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Abstract—Accurately estimating global soil heterotrophic 

respiration (RH) is crucial in evaluating whether terrestrial 

ecosystems act as carbon sources or sinks. However, current global 

RH estimates were significantly restricted by the scarcity of in-situ 

RH observations and their biased distribution, leading to 

considerable uncertainties. This study developed a novel data-

driven model of global RH based on the environmentally similar 

zones of global in-situ RH sites with daily and subdaily 

observations and remote sensing data with high spatial and 

temporal resolutions. Compared with the unified modelling 

method using all available data as the training samples of data-

driven models, our zone modelling method was more accurate. 

The relationship between observed and predicted RH was 

improved, with the R2 value increasing from 0.41 to 0.53 and the 

RMSE decreasing from 0.87 to 0.78 g C m-2 d-1. Our study 

effectively improved the problem that the data-driven models were 

highly affected by the spatial representativeness of in-situ RH 

observations and achieved a significantly improved accuracy for 

global RH estimation entirely based on remote sensing data. Future 

researches focusing on improving the sparse sampling of in-situ 

RH sites and the availability of remote sensing data will help to 

reduce the uncertainties of our study. 

 
Index Terms—soil heterotrophic respiration, global estimates, 

remote sensing data. 

 

I. INTRODUCTION 

OIL heterotrophic respiration (RH) represents the release 

of CO2 from the decomposition of soil organic carbon 

(SOC) by soil microorganisms and fauna [1]. Global 

total RH is approximately four times higher than CO2 emissions 

from fossil fuel combustion [2], and accounts for 54–63% of 

global total soil respiration (RS) [3]. Therefore, RH plays an 

important role in regulating the global carbon cycle and is 

potentially sensitive to future climate change [4]. However, 

significant uncertainties exist in the estimation of global RH.  

Numerous field experiments on RH have been conducted 

during recent decades to investigate its spatiotemporal variations 

and responses to environmental factors [5-7]. To establish a 
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reliable basis for regional or global scientific research on soil 

carbon flux, great efforts have been made to integrate past RH 

measurements into standardized databases, such as the global 

Soil Respiration Database (SRDB) [8, 9]. Based on the SRDB, a 

dataset containing daily and monthly RH observations was 

compiled (DGRsD) [10, 11].  In addition, COSORE, which is a 

continuous, long-term dataset of soil-atmosphere greenhouse gas 

fluxes from globally distributed sites, offers half-hourly and 

hourly observations of RH [12]. However, these in-situ RH data 

available from global datasets are not explicitly designed to 

provide uniform and consistent observations of the global carbon 

flux. They only represent a sparse and spatially biased sample of 

global terrestrial ecosystems, particularly tropical ones [13].   

Empirical statistical modelling based on in-situ observations 

can be employed to estimate global RH. For example, Bond-

Lamberty, et al. [14] and Subke, et al. [15] obtained empirical 

relationships between RS and RH through analyses of in-situ 

observations. These empirical relationships, alongside spatially 

explicit RS information, have been utilized to drive global 

estimates of RH [16-18]. Nevertheless, it’s important to note 

that the estimation results of RS, the empirical relationship 

between RH and RS, and the various RH measurements methods 

all contributed to sources of uncertainty. Unlike the 

aforementioned method, machine learning techniques, which 

are fully data-adaptive and do not require prior assumptions 

about functional relationships, can capture and establish 

nonlinear relationships through extensive model training. They 

enable the upscaling of location- and time-constrained 

measurements to spatially and temporally explicit datasets 

[19]and have been gradually applied to estimate global carbon 

fluxes [20, 21]. Random Forest (RF) is the most prevalent 

machine learning method and has been used to estimate global 

RH [22-24].  

Although the advantages are obvious, there were still some 

limitations in these data-driven global RH estimates. Firstly, 

they suffered from low spatial and temporal resolution. On the 

temporal scale, all datasets were derived from annual RH 

observations, ignoring the inter-annual variations of RH. 
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Concerning spatial resolution, previous studies have 

predominantly utilized meteorological data with coarse spatial 

resolution as model input parameters, resulting in global RH 

estimates with coarse spatial resolution. However, advances in 

Earth observation technology provide an opportunity to 

overcome the spatiotemporal resolution limitations of global RH 

estimates [25]. In particular, the increasing availability of 

satellite remote sensing data (i.e., temperature-, water- and 

vegetation-related datasets) with various spatial and temporal 

scales [26-28] make it possible to estimate global RH at finer 

spatial and temporal scales. Secondly, current research 

primarily concentrated on modelling RH at the global scale, 

which did not account for the high spatial heterogeneity in RH 

and the non-uniform distribution of in-situ observation sites. 

