 1). The
SL has been interpreted as a normal fault with a left-lateral slip
component [3], the EL as a left-lateral strike-slip fault [23].
Furthermore, this zone has been interpreted even as an EW active
normal-oblique right-lateral transfer fault, connecting the NE-
dipping Lunigiana and Garfagnana sources [18]. The above-
mentioned works highlight that different structural interpretation
for this zone are available; in addition, the evidence of its activity
proposed in the literature have few constraints.

III. DINSAR PROCESSING AND RESULTS

We have investigated the surface displacement field due to the
Lunigiana earthquake by exploiting a multiband SAR dataset,
coming from COSMO-SkyMed (X-band, hereafter CSK) and
RADARSAT-2 (C-band, hereafter RDR) SAR satellites (Fig. 2),
at high spatial resolution (3—10 m pixel).

DInSAR technique is based on the exploitation of the phase
component of two SAR images [24]. Today DInSAR isused in a
wide range of fieldworks, from seismology [25], to volcanology
[26], to urban subsidence [27] and infrastructures monitoring
[28]. Phase component is related to the satellite-to-target distance
and the result of the application of this technique is called
interferogram. The interferometric phase iy, can be schemati-
cally splitinto five terms: 1) the “flat Earth” component ¢ ¢; 2) the
topographic phase ¢0p0; 3) the displacement phase ¢g;sp; 4) the
atmospheric term @, ; and 5) the error phase .. [24]. The first
two components can be removed easily by exploiting the orbital
satellite data and by using an external digital elevation model
(DEM), respectively. The atmospheric contribution and phase
errors are usually neglected in coseismic interferograms being
relatively lower than the displacement phase. The phase variation
due to displacement (¢g;4p1) provides a map of sensor-to-ground
distance change at pixel scale.

The first image pair was acquired by the CSK constellation, an
Earth observation mission developed by the Italian Space Agen-
cy (ASI), consisting of a four-satellite system equipped with
high-resolution X-band SAR sensors. The second image pair was
acquired by the Canadian RDR satellite equipped with high-
resolution C-band sensor. These satellites image Earth surface in
various acquisition modes, with different ground resolutions,
incidence angles and polarizations [29], and provide global
coverage independent on weather or lighting conditions.

The X-band CSK sensor imaged the epicentral region on June
21 (before the mainshock) and June 22, 2013 with a spatial
baseline of 139 m along the ascending orbit. The 1-day time span
is the minimum temporal interval ensured by the CSK constella-
tion. Such a short time span minimizes temporal decorrelation that
heavily affects the study region due to steep topography and dense
vegetation coverage. The 40 x 40 km? (Stripmap-mode) CSK
pair observed the surface with 40° incidence angle and was
centered on the village of Minucciano. To improve the signal-
to-noise ratio, the multilook factor was set equal to 20 in order to
obtain a square pixel representing an area of about 40 x 40 m?.
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Fig. 2. Surface displacement detected by COSMO-SkyMed (upper) and
RADARSAT-2 (bottom) DInSAR. The apparent discrepancy between the results
can be ascribed to the different temporal baseline (1-day delay for COSMO-
SkyMed, 24 days for RADARSAT-2) that implies additional deformation due to
aftershocks and post-seismic slip release.

The C-band RDR imaged the epicentral region on June 18 and
July 12, 2013 with a Standard-3 (S3) beam with 69 m spatial
baseline along the ascending orbit. The RDR pair observed a
100 x 100 km? surface with 34° incidence angle.

The interferometric processing was performed with the
GAMMA software [30]. The 90 m shuttle radar topographic
mission (SRTM) DEM was used to remove topographic com-
ponent from COSMO-SkyMed interferogram and 30 m ASTER
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Fig. 3. Misfit-roughness tradeoff curves for the CSK (top) and RDR (bottom)
models. Each gray dot corresponds to a different value of the weighting factor of
the smoothing operator. A black dot marks the weighting factor used for presented
results.

