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Abstract—In this work we present cutting-edge machine learn-
ing based techniques for the detection and reconstruction of
meteors and space debris in the Mini-EUSO experiment, a
detector installed on board of the International Space Station
(ISS), and pointing towards the Earth. We base our approach on
a recent technique, the Stack-CNN, originally developed as an
online trigger in a orbiting remediation system to detect space
debris. Our proposed method, the Refined Stack-CNN (R-Stack-
CNN), makes the STACK-CNN more robust thanks to a Random
Forest (RF) that learns the temporal development of these events
in the camera. We prove the flexibility of our method by showing
that it is sensitive to any space object that moves linearly in the
field of view. First, we search small space debris, never observed
by Mini-EUSO. Due to the limiting statistics, also in this case
no debris were found. However, since meteors produce signals
similar to space debris but they are much more frequent, the
R-Stack-CNN is adapted to identify such events while avoiding
the numerous false positives of the Stack-CNN. Results from real
data show that the R-Stack-CNN is able to find more meteors
than a classical thresholding method and a new method of two
neural networks. We also show that the method is also able
to accurately reconstruct speed and direction of meteors with

simulated data.

Index Terms—Neural network applications, Space technology

I. INTRODUCTION

How safe is the space environment around the Earth?

This is an important question that is worrying many space

agencies and scientists in recent years. The exploration and

utilization of Earth’s orbit are no longer confined to the realms

of governmental space agencies. The rapid growth of the

commercial space sector has led to a new era of innovation

and opportunity, with private companies launching satellites

for telecommunications, Earth and space observation, and

navigation, among other purposes.

Considering this evolving landscape, numerous questions and

challenges emerge, demanding careful consideration and col-

laborative action. At the forefront is the pressing need for

effective space traffic management. With an ever-increasing

number of satellites, spacecraft, and space debris sharing the
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same orbital pathways, the risk of collisions and congestion

poses a significant threat to the sustainability and safety of

space activities.

In this paper we consider the problem of the detection of

small Space Debris (SD) [1], i.e. parts of defunct satellites

and rockets in Earth orbit or re-entering the atmosphere. Debris

are generated by events of fragmentation, including collisions,

explosive break-ups, wear and tear, which generate entire

populations that stagnate around the Earth. Because of their

high speed, they pose a threat to functioning satellites in orbit,

requiring them to perform dodging maneuvers.

According to ESA’s 2023 space environment report [2], Space

Surveillance Networks are tracking and maintaining in their

catalogue about 34810 debris but the vast majority of objects

still remain unidentified. Statistical models by ESA estimate

36500 space debris objects greater than 10 cm, 1 million

space debris objects between 1 cm to 10 cm and 130 million

space debris objects between 1 mm to 1 cm. In order to

avoid collisions with spacecrafts, unidentified debris should

be detected, tracked to estimate their trajectory, and possibly

removed from their orbit.

In this paper, we propose an new strategy for the detection and

tracking of SD around 10 cm-size, named Refined Stack-CNN

(R-Stack-CNN), that stands for Refined Stacking Method and

Convolutional Neural Network. This technique is based on the

recent technique Stack-CNN [3], developed to trigger SD on

board of space telescopes. Although the original method was

effective and higher performing in simulated data, there were

some challenges to be addressed. For example the method was

not applied to real data, but only to simple simulated data. In

this work we apply the Stack-CNN to real data, and we notice

that there are many false positives events coming from highly

variable background, causing a lack of reliability. To address

this issue, we apply the R-Stack-CNN to the offline analysis

of simulated and real data, showing its improvements in both

cases.

Then we also demonstrate how this method can be adapted

for the offline data analysis of meteors as they share similar

properties as SD (similar magnitude and speed), leading to the

R-Stack-CNN outperforming standard techniques and discov-

ering new meteors and new events never found before.

The data come from the experiment Mini-EUSO, a telescope

on board of the International Space Station (ISS) since August

27, 2019. The instrument observes Earth in the UV range

(290 - 430 nm) from a UV-transparent window in the Russian

Zvezda module, aiming at the same scientific objectives of

JEM-EUSO, among which are meteors and space debris.

Moreover, given that Mini-EUSO is co-moving with the ISS,

the observed background is not static and extremely variable,

with light emissions coming from cities, clouds and moon

reflections, making the detection of SD and meteors very

challenging.

This is the first work that analyzes long sessions of Mini-

EUSO data to find SD and meteors with the specific method-

ology proposed by the R-Stack-CNN.

The problem of detecting, tracking and possibly even removing

space debris of size 1 cm to 10 cm has already been studied

in the context of JEM-EUSO collaboration [4], a future space-

based detector flying attached to the ISS at an altitude of ∼
400 km or on a free-flyer in low orbit (∼ 500 km) looking

downwards at Earth with a wide Field of View (FoV, ± 20-30°

in the near-UV spectrum, 300 - 400 nm). The main operational

procedure consists of online detection and tracking by the

telescope, followed by the debris removal with laser ablation

(see [5] for further information).

While the Stack-CNN was proposed to the online detection

of SD in a future space detector, as a method that should

be fast, accurate and with low memory, the R-Stack-CNN

is an offline version of it, aiming to search SD already in

Mini-EUSO data, making the method more robust to false

positives and false negatives. The main difference of the R-

Stack-CNN is the development of a Random Forest (RF) to

distinguish the light-curves of the interested objects, e.g. space

debris or meteors, from other light sources that could be

triggered by the Stack-CNN, such as cities or aircraft. The

light-curve of an object refers to the variation in its brightness

over time as observed from the detector. Moreover, the shape

of a light-curve can provide valuable information about the

object’s properties, such as its rotation rate, variability, and

physical characteristics. Since different objects, like debris and

meteors, emit light in different ways, they will have different

light-curves. The Stack-CNN method does not consider the

development of the light over the time, but only the the

object in a single frame (or more frames in a stacked image

as described in the following sections), hence it loses an

important feature to identify SD. To this aim, we propose a

random forest able to distinguish light-curves of SD or meteors

from that ones of other events. It turns out that the Stack-

CNN assembled with the RF makes the method more robust,

excluding many events that are triggered by the Stack-CNN

but that are not debris-like events. We present all the details of

the random forest, from the training strategy to the evaluations,

providing also an ablation study to select the best hyper-

parameters of the R-Stack-CNN. Finally we show results in

terms of performances and computational time and compare

the R-Stack-CNN with the baseline Stack-CNN and a standard

threshold-based algorithm.

In summary, here we list our contributions:

• we propose the Refined Stack-CNN, an improved version

of the Stack-CNN, aimed to work as an offline data

analysis to detect moving space objects like space debris

and meteor.

• we apply both the Stack-CNN and the R-Stack-CNN

to search new events of space debris and meteors in

simulated data and Mini-EUSO data.

• we demonstrate that the R-Stack-CNN is more robust

against false positives, preserving high performances es-

pecially for the detection of faint events and finding new

meteors events not found before.