Several recent studies demonstrated that spatiotemporal 

variations in RH were comprehensively affected by various 

environmental factors [29, 30]. Thus, establishing RH models 

based on environmentally similar zones may be a more feasible 

method for estimating global RH. A similar study has been 

conducted to estimate global RS based on specific models 

established for eight climate zones [11]. 

This study developed a new method for estimating global RH 

based on environmentally similar zones of all global available 

RH observation records at subdaily and daily time scale. This 

method used remote sensing data with high spatial and temporal 

resolutions to establish a data-driven RH model for each zone. 

Given the similar environmental factors within each zone, we 

expect these zonal models to provide greater accuracy than 

conventional global RH models based on undivided observation 

data. 

II. MATERIALS 

A. Construction of an in-situ RH database 

Two available RH databases, DGRsD and COSORE, were 

selected to generate an 8-day temporal resolution in-situ RH 

observation database. To ensure data quality and eliminate 

mismatches between in-situ RH data and satellite remote 

sensing data, we developed a set of criteria for constructing the 

in-situ database: (1) only observations obtained using infrared 

gas analyzer or gas chromatography methods were selected; (2) 

measurements obtained after human intervention, such as 

fertilization or temperature control, were excluded [10]; (3) 

low-quality and duplicated data were deleted; (4) the Moderate 

Resolution Imaging Spectroradiometer (MODIS) used in this 

study has only been officially releasing data since 2000, thus 

only measurements taken after 2000 were retained; and (5) to 

obtain the in-situ RH observations that match the 8-day temporal 

resolution remote sensing data, the hourly and half-hourly RH 

observations from COSORE, as well as the daily RH 

observations from DGRsD, were averaged within the same 8-

day compositing intervals periods as remote sensing data. In 

addition to RH, the dataset included information such as 

latitude, longitude, observation year, month, cumulative day of 

the year (DOY), temperature, precipitation, and vegetation 

type. Based on the above criteria, we constructed an in-situ RH 

database containing 3654 observations obtained from 167 

stations from 2000 to 2019 (Fig. 1). 

B. Remote sensing data 

We obtained the 1-km MOD11A2 land surface temperature 

(LST) product 

(https://lpdaac.usgs.gov/products/mod11a2v006/), 500-m 

MOD09A1 surface spectral reflectance product 

(https://lpdaac.usgs.gov/products/mod09a1v061/) and 1-km 

MOD12Q1 Land Cover Type (LCT) product 

(https://lpdaac.usgs.gov/products/mcd12q1v006/) from 

available MODIS data at an 8-day temporal resolution from 

2000 to 2020. The normalized difference vegetation index 

(NDVI), enhanced vegetation index (EVI) and land surface 

water index (LSWI) were calculated based on MOD09A1. 

Gross primary production (GPP), the fraction of absorbed 

photosynthetically active radiation (FPAR) and leaf area index 

(LAI) were derived from data from the Global Land Surface 

Satellite (GLASS) at an 8-day/500-m resolution (accessed at 

http://www.bnu-datacenter.com/). Penman-Monteith-Leuning 

Evapotranspiration V2 (PML_V2) products provided 

evapotranspiration (ET) data at an 8-day/500-m resolution [27] 

(freely accessible at 

https://code.earthengine.google.com/?asset=projects/pml_evap

otranspiration/PML/OUTPUT/PML_V2_8day_v014). 

C. Climate and DEM data 

Daily air temperature (TEM) and precipitation (PRE) data at 

a resolution of 0.5° × 0.5° were sourced from the fifth 

generation of European Centre for Medium-Range Weather 

Forecasts (ECMWF) atmospheric reanalysis of the global 

climate, known as ERA5 (downloadable at 

https://cds.climate.copernicus.eu/cdsapp#!/home). The Multi-

Error-Removed Improved-Terrain Digital Elevation Model 

(MERIT DEM) used in this study is a high-accuracy global 

DEM with 3-arc-second resolution. It was generated by 

eliminating major error components from existing DEM 

products [31] and is available at http://hydro.iis.u-

tokyo.ac.jp/~yamadai/MERIT_DEM/. 