TABLE I
SOURCE MODEL PARAMETERS RESULTING FrROM THE UNIFORM-SLIP INVERSION
CSK RDR
Center longitude | 10.19E | 10.18E
Center latitude | 44.22N | 4420 N
Top depth (km) 2.9 2.4
Strike (°) 244 247
Dip (°) 52 50
Rake (°) -84 -87
Slip (m) 0.09 0.16
Length (km) 9.3 6.8
Width (km) 6.5 6.7

DEM was used to remove the topographic component from
RADARSAT-2 interferogram. The Goldstein filtering [31],
phase unwrapping with minimum cost flow (MCF) algorithm
[32] and orbital refinement were also applied to both interfer-
ograms. The results obtained from CSK data show a surface
subsidence of about 3 cm in the satellite line-of-sight (LOS). This
displacement is mainly due to the mainshock thanks to the short
temporal baseline of 1 day. On the other hand, the larger RDR
temporal baseline of 24 days results in a more pronounced
subsidence of about 5 cm in the satellite LOS probably caused
by the cumulated effect of aftershocks following the June 21
event and/or by postseismic deformation.

IV. SOURCE MODELING

We used the coseismic deformation fields imaged by DInSAR
to infer the seismic source characteristics through an inverse
modeling analysis, using analytical expressions from Okada [33]
to compute expected deformation and assuming an homogeneous
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Fig. 4. Unwrapped LOS InSAR deformation (left), modeled deformation field (center) and residuals (right) for the CSK and RDR datasets. The red box marks the
position and surface projection of the best-fitting uniform slip model. LOS indicates the satellite view direction (red arrow in left panels).

half-space with elastic constants corresponding to a Poisson
solid. As discussed above, while the CSK interferogram is
obtained from a pair of images acquired on two consecutive
days, RDR interferogram has a much longer temporal baseline
(24 days). Therefore, it is likely that the deformation field from
RDR includes the contribution of the aftershocks in the sequence
as well as short-term postseismic effects. For this reason, instead
of a joint modeling of the two fields, we chose to independently
compute a source model for each deformation field and compare
the results.

The source geometry is obtained as the result of a two-step
inversion process. First, we estimate geometry, location, and
extents of the fault with a nonlinear optimization scheme,
assuming uniform slip on the fault plane. Once the fault geometry
is fixed, we obtain the best-fitting slip distribution on the fault
plane by means of a linear inversion.

In the first step, we obtained a best-fitting uniform-slip
source geometry by minimizing the chi-square between the
observed field and the projection of the three components of the
modeled field on the satellite LOS direction [34]. The fault
geometry that minimizes the misfit function is obtained as the
result of a nonlinear inversion with the Simulated Annealing
algorithm [35]. For computational reasons, the dataset used
for each inversion is a subsample of the original one, with
about 10% of the total pixels. We checked the stability of
each solution by using it as a starting point for a gradient-
descent optimization, and verified that we recovered the origi-
nal model.

To obtain the slip distribution in the second step of the
inversion, we subdivided the fault geometry resulting from the
nonlinear step into square patches of about 0.5 x 0.5 km?, and
composed a Green Function matrix by imposing a unitary slip on
each patch, computing the corresponding deformation field
according to the Okada analytical expressions [33] and

projecting it onto the satellite LOS direction [34]. We included
in the Green Function matrix a discrete approximation of the
Laplacian operator in order to avoid large, unphysical oscilla-
tions in the slip values; the linear problem is then solved by
computing a natural inverse with the singular-value decomposi-
tion (SVD) algorithm, applying a damping factor in order to
correct singularities in the data kernel [36]. When applying a
smoothing term to exclude unphysical oscillations of the slip, a
tradeoff is introduced between data misfit and solution rough-
ness. We calibrated the weight of the smoothing factor by
computing several inversions varying values of the Laplacian
weight, and setting the smoothing parameter at the “knee” of the
resulting misfit-roughness curve (Fig. 3).

The best-fitting source parameters are listed in Table 1 for the
two datasets, whereas the modeled deformation fields are shown
in Fig. 4, and the estimated slip distribution on the two source
models is displayed in Fig. 5. The strike, dip, and rake angles turn
out to be very similar for the two inversions and indicate that
rupture occurred on a normal fault dipping toward NNW at about
50°. This geometry is consistent with RCMT and TDMT solu-
tions, which give an extensional rupture with dip in the range 41—
47°. Depth extension is 2.4—7.5 km for the RDR model and
2.9-8.0 km for the CSK model. The fault models have compa-
rable along-dip width, whereas length of the CSK model is about
50% larger than RDR model. Peak slip for the CSK model
(8.8 cm) occurs at 5.1 km depth, whereas in the RDR model peak
slip (19.4 cm) is at 3.8 km depth. Geodetic magnitude for the
CSK and RDR sources are M 5.24 and M 5.40, respectively, if a
crustal rigidity of 26 GPa is assumed.

