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Using Volunteered Data in Land Cover Map
Validation: Mapping West African Forests

Giles M. Foody, Fellow, IEEE, and Doreen S. Boyd

Abstract—Accuracy assessment should be a fundamental part of
a programme that maps land cover from remotely sensed imagery
but this activity is often constrained by the lack of high quality
ground reference data. Here, two sources of volunteered data are
used to illustrate the potential of amateur or neogeographical ac-
tivity in map validation. Ground based photographs acquired from
an internet-based collaborative project and interpreted by a set
of four further volunteers provided the reference data to support
evaluation of the Globcover map’s representation of tropical forest
in West Africa. Although the results highlight some concerns with
volunteered data, notably the low levels of inter-volunteer agree-
ment they also show that such imperfect data may be used to de-
rive credible estimates on accuracy from both a site and non-site
specific perspective. Specifically, the estimates of the producer’s
accuracy of forest and of forest extent derived from the free and
volunteered data using a latent class model were of comparable
magnitude to those derived in a formal validation by experts; the
estimate of forest extent was within 1.38-9.08% of reference esti-
mates while the difference in estimated producer’s accuracy from
that derived in an authoritative assessment of map accuracy was
2.82% and 0.34% for the forest and non-forest classes respectively.

Index Terms—Accuracy, classification, land cover, volunteered
geographic information.

I. INTRODUCTION

AND cover is one of the most critical environmental vari-
ables. It has, for example, numerous direct and indirect
effects on environmental properties and processes that strongly
impact on human health and well-being. Forests, for example,
dominate the terrestrial carbon cycle and form the world’s
largest bank of species diversity making information on forest
cover critical to the two greatest societal concerns of the day:
climate change and the conservation of biodiversity. Changes
in forest cover are, therefore, critical to scientific studies of
carbon cycling and species conservation. There is, therefore,
considerable need for accurate and timely information on land
cover classes such as forest and the only practical means to
derive this information over large areas and on a frequently
repeatable basis is via satellite remote sensing.
Land cover mapping is one of the most common applications
of satellite remote sensing. Considerable research has addressed
a wide variety of issues connected with this application, from
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sensor design through image-preprocessing to map production
and evaluation. The latter issue is of particular importance, es-
pecially if remote sensing is to provide land cover informa-
tion to support to major scientific and policy applications such
as contributing to the United Nations collaborative initiative
on Reducing Emissions from Deforestation and forest Degra-
dation (REDD). Accuracy assessment is typically undertaken
on a non-site or, more commonly, a site specific basis and has
evolved greatly over the last four decades [1]. It is now widely
accepted that every map should be accompanied by a rigorously
derived accuracy statement, otherwise it is no more than one
untested hypothesized representation [2], perhaps being little
more than a pretty picture [3].

Although guidelines exist that specify good practices for ac-
curacy assessment in remote sensing [2] the methods are often
not followed [4], [5]. Indeed, because of the many challenges
encountered in a mapping programme [6]-[10] the best prac-
tices are sometimes impractical to implement. The validation
of a map, in which its accuracy is assessed, is a distinctly non-
trivial task [6], [7]. A key concern is that it is often extremely
difficult to acquire a suitable ground reference data set upon
which to base an accuracy assessment. Concerns about ground
reference data abound especially in relation to the quantity and
quality of the reference data used to evaluate the map [11]-[14].
Thus while the main recommended approach to accuracy as-
sessment [2] requires the collection of a potentially large sample
of high quality ground reference data at sites selected in accor-
dance to carefully designed probability sampling design the im-
plementation of such approach is often extremely difficult. A
range of research agendas have been defined to meet the chal-
lenges faced in accuracy assessment with activity directed at
issues ranging from the provision of data sets that may aid an
accuracy assessment [15] to the evaluation of methods for ac-
curacy assessment without reference data [14], [16]. A further
alternative explored here is to exploit the potential of reference
data provided by volunteers, often amateurs or neogeographers
collecting information as part of collaborative projects some-
times hosted on the internet.