 

 

Fig. 1.  Spatial distribution of selected soil heterotrophic respiration in-situ 

measurement sites according to the International Geosphere–Biosphere 

Programme (IGBP) land cover classification: WAT (Wetland), ENF 

(Evergreen Needleleaf Forest), EBF (Evergreen Broadleaf Forest), DBF 

(Deciduous Broadleaf Forest), MF (Mixed Forest), CSH (Closed Shrublands), 

OSH (Open Shrublands), WSA (Woody Savannas), GRA (Grasslands), CRO 

(Croplands), URB (Urban), CVM (Cropland/Natural Vegetation Mosaic) and 

BSV (Barren or Sparsely Vegetated). 
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Ⅲ. METHODS 

A. Environmentally similar zones among global in-situ RH 

1) Selection of environmental factors 

RH represents a comprehensive ecological process 

characterized by high spatial heterogeneity. It is influenced by 

various factors such as temperature, precipitation, land cover 

type, topography and soil properties [29]. Comprehensively 

considering variable representativeness and data availability, 

four categories of environmental factors (climate, vegetation, 

topography, soil property) were selected to assign the global RH 

sites to environmentally similar zones. The climate factors were 

multi-year averaged TEM and PRE, vegetation factors were 

multi-year averaged NDVI and growing season LSWI, 

topography was represented by DEM and soil property was 

represented by SOC.  

2) Environmentally similar zones based on k-means clustering 

The selected six environmental factors were acquired for 

each site during the period 2000–2020 based on their latitude 

and longitude. We used multiyear-averaged variables (2000–

2020) for the following analysis. To mitigate the impacts of 

covariance and differing scales among these environmental 

factors, principal component transformation and normalization 

were employed. The initial first four principal components 

effectively accounted for over 80% of the information present 

in the original data and were subsequently utilized in place of 

the original six factors.  

k-means clustering was applied to assign global in-situ RH-

measurement sites to different environmentally similar zones 

based on the pre-processed environmental factors [32]. To 

address issues inherent in the k-means algorithm, such as 

sensitivity to initial cluster centres and limited global search 

ability, the particle swarm optimization (PSO) algorithm was 

used [33]. The appropriate number of zones and the zone results 

were determined through experiments and comparative 

analyses. Subsequently, an analysis of the similarities and 

differences among the various zones was conducted using 

multiple comparisons. Due to the unequal sample size and 

uneven variance in each zone, Tamhane'T2 method was used 

for multiple comparison among different zones. The zoning 

process was conducted using MATLAB, and all analyses were 

performed on IBM SPSS Statistics 20.   

B. RH estimation in each zone 

1) Selection of predictive variables for RH estimation in each 

zone 

Variables related to temperature, moisture and vegetation 

productivity were derived from remote sensing data and 

employed to establish a set of predictor variables that captured 

the temporal and spatial variations in global RH. Temperature 

variables encompassed surface temperatures during both 

daytime (LST_day) and nighttime (LST_night). ET and LSWI 

served as indicators of soil moisture status. Variables associated 

with vegetation productivity included GPP, EVI, FPAR and 

LAI. To gain further insight into the site conditions throughout 

the observation year, we also selected the maximum, minimum 

and mean values of these parameters during the observation 

year as additional predictor variables. 

Related studies have demonstrated that RH exhibits distinct 

seasonal fluctuations [34, 35]. Thus, we used DOY as a 

predictor variable to estimate RH. However, it was observed that 

the DOY variable, when left untreated, exhibited significant 

differences between the first day of the year (DOY = 1) and the 

last (DOY = 365). This disparity introduced errors to the 

modelling because, on DOYs 1 and 365, temperature, moisture, 

and vegetative growth status were similar at each site, leading 

to comparable RH values. For this reason, a sine function was 

employed to transform DOY.  

2) Establishing the data-driven RF model for RH estimation in 

each zone 

The RF algorithm was applied for RH modelling. RF is a 

bagging-integrated machine learning algorithm. It uses decision 

trees as the base learner, with the final output determined by 

majority voting on the classification results of each decision 

tree [36]. The method is algorithmically simple, easy to 

implement, supports parallel processing, and can effectively 

reduce overfitting during the modelling process. In the present 

study, the RF model was trained in MATLAB. To assess the 

performance of the model, the Leave-One-Site-Out Cross-

Validation method was used to ensure that the model was able 

to predict completely unknown locations. This method set data 

from one site at a time for validation while the remaining sites 

are used for training. The two commonly used error metrics, 

root mean square error (RMSE) and coefficient of 

determination (R2) were used for model accuracy evaluation.   

Ⅳ. RESULTS AND DISCUSSIONS 

A. Environmentally similar zones of global RH sites 

Considering the spatial distribution and environmental 

characteristics of the in-situ RH sites, and to ensure a certain 
amount of data in each zone, we conducted several experiments 

that allowed us to divide the global in-situ RH sites into four 

zones based on the enhanced k-means cluster algorithm. The 
numbers of sites in the four zones were 9, 40, 37 and 81, and 

the corresponding number of RH observations were 96, 871, 

1052 and 1635, respectively. Their global spatial distribution 
was shown in Fig. 2. 