The content of this paper is structured as follows. Chapter

II gives details about similar works from which we took

inspiration and highlights the advantages of our approach.

Chapter III and IV are respectively about the Mini-EUSO

detector characteristics and the dataset we used to validate

our method. In Chapter V we explain our method and in
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a) b)

c) d)

Fig. 1. Panel a) displays an example of meteor track detected on Mini-EUSO focal surface. X and Y indicate the pixel coordinates and the color scale
indicates the photon counts detected by each pixel in D3 mode rescaled to D1 mode. Panel b) displays the Mini-EUSO detector facing its front lens during
pre-launch tests. Panel c) displays the Focal Surface of Mini-EUSO which is composed of 36 MAPMTS, each of them equipped with 64 photo-detecting
pixels. Panel d) displays Mini-EUSO detector mounted on the UV transparent window of the ISS Zvezda module (see text for details, Figure adapted from
[6], [7]).

Chapter VI we evaluate the performance on both real data

and simulated data.

Finally, we conclude our paper with a discussion section to

highlight possible and future improvements of our work and

a summary of the results.

II. RELATED WORK

In recent years many space agencies have been address-

ing the problem of space debris removal by means of new

techniques. For instance, in the work of A. Ruggiero et al.

[8], a platform using electric propulsion is proposed. Another

method for larger space debris involves the use of adhesion

properties to capture debris [9]. To the authors’ knowledge,

there is no official technique for small debris removal. This is

due to their small reflective surface and low albedo, reaching

SNR of ∼ 1, that makes the signal related to these objects

very faint and difficult to track.

The JEM-EUSO project [4] aims to detect, track and remove

these objects by using an online detection and tracking by the

telescope, followed by the debris removal with laser ablation

[5]. For online detection the Stack-CNN is proposed in [3] as a

trigger system to detect faint debris. In this paper we propose

the R-Stack-CNN as an offline version to analyze data of the

Mini-EUSO detector to search for debris and meteors.

The detection of debris and more generally of space objects

has been studied for a long time through standard and ad-

vanced techniques. For example, in [10], the authors presented

an adaptive algorithm based on maximum likelihood ratio

to reconstruct paths and positions of space objects. Another

solution is to use three-dimensional filter theory [11] to match

the possible trajectories of debris with known velocity and

direction. A more feasible algorithm was proposed by Barniv

and Yair [12] with a dynamic programming approach. Space

debris are usually detected using ground-based telescopes

pointed at the sky. Depending on exposure mode and times,

debris can be seen as streak-like objects superimposed on

a static background consinsting of stars, or as point-like

objects on a moving background. Given this non-trivial setup,

traditional algorithms like the ones presented before might

not be complex and powerful enough, although it is worth

noting that they have the advantage of not requiring many

computational resources.

In order to increase the performance, traditional machine

learning techniques and more recent deep learning algorithms

have also been investigated. Many recent techniques are based

on this new paradigm with many applications on both meteors

and space debris. Regarding debris detection, in [13], space

debris are detected in a low SNR configuration and with

high probability, using feature learning to extract the candidate

regions and then classify the space debris. Another work [14]

shows how machine learning can also be used to model the

orbital prediction errors of space debris, thus correcting orbital

prediction results. In Hui Li’s paper [15], noisy labels in space
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debris detection are mitigated using a new label-noise learning

paradigm comprised of the mutual rectification of the two

networks. This approach is shown to surpass previous state-

of-the-art methods. Considering machine learning applications

for meteors, an example is [16], where a feed forward neural

network denoising method is applied to near-earth-asteroids

data obtained from the Goldstone Solar System Radar. A

similar work is [17], where a deep learning method of object

detection, YOLOv5, is improved via an attention mechanism

able to detect small boulders from planetary images.

These previously cited algorithms have the advantage of being

extremely powerful, but this comes also with a steep increase

of the computational resources required, both during training

and testing. On the contrary, given that our algorithm should

be implemented as an online trigger in a Field Programmable

Gate Arrays (FPGA), only shallow architectures (low pa-

rameters required) can be used. Thus, in [3], a stacking

procedure similar to [18] and [19] is enhanced by a shallow

Convolutional Neural Network (CNN) classifying right and

wrong combinations of speed and direction of the moving

object. CNNs are a specific type of neural networks, mostly

used in computer vision tasks, such as image classification.

The advantage with respect to classical methods is that image

features are learnt implicitly during training instead of being

hard-engineered by an human, thus increasing the overall per-

formance (more details will be given in the Method section).

One of the main challenges that these new methods have

to address is the application to real data, since most of the

works focus on simulated data, not considering many problems

that could arrive from real data, such as pixels with outliers,

weird light sources and variable background. In this paper

we are the first presenting a technique that has worked with

real data for a total of ∼ 160 min of acquisition time. The

data come from Mini-EUSO experiment on board of the ISS.

Other experiments share a similar configuration with extremely

variable background. An example is the orbital detector TUS

(Tracking Ultraviolet Setup), onboard the Lomonosov Satellite

[20], which showed promising results in meteor detection from

space images. In parallel to this work, a new approach using a

CNN and a fully-connected network [21] is being investigated

to find new meteors in some sessions of the Mini-EUSO

data. Their approach still implements a CNN to select meteor

images, and then a fully connected layer to classify pixels of

such image containing meteor events. While they use real data

to train the network we base our method only on simulated

data and then show the effectiveness on real data. Besides this,

another difference is that the R-Stack-CNN finds automatically

meteor pixels through the Stack-CNN classification (image

classification) and then through a Random Forest (light-curve

classification). We show a comparison in terms of new meteors

found by both the methods in the appendix.

III. THE MINI-EUSO DETECTOR AND ITS ACQUISITION

MODES

The Mini-EUSO focal surface consists of 36 Multi-Anode

Photomultiplier Tubes (MAPMTs) where each MAPMT has

8 × 8 pixels resulting in a total of 2304 channels which can

detect individual photon (see panel c) of Fig 1). Given that the

optical system is made of two Fresnel lenses of 25 cm each

(see panel b) of Fig 1) with a FoV of 44° × 44°, each one of

these pixels corresponds to a projected spatial resolution on

Earth of ∼ 6.3 km, and ∼ 4.7 km at 100 km height where

typically the meteor tracks develop in atmosphere. Mini-EUSO

operates on three different data acquisition time scales (D1,

D2 and D3), with different exposure times (2.5 µs, 320 µs,

40.96 ms) making it capable of addressing events of varying

duration. The D3 time scale is the one sensitive to meteor

and space debris events. Along the paper we will call Gate

Time Units (GTUs) the acquisition time scales. As Mini-

EUSO detects typically ∼1 photon count per GTU in D1

mode, thanks to its extremely high photon sensitivity, very

often we will renormalize the photon counts detected in D3

mode to the D1 time scale by dividing them by 128×128 time

which corresponds to the ratio between the two time frames.