The spatial resolution of the inverted slip distribution has
been estimated by defining a synthetic slip model with a check-
erboard pattern, computing the corresponding deformation field
with the same coverage of SAR data and inverting it through the
same procedure used for the real datasets. Results are shown in
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baseline in the RDR deformation field.

Fig. 6(a) and (b) for the CSK and RDR models, respectively.
Spatial resolution decreases with depth, as expected in geodetic
inversions (e.g., [37]), and in the shallower half of the fault it can
be estimated as about 4 km.

The empirical relations of Wells and Coppersmith [38]
applied to a normal mechanism with moment magnitude M,
5.3 estimate a subsurface rupture length of 5.3 km and a rupture
width of 4.8 km. Uniform slip models have larger extents for
both datasets (Table 1); however, if we consider the extents of
the bulk slip area in Fig. 5 as the effective rupture size, both
CSK and RDR models are compatible with a 25 km? rupture
area obtained from empirical relationships. A rupture area with
this size should be within the spatial resolution of the models, at
least in the shallower portion of the fault [Fig. 6(a) and (b)]. The
geodetic magnitude of the CSK model (M 5.24) is in excellent
agreement with seismological magnitudes, whereas the RDR
model overestimates the magnitude and gives twice the peak
slip of the CSK model. Such discrepancy can be ascribable, as
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Fig. 6. (a) Resolution tests for the CSK model. Synthetic and inverted models
are shown in the left and right panels, respectively. Checkerboard patch size is
about 4.5 km X 3 km in the bottom panels and 2 km x 2 km in the top panels.
(b) Resolution tests for the RDR model. Synthetic and inverted models are shown
in the left and right panels, respectively. Checkerboard patch size is about
3.5 km x 3 km in the bottom panels and 1.8 km x 2 km in the top panels.

already mentioned, to the larger temporal baseline (24 days) of
the RDR pair, with the result that the measured deformation
includes short-timescale postseismic motions as well as the
cumulated effect of minor shocks occurred during the time
window [39]. Indeed, during the whole RDR acquisition win-
dow, four events with M; > 4.0 occurred: two (of M; 4.0) in the
same mainshock date and very near to it and two (of M, 4.4) at
the end of June. The cumulated seismic moment release of the
sequence in the RDR acquisition window is 1.81 x 10*7 Nm,
corresponding to a moment magnitude M,, 5.47. The geodetic
magnitude of the RDR model is close to the cumulated
magnitude of the sequence, so we can conclude that the
deformation field measured by RDR is likely to include the
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Fig. 7. Block diagram with the simplified fault geometry of the Lunigiana
and Garfagnana areas. The source responsible for the 1920 earthquake (ID
3—Garfagnana North Source, see also Fig. 1) is schematically linked to the
source responsible for the 1481 earthquake (ID 2—Aulla Source) by the relay
ramp hosting the June 21, 2013 fault. Notice the presence of the Equi Terme
thermally anomalous spring.

contribution of minor aftershocks occurred between the acqui-
sition dates.

V. CONCLUSION

In this study, we have exploited the capabilities of CSK and
RDR in terms of very high spatial resolution and short (in case of
CSK) revisit time. The availability of two SAR datasets, from
two different sensors (at X- and C-bands) has allowed to have a
stronger constraint to the deformation pattern. Furthermore, we
have integrated seismotectonic and geological data with DInSAR
results to characterize a transfer zone connecting the Lunigiana
and the Garfagnana basins.

In order to provide an analysis of the June 2013 earthquake, we
have applied an inversion modeling algorithm exploiting as input
data the surface deformation field from DInSAR. It should be
noted that the My, 5.3 of the June 2013 Lunigiana earthquake
roughly coincides with a rupture length that is close to the limit of
resolution of any method of geologic investigation of earthquake
faulting.

One of the outcomes of our model is the positioning of the
source responsible for the June 21 earthquake within the transfer
zone. Furthermore, concerning the geometry and kinematics of
the fault, we defined an NE-SW trending, NW dipping (about
50°), normal fault.

Our study has pointed out the structural style of linkage
between the Lunigiana and Garfagnana fault segments. We thus
lean toward identifying a breached synthetic relay ramp [40]
(Fig. 7).

It can be noted how the integrated analysis of different data
sources (DInSAR, geological data), together with the historical
seismicity (1767 M, 5.4 and 1837 M, 5.8 earthquakes), sug-
gests that the relay ramp between Lunigiana and Garfagnana is a
seismogenic structure potentially responsible for earthquakes
larger than M,, 5.3.
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