 

  

Fig. 2.  Locations of soil heterotrophic respiration in-situ sites according to the 

four environmentally similar zones. 
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The environmental characteristics of each zone were further 

analysed. It was evident that all six environmental factors 

exhibited significant differences across the four zones (Fig. 3). 
Zone 1 was characterized by having the lowest TEM and 

highest DEM, and was predominantly composed of GRA sites 

(Fig. S1a). Zone 2 mainly included GRA and CRO sites (Fig. 
S1b), and was distinguished by having the lowest PRE, LSWI 

and SOC. In Zone 3, there was a predominant presence of MF 

and CRO sites (Fig. S1c), marked by having the highest PRE 
and TEM. Zone 4 had the highest NDVI, LSWI and SOC, and 

consisted mainly of forest sites (ENF, DBF and MF), as 

illustrated in Fig. S1d. 

B. Modeling of RH in different zones 

A separate RH model was constructed for each 

environmentally similar zone. To avoid the impact of inter-

variable collinearity on model performance, Pearson 
coefficients (R) of the correlations between variables were 

calculated. Variables with extremely strong correlations (R > 

0.9) were then removed. The remaining variables were entered 
into the RF model and their importance calculated. Based on 

the ranking of variable importance, we sequentially eliminated 

variables with low importance to determine the final set of 
variables.   

The optimal variable set for each zone was shown in Table Ⅰ. 

Leave-One-Site-Out Cross-Validation for each zone showed 

that our zone modelling method explained 43–66% of the 

observed RH, with RMSEs of 0.66–0.84 g C m-2 d-1 (Fig. 4). 
Importantly, these results were better than those obtained 

through the globally unified modelling method (Fig. S2), in 

which R2 ranged from 0.30 to 0.56 with RMSEs of 0.80–0.91 g 
C m-2 d-1 across zones. The global-scale validation results also 

substantiated that our zone modelling method outperformed the 

global unified modelling method (Fig. S3). These results 
suggested that our zone approach better reflected spatial 

distribution differences and provided global RH estimates with 

superior accuracy and reliability. 

 

 

C. Variable importance analyses for each zone 

The importance of the variables selected for each zone was 

illustrated in Fig. 5. Notably, remote sensing variables such as 
GPP, EVI and LAI, which are known to characterize vegetation 

productivity [37], exhibited high importance in each zone. This 

is expected, as vegetation serves as the organic carbon source 
through fine roots and leaves, providing the main carbon 

substrate for RH [38]. In Zone 1, GPP had the highest 

importance. Previous research has indicated that vegetation-
related variables explain most RH changes in low-temperature 

and high-altitude grasslands [39, 40]. In Zone 2, LSWI_min had 
the highest importance. It has been demonstrated that carbon 

cycling processes in water-limited areas are highly dependent 

on precipitation variability, with which soil water content is 
strongly correlated [41]. Additionally, temperature was 

considered to act in conjunction with soil moisture to influence 

RH, rendering LST_night a variable of high importance in these 
regions [42]. LSWI_mean and LST_night had substantial roles 

in Zone 3, which can be explained by the fact that in humid and 

hot regions, soil temperature and soil water content 
significantly affect the seasonal variation in RH [43]. In Zone 4, 

temperature-related variables (LST_night_mean and 

LST_night) showed the highest significance. This result was 
consistent with previous studies that demonstrated a correlation 

between RH and temperature in temperate forests [44, 45]. 

TABLE Ⅰ 

OPTIMAL INPUT VARIABLES USED TO ESTIMATE SOIL HETEROTROPHIC 

RESPIRATION IN EACH ZONE. 

Zone 
Number of 

variables 
Variables 

1 7 
LST_day_max, LSWI, LSWI_min, ET_max, 

GPP, EVI, DOY 

2 7 
LST_day, LST_night, LSWI, LSWI_min, 

EVI, EVI_max, DOY 

3 9 

LST_day_max, LST_night, LSWI_mean, ET, 

GPP_max, EVI_max, EVI_mean, NDVI_max, 

LAI 

4 8 

LST_day_mean, LST_night, 

LST_night_mean, LSWI, ET_mean, GPP, 

GPP_min, GPP_mean 

 

 

 

Fig. 3.  Comparisons of the six environmental factors across the four zones of 

similarity: (a) NDVI, (b) LSWI, (c) SOC, (d) DEM, (e) PRE and (f) TEM. 
 