If not differently mentioned later on, the D3 GTU will be

referred to as the nominal GTU within this paper. Panel a) of

Fig. 1 shows an example of a Mini-EUSO meteor observation.

Other events and details regarding the instrument can be found

in [6]. In this framework the need to have a fast trigger system

to find debris and possibly infer its direction and speed is

crucial to activate the further operations in order to track and

then deorbit the fragment.

IV. THE PHYSICS OF SPACE DEBRIS AND SIMILAR EVENTS

DETECTABLE IN MINI-EUSO

Space debris do not emit light by themselves which makes

them more challenging to detect. The phenomenon through

which a sensor can detect them is known as albedo: the light

coming from the Sun (or Moon) hits the debris and is reflected,

making the object illuminated. Events that look very similar

to SD are the meteors that are visible in the Mini-EUSO data

as luminous tracks crossing the field of view. Here we give a

brief description of these events.

A. Twilight Configuration

Since the telescope is taking data only during night sessions

(period of the ISS orbit spent behind the earth’s shadow), the

optimal configuration is at twilight, when the space debris

could still reflect sunlight and Mini-EUSO is still taking data

(before sunrise or after sunset), see Fig. 2(a).

In over 37 Mini-EUSO sessions between October 2019 and

August 2021 (∼ 141h 12m 15s) only ∼ 1h 6m 22s of data

(0.78 %) correspond to this configuration. This is due to the

fact that, since the telescope doesn’t have a baffle to avoid

sunlight and it is pointing nadir, the ISS is directly illuminated

during the twilight situations, increasing background and com-

promising the possibility to test this approach. The observation

of space debris would be possible for Mini-EUSO if it would

measure in the rare conditions in which the ISS has a roll

angle of 90◦ or 180◦ opposite to the Sun. In those situations

the ISS itself would shield Mini-EUSO from direct light.

In addition to the above considerations and sticking to the

nominal ISS orbiting condition, Mini-EUSO has a protection

mechanism which reduces the gain of MAPMTs or turn them
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(a)

Twilight Background Distribution

Background [D1 Counts]

E
v
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(b)

Fig. 2. Figure on the left (a) shows the observation principle of space debris using albedo reflection from the Sun: reflected UV light is shown as blue-violet
wave. As can be seen, the detector itself is illuminated, causing an high background, visible on the right distribution (b) where the background is estimated
as the median of the data file

off to prevent damage to them from the intense sun light.

In this condition the pixels are not sensitive to the standard

light levels. This procedure further decreases the real available

dataset at twilight, which becomes just the 0.1 % of the 37

Mini-EUSO sessions. In addition, the background distribution

(median of data files) as visible in Fig. 2b that roughly only

half of data files have background < 5 photon counts / D1

GTU, thus significantly reducing the SNR and consequently

the possibility of identifying a debris.

B. Full Moon Albedo

An alternative albedo configuration could be Full Moon

reflection. This setup would have the advantage of an increased

statistics since it concerns several entire Mini-EUSO sessions.

On the other hand, the moon light intensity increases signif-

icantly the atmospheric reflection and light diffusion as well

as the reflection from objects at ground, resulting in a higher

background.

Besides, the apparent magnitude of the Full Moon is larger

(fainter) than the Sun, respectively Mmoon
app = -12.74 and

Msun
app = -26.74. Apparent magnitudes (indicated as M) can

be used to calculate the ratio of light intensities of Sun and

Full Moon using logarithmic properties:

Msun
app −Mmoon

app = −2.5 · log10(
Isun

Imoon

) (1)

As a consequence, the sun light intensity is extremely higher

than the moon light because of the logarithmic scaling.

Isun ∼ 4 · 105Imoon (2)

The reflected light depends on the size (square of the debris

radius r2), the light intensity of the source Isource (Isun or

Imoon) and the distance d from the detector to the debris by

the inverse square law ( 1

d2 ):

Ialbedo ∝ r2

d2
Isource (3)

Thus, an algorithm can detect fewer debris as the distance

grows, until a certain threshold is crossed and no objects can

be detected. In A. Montanaro’s paper [3], the performance of

the Stack-CNN was tested using several distances and radius,

using the Sun as the light source for the albedo in simulated

data. It was shown that debris objects of radius ∼ 4 cm

reflecting sunlight can be detected by the Stack-CNN up to

a maximum distance of d ∼ 100 km with a 100 % efficiency.

A similar threshold can be adapted for moon albedo:

(
r2I

d2
)moon = (

r2I

d2
)sun → (

r2

d2
)moon ∼ 6.4 · 10−8 (4)

In other words this means that a 10 cm-sized space debris

would be detectable up to a maximum distance of ∼ 200 m.

At this altitude, the projected field of view is limited to ±80
m in both x and y directions, which means that the debris

trajectory would need to be extremely close to the ISS.

Therefore, the probability of observing a 10 cm-sized debris

within this distance is roughly of the same order of magnitude

of the probability that the ISS is hit by the debris. ESA’s

models [2] estimate that the corresponding mean time between

impact is ∼ 15,000 years, making this approach not suited for

Mini-EUSO observations.

Thus, the current Mini-EUSO has not shown any observational

usefulness for the detection of space debris because it observes

toward the Earth with high background, but if it were to

observe darker directions in the sky, it would have a much

higher probability of observing smaller and more distant

debris.

Single Image (SNR = 0.9)

pix X

p
ix

Y

Stacked Image (SNR = 2.8)

pix X

p
ix

Y

Fig. 3. SNR comparison between Single Image and Stacked Image using a
simulated meteor of absolute magnitude Mabs = +6
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C. Meteors

Despite the difficulty to test the method to detect space

debris, thanks to the flexibility of our approach, the Stack-

CNN and the R-Stack-CNN can be applied to any object

moving linearly in the field of view of a telescope, such

as space debris, meteors and cosmic rays. Therefore, the

method was applied for meteors detection, as they share

similar properties as space debris (similar magnitude and

speed) but they don’t suffer from low statistics since they do

not require albedo conditions. However, the highly variable

background of Mini-EUSO adversely impacts its performance

generating a lot of false positives. Since the telescope is

pointed downwards the Earth, the observations contain the

apparent motion of cities and clouds, hence distinguishing the

meteors become challenging. Consequently, the R-Stack-CNN

method is introduced to address such difficulties in order to

be more efficient and more robust to noise with respect to

the standard stack-CNN and a classical thresholding method,

using both real data and meteor simulations.

V. THE REFINED STACK-CNN METHOD

The proposed method for meteor detection and tracking is

an offline version of the Stack-CNN, which is improved by

means of a RF. The R-Stack-CNN is based on the Stack-

CNN, with the additional implementation of a random forest

to make the method more robust, and to be used in offline

data analysis of Mini-EUSO experiment. The R-Stack-CNN

is comprised of three main techniques, a stacking procedure

and a convolutional neural network (already presented in the

Stack-CNN) and a final random forest. Here we describe the

main components.