The recent rise in citizen science and, in particular, citizen
sensing [17], [18] offers an attractive, if complicated, alternative
means to ground reference data collection to support map vali-
dation activities. The potential of volunteered data in accuracy
assessment has been explored [19], [20] but many issues remain
to be fully addressed. There are many concerns with volunteered
data sets, notably their variable, and typically unknown, quality
together with a set of ethical and legal concerns associated with
its collection and use [21], [22]. Here, the aim is to further il-
lustrate the potential of volunteered data in a way that explicitly
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: Cropland dominated;

- Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5 m);

Open (15-40%) broadleaved deciduous forest/woodland (>>5 m);
Mosaic forest or shrubland (50-70%)/grassland (20-50%);

D Sparse (<15%) vegetation;

Flooded vegetation;

- Mosaic grassland (50—70%)/forest or shrubland (20-50%);
| Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5 m);

Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses);

Bare areas and artificial surfaces and associated areas.

Fig. 1. Extract of the Globcover map for the study area. The classes have been adjusted for illustrative purposes.

recognizes its typically unknown and imperfect nature. Specif-
ically, this article provides a brief summary of research into the
validation of the forest cover representation provided by the Eu-
ropean Space Agency’s Globcover map using two sources of
volunteered data. Section II outlines the data used in this re-
search. Section III provides a summary of the methods used and
especially latent class modeling. Section IV provides the results
of the analyses and a discussion before the main conclusions are
drawn in Section V.

II. DATA

Attention focused on forests in West Africa and their repre-
sentation in the Globcover map (Fig. 1); the map is available
from http://dup.esrin.esa.int/globcover). The Globcover map
was selected as it provides a contemporary and relatively fine
spatial resolution (300 m) representation of land cover. The
map was produced using data from the MERIS sensor acquired
over the period December 2004 to June 2006. The map has
also been validated and so there is a guide to the accuracy of
the map. The latter is critical in that it provides targets for the
research to achieve.

Although the Globcover map has a relatively high thematic
resolution the focus here was on a single class in order to reduce
uncertainties, especially those associated with associated with

class definitions. Here, the focus was upon only forests in West
Africa. To reduce uncertainties about different forest types, the
forest classes that occurred in the region were aggregated into
a single class. There are many definitions of what constitutes a
forest [23], [24] and here a site was considered to be forested if
it had at least 15% canopy cover. The forest class was formed
by aggregating a suite of mosaic, closed and open forest classes
contained in the original Globcover representation of the region.

A rigorous validation of the Globcover map informed by pub-
lished documentation on good practices has been undertaken
[25]. This validation involved 16 experts, 3 focusing on Africa,
who labeled 3167 points selected from the map. The Globcover
map was estimated to have an overall accuracy of ~67.1% rising
to ~79.2% if expressed on a class area-weighted basis and using
only the ground reference data with a high confidence in the la-
beling [25]. The classes aggregated to form the forest class of
interest in this work may also be aggregated in the confusion
matrix used in the estimation of Globcover map accuracy. Fol-
lowing this aggregation of classes, the producer’s accuracy for
forest and non-forest classes was estimated as 84.04 and 74.89%
respectively. These values provided benchmarks for use in the
evaluations of the estimates derived using the volunteered data.

Inspection of the confusion matrix used in the formal vali-
dation of the Globcover map [25] indicated that the omission
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and commission errors for the forest class were asymmetric re-
sulting in the extent of forest being overestimated by a factor
of ~1.42. A variety of methods to correct for misclassification
bias are available [5], [26], [27]. Here, the ratio of the commis-
sion to omission errors was used to rescale downwards the es-
timated extent in order to adjust for the asymmetry in the ob-
served classification errors. It was, however, apparent that some
of the inter-class confusion evident in the matrix derived over
the globe involved classes that did not occur in the region of
study. Additionally, it is well known that map accuracy can vary
spatially [28] with large regional variation observed in global
maps [29], suggesting that the use of more local information is
often desired. An evaluation of the Globcover map for the con-
tinent of Africa suggests that omission and commission are still
imbalanced across the region [30] but less so than indicated by
the formal validation of the entire map. The latter suggests that
the extent of forest may be overestimated by a factor of ~1.10.
Critically, the extent of forest depicted in Globcover appears
to be exaggerated by a factor of ~1.10 to ~1.42. These latter
values may be used to rescale or revise downward the estimated
extent of forest.

The key focus of this article is on the potential of using vol-
unteered data as a means to validate the map and derive useful
information without conventional ground reference data. With
the formal validation providing authoritative estimates of map
accuracy and forest extent, the volunteered data were used to
provide a guide to the accuracy of the forest representation pro-
vided by Globcover. This analysis used the data acquired by
volunteers at 99 locations across West Africa.