 

Fig. 4.  Comparisons of observed soil heterotrophic respiration (RH) and 

predicted RH by the zone modelling method for Zones 1–4 (a-d). 
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D. Comparison with Previous Studies 

Compared with previous studies on estimating global RH, the 

zone model employed in this study had notable advantages. The 
utilization of remote sensing products with a spatial resolution 

of 500-m or 1-km allowed land surface information to be 

expressed at a finer resolution than that of previous studies, 
which have been based on 0.5° × 0.5° meteorological data [16-

18, 22-24]. Temporally, most current global RH estimates have 

used annual RH observations for model construction and 
validation [16-18, 22-24]. However, more frequent 

observations are critical for understanding sub-annual RH 
variability and the distribution of extremes at temporal scales 

[46].  

Methodologically, we adopted a partitioned modelling 

approach based on environmental similarity partitioning. 

Unlike previous data-driven RH estimations that assumed a 
globally uniform relationship between RH and influencing 

factors [16-18, 22-24], we developed distinct RF model for each 

environmentally similar zone. This modelling approach 
effectively addressed the issue of data-driven models being 

strongly influenced by the spatial representation of the in-situ 

sites and achieved a model efficiency of 53% (Fig. S3a). 
Moreover, in comparison with previous studies employing Ten-

Fold or Five-Fold Cross-Validation methods for validation [23, 

24], this study adopted the Leave-One-Site-Out Cross-
Validation method. This validation method enhanced the 

reliability of our model by ensuring that data from the same site 

were not simultaneously used for both training and validation. 
Yao, et al. [22] also utilized the Leave-One-Site-Out Cross-

Validation for validation, but their achieved R2 of 0.38 was 

notably lower than that of our study. Our estimation method 
contributed to a more accurate representation of global RH.  

E. Uncertainties 

There were some uncertainties in this study. Firstly, field RH 
measurements are inadequately sampled in both time and space, 

which hampers the ability to upscale RH data from regional to 

global scales. Distinguishing RH from RS remains challenging 
with current observational methods [47]. Thus, most current 

studies on RS do not consider RH separately, further 

contributing to the scarcity of global-scale RH observations [9]. 
In Zone 1, only 96 observations from 9 in-situ sites were 

utilized for modelling, and this small sample size may introduce 

bias to the RH estimation [10]. Moreover, in-situ RH sites lack 

the capability to provide long-term and continuous observations 

unlike eddy flux network, such that the understanding of precise 

rates of change in RH over various timescales remains limited. 
RH observations used for modelling in this study were 

temporally unevenly distributed, with more observations 

derived from the warm periods (Figure S4). Meanwhile, within 
a given region, the controlling factors of RH may vary 

seasonally [48], but this variability was not considered in this 

study. Therefore, there is a strong need for datasets with more 
observations in both time and space to provide a more detailed 

description of the spatial and temporal variability of RH and 

facilitate better training of data-driven models. 

Secondly, the reliability of the estimates made in this study 

was influenced to some extent by the quality of the remote 
sensing data used. It is crucial to note that remote sensing 

products such as MODIS and PML (used to obtain EVI, LSWI 

and ET) are limited by factors such as weather and the sensors 
and inversion models used [27], and they may not exhibit 

complete continuity in both time and space. These 

discontinuities may result in the true state of the surface not 
being fully captured when characterizing it with remote sensing 

products. Based on the constructed in-situ RH observation 

database, temperature-related variables inverted from remote 
sensing data were found to be significantly correlated with 

TEM in each zone (Table SⅠ). Similarly, LSWI, which was used 

to characterize soil water content in this study, was significantly 
correlated with PRE across four zones (Table SⅠ). However, it's 

noteworthy that their correlation coefficient was relatively low, 

suggesting that remote sensing data still has some uncertainty 
in capturing surface water conditions. 

V. CONCLUSION 

This study developed a novel data-driven method for 

estimating global RH. It was based on grouping worldwide in-

situ RH sites into four environmentally similar zones using an 
enhanced k-means clustering algorithm. In each zone, we 

established an RF model to estimate 8-day RH based entirely on 
remote sensing variables. The zone modelling method 

significantly improved the accuracy of RH predictions at both 

global and zonal scales, with less bias than that of the global 
unified modelling. It is now possible to accurately estimate 

global RH at high spatial and temporal resolutions. Additionally, 

we expect that our zone modeling method to inspire other in-
situ observations-based flux modelling efforts. 
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