A. Stacking Method

The stacking method is applied to objects, e.g. space debris

or meteor, moving linearly in the field of view of the telescope

with fixed apparent speed ṽ and direction θ. The speed and

direction are apparent as the telescope is affected by the speed

and azimuth of the platform on which is mounted (in case

of Mini-EUSO, the ISS). The method can be described by

two main operations, the shifting and the adding procedures.

Considering n frames, each of them named I , of raw data

depending on pixel position (x, y) and time t, I(x, y; t), t

= {0, ..., n − 1}, the shifting is used to shift pixels in the

opposite direction of the moving object’s trajectory to match

the further positions of the object in the initial position of the

detector. The movement (dx,dy) depends on the time, speed

and direction and it’s used to roll the image back in the starting

position (x0, y0).
In other words, the shifting operation is equivalent to assuming

a constant optical flow with fixed speed and direction (opposite

to the motion of the signal) over all the pixels of the image,

and moving the whole image according to such flow to bring

back the signal to its original starting position. This operation

is repeated n times, where n is the number of frames. In our

case, the n time frames correspond to the D3 GTUs of Mini-

EUSO, the nominal GTUs in this paper. The shift along x-axis

and y-axis, corresponding to the intensity of the flow applied

over each frame, is defined as follow:

{

dx = ṽ · cos(θ) · t
dy = ṽ · sin(θ) · t

(5)

Considering the object starts at the center of the pixel

(x0, y0) and the xy grid is discrete, dx and dy are transformed

into their closest integer value through the int() function (e.g.

dx = 0.4, dy = 1.7 → dx = 0, dy = 2):

Ishift(x, y; t) = I(int(x− dx), int(y − dy); t) (6)

At this point the adding method is used to sum all the shifted

images, to recover the moving signal in its starting position:

Istack(x, y) =
n−1
∑

t=0

Ishift(x, y; t) (7)

The main advantage of using Istack(x, y) is that it enhances

the signal with respect to a single image. The Signal over

Noise Ratio (SNR) is defined as:

SNR =
Signal

σbkg

=
Signal
√
µbkg

(8)

where the signal is meant to be the difference between the

number of counts in a pixel and the average background level

µbkg . If we consider the background to be Poissonian, its

fluctuation (in terms of standard deviation) σbkg is equal to the

square root of the background mean
√
µbkg . The ideal average

background value in the Mini-EUSO dataset is considered to

be 1 photon count / D1 GTU, which corresponds to 128x128

counts / D3 GTU. The D3 counts are then rescaled by a

factor 128x128, to avoid dealing with large numbers. However,

observations also include dynamic background sources such

as cities and cloud reflections, which cause an increase in the

average background value as well as its complexity, because

it no longer can be modelled as Poissonian.

Nevertheless, we chose to consider a Poissonian background

for the SNR estimation for the sake of simplicity. The stacked

image exhibits an enhanced SNR due to the background that

fluctuates between both positive and negative values, while the

signal always remains positive which makes the stacked signal√
n times brighter than the one in the single image:

SNRstack =
Signal · n
√
µbkg · n

=
√
n · SNR (9)

where n is the number of frames corresponding to the

duration of the event that is assumed to emit constant light.

According to the physics of the object this factor could variate.

The denominator scales by a factor of
√
n regardless of the

object’s presence. Therefore, it’s crucial that the number of

frames is as close as possible to the track’s duration, otherwise

the numerator will not scale with a factor of n and there would

be only partial improvement on the SNR. Typical numbers

for n are 20 (0.8192 s, the average meteor duration) and 40

(1.6384 s) for space debris (a longer track since it is assumed

that the debris crosses the entire FoV).
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Fig. 4. R-Stack-CNN algorithm for space debris and meteor detection (Source: [3])

Fig. 3 shows the difference between the stacked image and

the single image for a simulated meteor of Mabs = +6, for

which the intensity of each pixel has been normalized from 0

to 1 for demonstration purpose. The single image is the one

with the maximum signal in the meteor track, whereas the

stacked one has been stacked with the true simulated speed,

direction and duration of NGTU = 13 GTUs. In the single

image the meteor is barely visible and the SNR = 0.9, while in

the stacked image the SNR is increased by a factor of 3.1 (SNR

= 2.8) which is close to
√
13 GTUs ∼ 3.6. Since the (ṽ,θ)

combination for a triggered object is not known, a significant

sample of possible combinations are computed and a classifier

is needed in order to distinguish the right compbinations from

the wrong ones. Here is where the CNN comes into the game.

The network is trained as a binary classifier for Right (1) and

Wrong Combination (0).

B. Convolutional Neural Network

CNNs are a class of artificial neural networks most com-

monly used in Computer Vision (image classification, video

analysis, ...). Their advantage with respect to other algorithms

is that the network is computationally efficient (due to the

convolutional operations involving shared weighted sum with

small kernel size of the filter) and they extract image fea-

tures most relevant to the relative objective, in our case the

classification. The CNN implements filters (or kernels) that

are optimized through automated learning and captures the

spatial dependencies in an image. In the pre-deep learning era

these filters were hard-engineered with human intervention and

difficult to build. The name convolutional neural network is

originated with the design of LeNet-5 [22] by Yann LeCun

in 1998, built for handwritten digit classification and it is the

first architecture to implement backpropagation for automated

learning in a CNN.

Newer architectures developed in the 2000s thanks to the

ImageNet large scale visual recognition challenge (ILSVRC)

and to the usage of GPU during training, which strongly

decreased computing time. ImageNet is a common dataset

on which researchers tested new algorithms and the first

GPU-based CNN to win the competition is AlexNet (2012)

[23], which introduced ReLU activation functions and dropout

layers for regularization. Similar but deeper architectures are

called VGGNets [24], which prove that increasing the number

of layers and parameters can yield an higher performance.

In 2015, Google presented GoogLeNet [25], winning ILSVRC

by introducing the inception module, whose key idea is to

parallelize pooling and convolutional layers.

Then, skip connections between layers were introduced by the

ResNet architecture [26], addressing the gradient vanishing

problem and achieving even higher performance. The concept

was extended by DenseNets [27] with skip connections also

between non-consecutive layers.

In our work, the architecture also needs to be suitable for

an on-board implementation in a space debris remediation
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system. Hence, the CNN must be shallow because an higher

number of parameters would require higher computational

time and expensive resources. The number of total parameters

is 16825, divided across convolutional and fully connected

layers, with ReLU activations in the hidden layers and a

sigmoid function in the output layer. Regarding the training

dataset, a total of 80 space debris were simulated with ESAF

[28], a software that generates point-like moving sources

in the Mini-EUSO framework. The simulated background is

Poissonian with mean value equal to 1 count / D1 GTU. See

[3] for details about the event simulation, training, validation

and the architecture.
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Fig. 5. Example of pre-processed lightcurve on cities observed by Mini-
EUSO: raw lightcurve (on the left) is flattened to values close to 1 by a
mobile median correction (on the right)
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Fig. 6. RF Training Dataset: binary classification of meteor lightcurves with
output 1 (left) and background lightcurves with output 0 (right). The time
range of each lightcurve is a portion of a complete data acquisition file, which
lasts 3200 GTUs.