Two sources of volunteered data were used to generate the
ground reference data set. First, freely available photographic
data on ground conditions at the point of intersection of lines
of latitude and longitude provided by the Degrees of Conflu-
ence project (www.confluence.org), a web-based collaborative
project, were used as a source of spatially extensive informa-
tion on ground surface cover (Fig. 2). An aim within the project
is for each confluence point to be visisted by a volunteer and
a set of photographs of the site obtained; typically the data set
provided for each location contained four photographs viewing
north, south, east and west from the confluence point. Addi-
tional data are often provided, including evidence of the pho-
tographs having been acquired at the correct location as well
as text that could also reveal useful information about the site.
Here, attention focused solely on the set of photographs ac-
quired at or near the point of confluence (Fig. 3). The pho-
tographs for all 99 successfully visited and documented conflu-
ence points available at the time of the research (winter 2011)
for the Ivory Coast, Ghana, Togo, Benin and Nigeria were used
(Fig. 2). While the set of field visits from which the ground pho-
tographs were acquired were undertaken over a long period, the
potential of forest seasonality effects and the time gap of up to
seven years between map production and field visits are con-
cerns. However, given the focus on low latitude forests and with
the annual rate of forest area change being <0.5% for Western
and Central Africa in the period 2000-2010 [31] the potential
for major error is reduced. A second set of data was derived from
volunteers at Nottingham University who labelled each conflu-
ence point as forest or non-forest based on the set of photographs
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Fig. 2. Map of West Africa showing the 1° lines of latitude and longitude.

available for it. Each site was labelled as forest (1) or non-forest
(0) independently by a total of four people (A-D). Thus for
99 systematically distributed points across West Africa, volun-
teered data on forest cover were available to compare against
the labeling depicted in the Globcover map.

Aside from the use of land cover class labels generated by
volunteers rather than experts, the fundamental nature of the
sample used conforms to recommended practice in accuracy
assessment. The systematic sample design, for example, is an
equal probability design that is easy to implement and one of
the recommended best-practice methods for use in relation to
mapping large areas [2], [32]. The size of the sample was also
anticipated to be suitable for credible accuracy assessment pur-
poses. The required sample size can be calculated from sam-
pling theory and is not a function of the size of the data set but
of the desired precision in estimation and selected level of sta-
tistical confidence [33]. While the latter are a function of the
specific objectives of a study, the sample size used, 99, is large
enough to allow estimation with a margin of error <6.0% as-
suming that the popular target accuracy of 85% producer’s accu-
racy can be used as a prior estimate of the accuracy and working
at the 90% level of confidence.

III. METHODS

For each of the 99 points of confluence, a set of four labels
indicating forest presence (1) or absence (0) was available from
the volunteers (A-D). These labels supplemented the set ex-
tracted from the Globcover map (E). The labels derived by each
volunteer were compared against those from each other volun-
teer and in the map to provide a guide to the degree of agreement
between the volunteer derived reference data and the depiction
in the Globcover map. The level of agreement between pairs of
labels was expressed as a percentage cases agreeing in label and
also by the kappa coefficient of agreement [34]. The latter was
calculated from,

)

where p,, is the observed proportion of agreement and p.. the
proportion of agreement expected by chance. Although the
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kappa coefficient is unsuitable as a measure of accuracy in
remote sensing [35], [36] it is used here primarily as an index
of the level of inter-rater agreement and not of accuracy.

The key focus of this paper is on using the volunteered data to
validate the Globcover map, including the estimation of forest
extent (a non-site specific measure of map accuracy). Here, it
is recognised explicitly that all five representations are imper-
fect; some of the volunteers, for example, had minimal relevant
experience and hence error might be expected. It was shown in
[16] that by casting the problem of estimation from imperfect
data in terms of a latent class analysis a set of imperfect vari-
ables may be used to derive information on the accuracy of land
cover maps. Here, the set of four labels derived from all volun-
teers were combined with those depicted in the map to yield in-
formation on forest cover and the accuracy of its representation.
A key focus was on the estimation of forest extent, expressed as
a percentage of the region covered by forest, and the accuracy
of the map, expressed here by the producer’s accuracy of the
forest and non-forest classes.