C. Stack-CNN

The Stack-CNN (see Fig. 4) combines the stacking pro-

cedure and the CNN in a detailed framework. The stacked

combinations and the number of frames are chosen depending

on the physics of the object (space debris and meteor in

this work), making this approach extremely versatile as it

allows to use the neural network trained on space debris

even for meteors, and in principle to anypoint-like object

moving linearly in the detector, e.g. cosmic rays. In this last

example the method could be applied only offline due to the

light-speed of such particles and the requirement to use D1

data. The Stack-CNN is divided in two processing levels. The

former performs a rough track reconstruction, by generating 96

combinations of speed and direction. If the object is detected,

the second level is implemented to fine-tune the reconstruction

and suppresses false positives. For space debris, the first level

stacks 12 GTUs, where the considered directions go from 0° to

345° with steps of 15° while speed ranges from 5 to 11 km/s

with steps of 2 km/s. It is assumed that the reference height

is 370 km, which is below the International Space Station

(∼ 420 km), but still in Low Earth Orbit. The range of the

speed has been chosen depending on the typical order of the

SD orbital speed in Low Earth Orbit, which is about ∼ 7-9

km/s, and to account for the relative motion of the ISS, which

travels at ∼ 7.66 km/s. Then, the trained CNN is applied to

each combination, which is positively classified if the output,

indicated by y, is greater than 50 %. The second level is used

to fine-tune the triggered combination with ± 0.5 km/s and

± 5° steps. The number of stacked GTUs is increased to 40

to exploit the longer movement of a space debris with respect

to a background event. Finally, if the event is still positively

classified by the neural network and the two triggered pixels

overlap in a neighborhood of 2 pixels the space debris event

is triggered.

In our work, the Stack-CNN was adapted to meteors by

modifying stacked frames and speed combinations, according

to the meteor physics. The number of stacked GTUs in the

first and second levels was changed to 8 GTUs (∼ 0.33s)

and 20 GTUs (∼ 0.82s), respectively, because the duration

of the event is shorter compared to space debris. Meteor entry

speed in the atmosphere is usually estimated using a reference

height of 100 km, which is where the light emission starts

[29]. Besides, the speed range is bounded by 11 km/s and

72 km/s [30]. Thus, speed combinations have been chosen

within a range from 10 km/s to 70 km/s with step of 20 km/s.

The fine-tuning steps have also been changed to 5 km/s. The

advantage of using meteor events to test the Stack-CNN is

that, unlike space debris, the light emission phenomenon does

not require any reflection of other light sources, making their

observation more frequent in Mini-EUSO. Besides, the study

of meteors in Mini-EUSO [31] could be useful because meteor

observations are usually performed at visible wavelengths,

while Mini-EUSO, operating in the UV range, could detect

meteors in UV up to Mabs ≥ +5. Another advantage is that

space observations are not affected by weather conditions like

the ground observations and high statistics can be collected in

a short time.

However, the CNN was trained using a simulated Poissonian

background, which is a strong simplification with respect to

real background from Mini-EUSO data. Hence, preprocessing

is needed in order to recreate a configuration as similar as

possible to the one used during the training procedure.

The background map is affected by the passage of the ISS over

cities and clouds. The algorithm suppresses these contributions

thanks to the normalization of each pixel by means of a

moving median. The median is computed for each pixel and

GTU, starting from GTU-4 to GTU+4. Then, the count of each

pixel is divided by this value and the resulting background is

normalized between 0 and 1. This is useful for discarding

slow events (i.e. events that move at the apparent speed of

the detector, which is the same of the ISS, i.e. ∼ 7.7 km/s),

but it doesn’t affect fast objects like meteors or space debris.

An example of a pre-processed background sample is given in

Fig. 5. The threshold of the neural network was also increased

to 90 %, instead of the default value of 50 %, in order to

suppress as many false positives as possible. To improve the

performance and lower the false positive rate coming from
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challenging background conditions and noisy pixels, the stack-

CNN is improved by adding a RF classifier, analyzing meteor

light-curves. We prove in the next chapter how the proposed

method reaches better performance than the baseline Stack-

CNN.

D. Random Forest

The Random Forest is essential for the offline analysis

of Mini-EUSO data to avoid many false positives coming

from moving light sources (e.g. cities, ships, lightning), while

keeping a true positive rate as good as the original Stack-CNN.

An illustration of the random forest used in this paper is in

Fig. 7.

Fig. 7. The random forest, used in the R-Stack-CNN, processing meteor light-
curves. Each decision tree outputs a probability score for the recognition or
not of a meteor, then the scores are randomly averaged across trees.

The classification is binary, i.e. an output of 0 for back-

ground lightcurves and 1 for meteor lightcurves. In astronomy,

a light-curve is a curve describing light intensity of celestial

objects, in a particular frequency band, over a period of time.

In the case of Mini-EUSO, the frequency band is UV, and light

intensity is expressed as photon counts and time as GTUs. In

this case the light-curve can be considered as a time-series

over the pixels illuminated by the signal. The fast movement

of meteors (or space debris) in the field of view generates an

excess of signal counts in pixels hit by the track (see Fig. 6). In

our framework, lightcurves are represented as univariate time

series, i.e. series of time-ordered data of length T. With time

series, features correspond to data values at each time frame,

which means photon counts at every GTU for lightcurves.

We chose the RF for its robustness to limited train data and

for its fast convergence during the train. RFs are an extension

of decision trees, i.e. tree-like structures, where each internal

node represents a decision on a feature, based on which the

tree splits in branches.

RFs [32] minimize the tendency of decision trees to overfit,

by averaging the output on a forest of bagged decision trees,

with low correlation between each other, as they are trained

on randomly extracted subsamples of the original dataset. The

training and validation procedures were done using real data

from an analysis performed on session 11 of Mini-EUSO.

TABLE I
RANDOM FOREST PERFORMANCE ON TEST SET

TP TN FP FN Accuracy F1

140 129 3 5 97.1 % 97.2 %

This session was chosen for the large statistics of detected

meteors. First, a list of 553 events was obtained through the

application of the standard trigger, which will be used as a

baseline for all the results in this paper. The standard trigger

[33] does not implement machine learning techniques, it scans

25 virtual elementary cells, defined as 16 x 16 pixels, searching

for an excess in neighboring pixels lasting 5 consecutive

GTUs. The threshold for each pixel is 3σ above the mean

background µbkg computed at every GTU (µbkg + 3σ). Then,

each event was visually inspected by an expert who verified

if meteors were indeed moving objects hitting many pixels.

Finally, the results consisted of 416 meteors, divided in two

categories, 309 M and 107 M ?. The former class is used

to classify objects with bright and long-duration movements.

On the contrary, short-duration and fainter tracks are usually

grouped in the latter class, labeled as M ? with ’?’ indicating

uncertain meteors. The reason for this distinction is that even

if shorter tracks could come from real meteors, the physics

reconstruction of speed and azimuth would be challenging and

affected by high uncertainty. As for the positive events of the

training dataset (output = 1), only certain meteors M were

chosen, along with the two of the closest and most significant

pixels in the meteor track. The meteor track is affected by

blurring in the neighbouring pixels, as described by the Point

Spread Function (PSF). Hence, the inclusion of lightcurves

from closest pixels allows the correct classification of fainter

events affected by the PSF, while also having the positive

effect of increasing the training set size. Background events

(see Fig. 6) were randomly chosen in the S11 dataset. In this

way, events include both Poissonian fluctuations and cities,

which would have been difficult to simulate. Finally, after

visually inspecting the complete set of light-curves, the size of

the training dataset became 1384, equally distributed between

positives and negatives (692 each). The pre-processing was

limited to a normalization between 0 to 1 of the time series.

Then, the dataset was split between training set Strain (60

%), validation set Sdev for best model evaluation (20 %) and

test set Stest to quantify the performance in unseen data (20

%). Firstly, a validation set was used to tune the RF main

hyperparameters, including the length of the time series, the

number of decision trees and the maximum depth. Then, the

model was trained with Strain + Sdev and tested in Stest using

the F1 metric, defined as the harmonic mean of precision and

recall. The advantage compared to a symmetric metric like

Accuracy is that F1 is used when True Positives (TPs) are

more important than True Negatives (TNs), which means that

an higher F1 tends to minimize False Negatives (FNs). That

makes it more suitable for this application, as it’s crucial that

the meteors found by the Stack-CNN must not be lost by the

RF. The performance on the test set is summarized in Table

I (FPs indicate False Positives). The results are extremely
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TABLE II
R-STACK-CNN ABLATION PERFORMANCE WITH MINI-EUSO DATASET FROM SESSION 6.

Model TP TN FP FN Precision CPU Time

Standard Algorithm 101 (69 M + 32 M?) - 17 - 85.6 % 39 min

Stack-CNN 177 (99 M + 78 M?) - 878 - 16.8 % 65 min

R-Stack-CNN 165 (96 M + 69 M?) 856 22 12 (3 M + 9 M?) 88.2 % 247 min

promising as only an extremely low percentage of meteors

are lost (3.4 %) generating an high F1 score. Besides, most of

the background events are correctly classified (97.7 %) making

the method robust to noise and background fluctuations.

More details about the training and ablation of the Random

Forest along with definitions of used metrics are given in

Appendix A.

TABLE III
R-STACK-CNN PERFORMANCE WITH MINI-EUSO DATASET FROM

SESSION 14

Model TP FP Precision CPU Time

Standard Algorithm 196 100 66.2 % 180 min
R-Stack-CNN 276 119 69.9 % 1138 min

VI. APPLICATIONS OF STACK-CNN AND R-STACK-CNN

TO REAL AND SIMULATED DATA

The R-Stack-CNN method was tested on both real data

acquired by Mini-EUSO and simulated ones to study its

performance in comparison with the original Stack-CNN and

the standard trigger algorithm.

A. Real data: search for space debris and meteors

First, a dataset of 13 files from the Mini-EUSO session 6,

which corresponds to roughly ∼ 28 min, has been used to

quantify the improvement of the R-Stack-CNN with respect

to the Stack-CNN.

Then, the entirety of Mini-EUSO session 14 has been used

to compare the R-Stack-CNN results to the standard trigger.

It is worth noting that because of the protection mechanism

discussed in Chapter IV-A, the real available dataset is roughly

∼ 129 min, corresponding to ∼2×105 frames.

The Stack-CNN (see Table II) was able to find 89 new meteor

candidates than the standard algorithm (32 M + 57 M ?),

while losing only 13 meteors (2 M + 11 M ?) detected by

the standard approach. However, the main problem is that 878

False Positives (FPs) were also triggered, making the final

Precision (eq: 13) very low, 16.8 %. The standard algorithm

had an higher precision (85.6 %) than the Stack-CNN (16.8

%), making it more reliable even if fewer meteors were

triggered. On the other hand, the R-Stack-CNN was able

to find a total of 79 additional meteor candidates than the

standard trigger (30 M + 49 M ?), while losing only 15 events

(3 M + 12 M ?). The final precision was 88.2 %, which is

much better than the model without the RF (16.8 %) and also

an improvement on the standard algorithm (85.6 %).

We evaluated also the computing time required to process

these data files by each algorithm. As Table II shows, intro-

ducing the Random Forest in the Stack-CNN increases the

CPU time with a factor of 3.8. However, the increase in the

precision is much higher, i.e. a factor of 5.25, meaning that

using the Random Forest is the optimal solution for trade-off

between time and performance.

Then, the R-Stack-CNN was tested using the complete Mini-

EUSO session 14 (see Table III): the model R-Stack-CNN

found 136 new meteor candidates (Table III) than the standard

algorithm (85 M + 51 M ?) while losing 56 meteors (26

M + 30 M ?). The model also detected 119 false positives,

with an overall precision of 69.9 %, which is slightly better

than the corresponding 66.2 % of the standard trigger. These

results showed that, even for an extended set of data, our

method outperformed standard techniques finding a larger

number of meteors. It is also worth noting that, although

our method proved to be the most powerful and accurate

one, the standard algorithm remains a valid faster solution.

In addition, we provide a comparison with another neural

network based method, and we show that the R-Stack-CNN

finds more meteors than this. Further details are provided in

the appendix.

B. Simulated data: detection and tracking of meteors

In order to investigate the detection limit and true efficiency

of the model, meteor events were also simulated. Considering

that the Stack-CNN was originally planned for the online

detection and tracking of space debris, it’s crucial that the

speed and direction combination is as precise as possible.

Hence, meteor simulations are also used to quantify the

goodness of the speed and azimuth reconstruction.

An important feature of the simulations is that they involve

a dynamical model, implementing analytical solutions [34]

to the differential equations describing the physical problem

of the meteor body deceleration in the atmosphere [35].

The simulated parameters were sampled from their known

distributions [36] and the background maps were generated

using a Poissonian distribution with an average of µbkg photon

counts per GTU in D1 mode. An example of a simulated

event of µbkg = 0.572 and absolute magnitude Mabs = +4 is

given in the Appendix C, Fig. 12. From now on the indicated

magnitudes are meant to be positive even though the ’+’ sign

is not explicitly indicated. A total of 300 events have been

simulated for meteors of Mabs = {4, 5, 6} (100 each). Each

event has been simulated with a random sampling of µbkg

ranging from 0.5 to 1 photon counts per GTU in D1 mode.