The quality of imperfect data may be estimated by a latent
class analysis [37], [38]. In a latent class analysis it is assumed
that each of the input variables is an imperfect indicator of the
unobserved, and so latent, variable of interest but that the ob-
served associations among them can be explained by a latent
variable [37]. Here, the latent variable is the forest class, F, while
the observed or manifest data of the analysis are the sets of class
labels derived from the four volunteers and the Globcover map.
With the labels from sources A, B, C, D and E being represented
by a,b,c¢,d,¢ = 0, 1 a latent class model for the probability
of obtaining a pattern of class labels over the sources may be
written as

_ _F_ABCDE|F
Tabedef = 71-f abede f (2)

where, based on the assumption of conditional independence,

ABCDE|F

A|F _B|f C|F _D|F _E|F
abede f T T T

of Tof Tef Tap Tef 3)
is the conditional probability that the pattern of class labels is
(a,b,c,d,e) given that the case has a forest class status f (1
or 0) and Wf is the probability that a case has the forest class
status f [37], [38]. Assuming that the model fits the data and
reflects the class information as planned, the two sets of param-
eters of the latent class model equate, therefore, to key measures
of classification accuracy used in remote sensing [ 16]. Attention
here focuses on 7f" as an estimate of forest extent and wﬁ‘F
E|F . . ,

and 7,  which represent respectively the producer’s accuracy
for the forest and non-forest classes in the Globcover map. The
latter measures provide a detailed description of the accuracy of
the binary classification and are the typical measures of interest
in mapping studies as well as benefit from a theoretical indepen-
dence on class abundances [12]. The fit of a latent class model
to the observed data is commonly evaluated with the likelihood
ratio chi-squared statistic, L.2; with a model typically viewed as
fitting the data if the value of .2 is sufficiently small to be at-
tributable to the effect of chance [39].

The basic model defined by (2) and (3) may provide a poor
fit to the data if the assumption of conditional independence
that underlies it is not satisfied. However, the model in (1) can
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be adapted to allow for conditional dependence between all or
some of the manifest variables. This is useful since it might be
expected that the volunteers would all tend to correctly label
the cases that were clearly non-forest (e.g. location 5°N 3°W
in Fig. 3) and struggle most with the labeling of points that had
some tree cover, probably close to the 15% tree cover threshold
value used in the definition of forest. A test for conditional de-
pendence was undertaken using a modified version of the log-
odds ratio check method using the CONDEP programme (ac-
quired from http://www.john-uebersax.com/stat/condep.html).
With this method, the log-odds ratio for the observed and ex-
pected data are compared and a z score calculated. The calcu-
lated value of z indicates the extent of conditional dependence.
Large values of z suggest conditional dependence occurs and
the values may be interpreted against standard tabulated critical
values for specified levels of statistical significance if desired.

IV. RESULTS AND DISCUSSION

Of the 99 locations, 50 were labelled as belonging to forest in
the Globcover map. This indicates 50.50% of the region is cov-
ered with the class defined here as forest. However, the valida-
tions of the map reported in the literature [25], [30] indicate that
this is likely to be an overestimate; this may in part be related to
the breadth of the class definition used. Re-scaling the estimate
of forest extent for the observed overestimation factor derived
with the global confusion matrix in [25] suggests that the ex-
tent of forest cover is actually 35.36% while using the rescaling
factor derived from the accuracy assessment for Africa reported
by [30] suggests that the extent of forest is 45.82%.

There was only a relatively low degree of agreement between
the volunteers in terms of their labeling of the locations from
the photographs (Table I). In total, the volunteers agreed unan-
imously on the labeling of 48 locations (19 forest and 29 non-
forest) with disagreement evident for the remaining 51 locations
(Fig. 4). Pairwise comparison of the set of labels generated for
the 99 locations showed that the four volunteers varied greatly
in terms of labelling. The degree of agreement between pairs of
labellers varied between 62.66 and 79.79% or, in terms of the
kappa coefficient of agreement from 0.282 to 0.553 (Table I).
These relatively low levels of agreement lead to an initial as-
sessment that highlights some concerns for the use of volun-
teered data in accuracy assessment. Critically, while interpreta-
tion is limited by the absence of a gold-standard reference, the
low levels of agreement may suggest that the individual volun-
teers differ greatly in terms of their perception of forest and so
might be taken to suggest that such data have little useful role in
map validation, especially as there is no obvious means to select
between the volunteers.