The results using meteor simulations have been summarized

in Table V and compared to the standard trigger results. The

R-Stack-CNN found 32 additional meteors in 300 simulated
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TABLE IV
SUMMARY OF SIMULATED ABSOLUTE MAGNITUDE Mabs AND MEAN

BACKGROUND CONFIGURATIONS

Events Mabs µbkg

100 4 {0.5:1}
100 5 {0.5:1}
100 6 {0.5:1}

events with respect to the standard trigger. However, only

6 meteors of Mabs = +6 were triggered by the algorithm,

defining the detection limit. These events are indeed very faint

and their tracks are often difficult to observe because of the

background fluctuations. Fig. 9 shows, as an example, a lost

event of Mabs = +6, with a horizontal purple line defining the

3σbkg range of background fluctuations, where σbkg =
√
µbkg .

TABLE V
SUMMARY OF THE R-STACK-CNN RESULTS WITH METEOR SIMULATED

EVENTS

Events Mabs R-Stack-CNN Standard Trigger

100 4 88 77
100 5 70 50
100 6 6 5

300 {4,5,6} 164 132

Fig. 8. Residual distribution of Stack-CNN reconstructed variables: meteor
azimuth is shown on the left and horizontal speed on the right. The green
distribution refers to meteors with inclination 0° ≤ γ ≤ 90°, while the red
distribution refers to events with 0° ≤ γ ≤ 30°.

Then, the performance of the speed v and azimuth φ recon-

struction has been estimated by using the standard deviations

of the residual distributions of the triggered events.

The azimuth is defined as the direction from the True North,

whereas the speed refers only to the horizontal component

of the meteor true speed. Since Mini-EUSO doesn’t have

a stereoscopic view, it would be impossible to estimate the

transversal direction of speed.

Besides, it’s important to note that since Mini-EUSO is

mounted on the ISS, its variables (speed and direction) are

affected by the position and speed of the ISS, that travels at ∼
7.66 km/s with an azimuth of ∼ 51.6°. Therefore, both meteor

horizontal speed and azimuth, i.e. the clockwise direction from

the true North, were corrected. Moreover, the R-Stack-CNN

often triggers the same meteor event more than once with

different speed, direction and even starting GTU. Considering

that images are processed sequentially, sometimes long tracks

can surpass the 20 frames used in the stacking method, causing

the event to be triggered more than once. Therefore, the best

combination was chosen as the one with the highest number

of counts in the maximum pixel of the stacked image. The

residual distribution of the azimuth showed µφ = (−3 ± 4)°
and σφ = (46 ± 3)° (Fig. 8), whereas the longitudinal speed

residual distribution had µv = (0±1) km/s and σv = (17±1)
km/s (Fig. 8). However, these results refer to meteors with

any value of inclination γ, which also means having vertical

trajectories with few hit pixels. Hence, given that the goal is

to investigate the precision of the Stack-CNN reconstruction

of space debris through meteors, the residual distributions

were evaluated using mostly horizontal tracks which resemble

space debris more accurately. Each meteor event has been

simulated with a different inclination γ, with γ = 0° indicating

an horizontal track and γ = 90° a completely vertical trajectory

with respect to the Mini-EUSO focal surface. Thus, 0° ≤ γ ≤
30° has been set as the range used to define mostly horizontal

tracks.

The results showed a great improvement, with µφ = (1± 4)°,

σφ = (15 ± 3)° for the azimuth and µv = (0 ± 3) km/s,

σv = (10 ± 2) km/s for the horizontal speed. These results

show that the Stack-CNN could indeed be implemented in

a space debris remediation system with a reliable estimation

of speed and direction. Besides, there is no bias in the

reconstruction since both average values are compatible with

0.

Fig. 9. Example of a meteor not found by R-Stack-CNN due to the low
magnitude
of Mabs = +6, µbkg = 0.716. The plot shows a collection of

light-curves associated to the same meteor event, with

signals hitting different pixels. The horizontal purple line

shows the 3σ value of background fluctuations.

VII. DISCUSSION

Although the R-Stack-CNN has shown improvements with

respect to the Stack-CNN, a standard thresholding method

and another machine learning based technique, it has some

limitations. For example, our method, even if it suppressed

the extreme number of false positives coming from the Stack-

CNN, it lost some meteors that were detected by the latter. In

future we want to study new strategies to avoid this loss, such

as developing a recurrent neural network for the recognition

of light-curves. Another way to improve the whole framework

could be training also the CNN with real data, but this would

require a large amount of balanced and pre-processed data.

Finally, even if we presented the R-Stack-CNN as an offline
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trigger we do not exclude the possibility to test it online with

an FPGA and compare with the Stack-CNN.

VIII. CONCLUSIONS

In this paper we presented the R-Stack-CNN, a refined

version of the Stack-CNN that serves as an offline data analysis

to detect and track space objects that move linearly in the field

of view of a telescope. In particular we applied the method

to data of the experiment of Mini-EUSO, a UV telescope on

board the ISS pointing on the Earth. With this configuration,

the space objects that can be detected are meteors or space

debris. Unfortunately, the space debris generally does not

emit light themselves, therefore finding such events with a

small aperture telescope at satellite orbit, such as Mini-EUSO

described in this paper, has turned out to be very difficult

at the moment. However, similar phenomena to space debris,

but more luminous and more frequent, are meteors. We have

shown that the R-Stack-CNN is an effective data analysis

method for finding these events with higher precision than

other methods. Specifically, the R-Stack-CNN found almost

as many meteors as the Stack-CNN (which is the method that

finds more meteors than the other methods), but with a false

positive rate much lower than that, avoiding to manually look

at these events and discard them. With the development of a

lightweight recurrent architecture, it is expected that the R-

Stack-CNN can be improved to have even higher capabilities.

The ability of the R-Stack-CNN to find events in real data,

even though most of them are trained on simulated data, offers

interesting prospects for applying this technique to other data,

such as ground-based telescopes that point on the sky and

can detect different space objects, e.g. space debris, asteroids

and meteors. Such an improved R-Stack-CNN could also be

useful for the space debris observations from the satellite orbit

in future.
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V. Porubčan, and M. Šimek, “Meteor Phenomena and Bodies,” Space

Science Reviews, vol. 84, pp. 327–471, 1998.
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APPENDIX

In this section we provide supplementary materials regard-

ing our implementation of Random Forest, the specific metrics

we used, ablation and sensitivity studies.

A. Random Forest Definitions

The Random Forest is a traditional machine learning algo-

rithm consisting of an ensemble of M decision trees, with

M defining the forest size. The final output, indicated as ȳ, is

defined as the average of each output yi of each single decision

tree. A sketch is shown in Fig. 7. As a consequence, the

variance associated to the output depends on the correlation,

indicated as ρ, between decision trees, as described by the

following formula:

Variance [ȳ] = ρ · Variance [y] + (1− ρ) · Variance [y]

M
(10)

Therefore, the main objective of this algorithm is to decrease

the correlation ρ, while also increasing the forest size M ,

so that the averaged variance is better than the single one.