The limitations of the volunteer data are also evident when
compared against the Globcover map. Again, only low levels
of agreement between volunteered and mapped labels were
observed, with agreement varying from 58.58% to 77.77% or
0.170 to 0.556 in terms of the kappa coefficient of agreement
(Table I). These results suggest only relatively low degrees
of agreement exist in the labelling provided by the different
sources of data on forest cover. The results may suggest that
none of the individual volunteers was able to provide data
that could be confidently used in accuracy assessment. There
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Fig. 3. Examples of photographs acquired at or near confluence points; the size/shape of some photographs have been adjusted for presentational reasons. The
photographs were acquired from the Degrees of Confluence Project, contributed by N. Bieger, A. Kovacs, R. Mautz, H. Resch, D. Wood and reproduced with their

permission).

TABLE I
KAPPA COEFFICIENTS INDICATING DEGREE OF INTER-RATER AGREEMENT

B C D E

A 0.367 0.495 0.553 0.235
B 0.424 0.282 0.170
C 0.458 0.556
D 0.154
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Fig. 4. Summary of the degree of agreement between the volunteers for each
point of confluence; gaps occur for sites not visited. Open circle—all agree non-
forest; green circle—all agree forest; blue, black and red locations that 1, 2 and
3 volunteers respectively labeled as forest.

are, of course, many potential sources of uncertainty and
error in the analysis including problems with the photographic
reference data, its labelling, the time period between the map-
ping and photography as well as error in the Globcover map.
None-the-less, the low levels of agreement depicted in Table I
do not initially suggest a positive role for any of the volunteers
in a validation programme.

The estimated extent of forest over the test site derived from
the volunteered data ranged from 32.33% to 57.57%. The wide
range in the estimates is also apparent when viewed relative to
the anticipated actual range of 35.36%—45.82%. These results
further highlight some concerns with the use of volunteered data
and suggest little confidence in using directly the volunteered
data from any one source in map validation.

A variety of approaches might be used to derive an enhanced
estimate of forest extent and map accuracy. One simple ap-
proach is to derive the average of the estimates from the 4 vol-
unteer labellers. This approach yielded an estimate of 42.67%
forest cover. Similarly, it would be possible to combine the indi-
vidual classifications in a basic ensemble method. For example,
by allocating each point to the class associated with the most
frequently allocated label, and making a random class alloca-
tion for tied cases, yielded an estimate of 40.40% forest cover.
Both of these estimates lie within the 35.36%—45.82% range an-
ticipated and show that the set of imperfect labels derived by the
multiple volunteers can be used to derive a credible estimate of
forest extent. Here, however, attention is focused especially on
the potential of the latent class modelling approach.

Using the set of four class labels for each point derived by
the volunteers (A-D) and the map label (E), a latent class model
based on (1) and (2) yielded a model that provided a good fit to
the observed data; L2 = 22.73 (p = 0.20). However, as vol-
unteers might be expected to find some of the labelling tasks
equally challenging with some locations obviously forest (or
non-forest) while a set of others with some evidence of tree
cover more problematic (see Fig. 3) it may be expected that
the conditional independence assumption does not hold. The
levels of inter-rater agreement observed (Table I) also suggest
that some degree of dependence may exist between some of the
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TABLE 11
RESULTS OF TEST OF CONDITIONAL INDEPENDENCE ASSUMPTION

Variables Expected Observed

compared log odds log odds z
A-B 1.03 2.22 2.52
A-C 2.47 2.47 -0.00
A-D 1.04 2.62 3.55
A-E 1.29 1.12 -0.36
B-C 1.99 1.99 -0.00
B-D 0.89 1.41 1.17
B-E 1.02 0.70 -0.74
C-D 2.09 2.09 0.00
C-E 2.58 2.58 -0.00
D-E 1.12 0.68 -1.01

sources. A test of assumption of conditional independence in-
dicated that for some of the variables a degree of conditional
dependence existed (Table II). Based on Table II the latent class
model was adjusted such that:

ABCDE|F _ _ABD|F_C|F_E|F

abedef = Tandi  Tef Tef 4)
In (4) the three variables indicated as being conditionally de-
pendent (A, B and D) are those with the largest values of the z
score in Table II. The model defined by (1) with (4) was applied
to the data. This model appeared to fit the data slightly more
closely than the original model that was based on the assump-
tion of conditional independence; L? = 14.20 (p = 0.28). The
parameters of this model were used to derive estimates of the
accuracy of the Globcover map from the non-site and site spe-
cific perspectives that are widely used in the validation of maps
derived by remote sensing.