The technique is called bagging, it consists on training each

decision tree with bootstrap samples, randomly chosen from

the training dataset and replaced so that data can be used more

than once. Besides, random forests also decrease correlation

by considering only a fraction of randomly selected features in

each split node. The bias-variance tradeoff in random forests

is reflected by the fact that the chance of underfitting slightly

increases because subsamples are smaller than the full dataset.

Therefore, it’s crucial to train random forests with big enough

datasets. Another disadvantage is that forests are less easy to

visualize and interprete than single decision trees, but they are

much more powerful.

We can also define the probability associated to its output as

binomial (p1 is the probability of having prediction equal to 1),

with M being the forest size and N1 the number of decision

trees associated with output equal to 1:

p1 =
N1

M
(11)

In this supplementary material we will also provide sensi-

tivity analysis on this parameter, showing how it can deeply

affect the performance of the R-Stack-CNN.

Given that our task was a classification task, i.e. time series

binary classification, we used a set of metrics suitable for our

goal. In particular, accuracy is the baseline metric used to

measure performance for finding positive and negative labels,

precision is used to quantify the tradeoff between finding true

positives and false positives, recall measures how many posi-

tive instances are detected from all the actual positive samples

and finally F1 is defined as harmonic mean of precision and

recall, giving a more complete and exhaustive view on the

model performance. We provide the explicit definitions (TP are

True Positives, FP are False Positives, TN are True Negatives

and FN are False Negatives):

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2

1

Precision
+ 1

Recall

=
TP

TP + FP+FN
2

(15)

B. Ablation Study

In addition, an ablation study was performed to determine

whether removing decision trees during training could drasti-

cally reduce the performance. The number of decision trees

in the Random Forest has been reduced iteratively from a

maximum of 2000 to a minimum of 1, corresponding to a

traditional decision tree. For each iteration, the performance

has been estimated both in training dataset and validation

dataset using the cross-validated F1 score on 10 folds.

As can be seen from Fig. 11, the performance reaches a plateau

with 1000 decision trees. Training with more iterations would

be pointless as the model would preserve the same accuracy

at the cost of an higher computational time.

Another study has been performed regarding the probability

of the Random Forest algorithm. The default value is set

to 50 %, meaning that if more than half of the decision

trees have outputs 1, the overall output is also 1 (and vice
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Fig. 10. Number of true positives (TP) and false positives (FP) on the left figure and precision on the right as a function of increasing RF threshold. Horizontal
lines indicate the performance of the standard trigger.

versa). We investigated other possible values, by increasing

and decreasing its value and estimating the R-Stack-CNN

performance on real data.

The optimal performance of the R-Stack-CNN in session 6

(Table II) has been achieved by increasing the RF threshold to

78%, meaning that at least 78% of decision trees have outputs

1. The threshold has been set by maximizing the F1 metric,

which is equal at its maximum to 90.7 %. The study was

completed using session 14 of Mini-EUSO data: the R-Stack-

CNN precision was estimated using different values of the

Random Forest probability threshold. Table VI and Fig. 10

show that by increasing the threshold more meteors are found

with respect to the standard trigger. Using 78 % threshold,

the model found 193 new meteor candidates than the standard

algorithm (115 M + 78 M ?) and lost only 27 meteors (10 M +

17 M ?) detected by the standard approach. Unfortunately, be-

cause of higher background configurations, 352 false positives

were also triggered. Thus, an higher RF threshold has been set

to eliminate as many false positives as possible and a study

has been performed to estimate the optimal threshold: the

precision, the number of true positives and the number of false

positives were evaluated using increasing RF thresholds. The

results in the left panel of (Fig. 10) show that there is a strong

decrease in the number of the R-Stack-CNN false positives

with an increasing RF probability of 95 %. On the other

hand, the number of the R-Stack-CNN true positives decreases

with a weaker slope, causing an increment in the precision as

shown in the right panel. The optimal threshold has been set

to 93 % because with higher thresholds too many meteors

would be lost. This setup has been used also to compare our

method to another one, developed in parallel in the Mini-

EUSO collaboration. This method implements a Convolutional

Neural Network trained to detect chunks of meteors in the

field of view of the detector. Then, the algorithm searches for

meteor lightcurves in meteor chunks and implements a multi-

layer perceptron (MLP) to classify them. We will refer to it

by the acronym CNN + MLP. See [21] for more details. The

overall structure is extremely similar to our method, as both

algorithms implement CNNs to classify images, and then a

light-curve classifier is used to suppress false positives. In the

alternative method the algorithm is a MLP while in our case

it’s a Random Forest. A substantial difference, however, is that

our CNN was trained on simulated data while in their case on

the real data.

The results (Table VI) show that the R-Stack-CNN was still

the most performing method to find new meteor events (95

more meteors M were found). However, the CNN + MLP

method was more precise (80 % vs 69.9 % of R-Stack-

CNN). This behaviour was probably caused by the different

training dataset, which generates fewer false positives as data

from Mini-EUSO sessions is more noisy and complex. An

improvement of our method would probably fine-tune our

CNN using real data, making it more robust to noise.
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Ablation Study � Random Forest

Fig. 11. Visualization of F1 metric computed on training (blue) and validation
(green) datasets by iteratively removing decision trees from the Random
Forest. The best parameter is shown in red.

TABLE VI
R-STACK-CNN PERFORMANCE WITH MINI-EUSO DATASET FROM

SESSION 14

Model Total meteors New meteors

Standard Algorithm 196 (133 M + 63 M?) 0
CNN + MLP 264 (97 M + 167 M?) 68

R-Stack-CNN 276 (192 M + 84 M?) 80
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Fig. 12. Example of a simulated meteor event of Mabs = +4. The three plots on the top represent height, meteor speed and absolute magnitude as a function
of time. The three plots on the bottom show the pixels hit by the meteor event (left), the respective photon counts per D3 GTUs (center) and the sum of the
photon counts per D3 GTU (left), which have been indicated by the red curve. The black curve represents the expected meteor counts on the focal surface
in the absence of dead spaces among MAPMTs.

C. Illustration of a simulated meteor

An illustration of a simulated event with a background rate

of µbkg = 0.572 and an absolute magnitude of Mabs = +4
can be found in Figure 12. Henceforth, the magnitudes men-

tioned are assumed to be positive, although the ’+’ sign is not

explicitly stated. A total of 300 events have been simulated

for meteors with absolute magnitudes of Mabs = 4, 5, 6 (100

events for each magnitude). Each event has been simulated

with a random sampling of background rates, ranging from

0.5 to 1 photon counts per GTU in D1 mode.
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