From a non-site specific perspective attention is focused on
the estimate of forest extent and so the magnitude of the Wf of
the fitted model. The model based on (1) and (4) gave an es-
timate of 44.44% forest cover. Rigorous evaluation of this es-
timate is difficult in the absence of a true gold-standard refer-
ence data but it is very close to the value derived from Glob-
cover map, especially after allowance for the known misclassi-
fication errors in the map. Indeed the model based estimate lay
between the two values derived, after rescaling for misclassifi-
cation errors, from conventional accuracy assessments: 35.36%
and 45.82%. The latent class model, therefore, appears able to
provide a credible estimate of the extent of forest cover in the
region.

From a site specific perspective, the conditional probabilities
of the latent class model provided estimates of the producer’s
accuracy for the forest and non-forest classes. The estimates for
the forest and non-forest class were 81.22% and 74.55% respec-
tively. Both are very close to the estimates derived from the con-
fusion matrix produced in its formal validation [25] which were
84.04% and 74.89% for forest and non-forest respectively.

The results indicate that imperfect data arising from volun-
teered sources have the potential to provide useful informa-
tion on map properties and accuracy. Specifically, the extent of
forest (a non-site specific measure of accuracy) was estimated to
within 1.38% and 9.08% of the rescaled estimates derived from
the validation analysis provided by [30] and [25] respectively.
The producers’ accuracy of the forest and non-forest classes
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were also estimated to within 2.82% and 0.34% of the values de-
rived from the formal validation. It should also be noted that the
volunteered data have other advantages. For example, the sys-
tematic sample design used ensures that data are derived over a
widespread area and could be used to aid map production (e.g.
by provision of prior information on class abundance) and the
nature of the design is suitable for many map accuracy and com-
parison objectives [32]. The latent class model parameters could
also be used to indicate the quality of the labels derived from the
different volunteers.

There are, however, many issues to explore with the use of la-
tent class analysis in remote sensing applications. Further work
should seek to explore issues connected with the number of vol-
unteers and their level of expertise as well as concerns linked
to incomplete and uncertain labeling, especially for multi-class
classifications. These are important issues in relation to the work
reported as only a small number of volunteers were used and
the uncertainties with the data (e.g. due to the time gap between
map production and field visits and common problems such as
those associated with the definition of the forest class [40]).The
potential to also steer volunteer activity, forming active citizen
sensors, should also be explored. It should also be stressed that
while credible estimates have been derived the method should
be used with caution and is, not yet, viewed as an alternative to
standard good practice methods. Many of these issues are the
topic of a recently launched European Union funded COST Ac-
tion on ‘Mapping and the Citizen Sensor’ (TD1202—readers
interested in participating or following its activities are encour-
aged to see www.cost.eu/domains_actions/ict/Actions/TD1202
for further details).

V. CONCLUSIONS

Volunteers have considerable potential to contribute con-
structively to land cover mapping programmes. This potential
has grown rapidly over recent years, fostered by recent ad-
vances in geoinformation technologies and now offers great
opportunities to enhance studies of the Earth’s environment if
it can be carefully used. Although the quality of volunteered
data is often a concern it was shown that realistic estimates of
forest cover and of map accuracy could be derived from easy to
acquire and inexpensive, if not free, volunteered information.

This paper has confirmed the potential value of internet-based
collaborative activities such as the Degrees of Confluence
project for the provision of useful, spatially extensive, data
to aid map evaluation. Moreover, it has shown that additional
data from multiple interpreters can provide class labels for
the data that can be used for validation purposes. Although
these multiple classifications may be of unknown and uncertain
quality they may be used together to aid the derivation of
credible estimates of map accuracy. A latent class analysis may
be applied to the sets of imperfect data to derive estimates of
map accuracy. Although there were only relatively low levels
of inter-rater agreement and each volunteer’s labels showed
poor agreement with the Globcover map, it was evident that the
estimate of forest cover derived from the latent class analysis
was close to that depicted in the map and accuracy estimates
close to those derived from authoritative methods.
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