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 Abstract—The evaporation duct is a prevalent atmospheric 

structure in the marine lower troposphere with significant 

regional non-uniformity. This structure can trap radio waves 

inside its layer and enable them to propagate over the horizon 

with less loss. Therefore, accurately predicting the over-the-

horizon propagation loss (OHPL) is important for optimizing 

the performance of radio-electronic systems. Considering the 

OHPL characteristics in non-uniform evaporation ducts, this 

study establishes an OHPL prediction model by incorporating 

prior information into the LSTM-Transformer structure 

(IPILT-OHPL). The combination of the LSTM network and 

Transformer is used to construct the LSTM-Transformer, 

aimed at leveraging their respective strengths to extract 

important features of OHPL effectively. In addition, to improve 

the prediction accuracy, this study incorporates the evaporation 

duct height as an environmental prior information into the 

LSTM-Transformer. Finally, this study comprehensively 

evaluates IPILT-OHPL model performance in different 

application scenarios. The evaluation results show that the 

established model not only has high prediction accuracy but 

also strong generalization ability, which provides a new 

method for efficiently predicting the OHPL in non-uniform 

evaporation ducts. 

 

Index Terms—Evaporation duct, long short-term memory 

(LSTM) network, over-the-horizon propagation loss (OHPL), 

prediction, Transformer 

I. INTRODUCTION 

HE evaporation duct is a natural atmospheric 

refraction structure, which is prevalent in the lower 

troposphere over marine regions with high humidity 
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and temperature [1]. It is caused by evaporation of seawater. 

The seawater evaporation increases atmospheric water vapor 

above the marine surface, causing a swift decline in water 

vapor levels near the marine surface as height increases, 

forming an inverse humidity gradient layer [2]. This inverse 

humidity gradient layer is the evaporation duct.  

Furthermore, the evaporation duct can cause abnormal 

variations of the atmospheric refractivity on the vertical 

gradient, which will produce abnormal refraction effects on 

the radio waves [3]. In particular, the refractivity decreases 

abnormally with height, causing the downward bending of 

the radio wave propagation trajectory [4]. When this 

curvature exceeds the curvature of the Earth’s surface, the 

radio waves will be trapped inside the duct layer. Multiple 

reflections of waves will occur between the upper and lower 

walls of the duct layer to propagate forward [5]. The 

evaporation duct height (EDH) serves as an essential 

parameter for describing the atmospheric refractivity within 

the evaporation duct. It represents the thickness of the duct-

trapping layer, which generally does not exceed 40 m [6].  

Therefore, the evaporation duct enables radio waves to 

propagate over the horizon with less energy loss, thereby 

extending the effective distance of radio-electronic systems 

(RES), which contributes to improving the quality of signal 

transmission [7]. Moreover, due to the variations in 

meteorological conditions across different marine regions, 

evaporation ducts over large-scale regions are typically 

regional and non-uniform [8]. Regional non-uniformity is an 

inherent property of marine evaporation ducts [9]. The 

refractivity profiles within the non-uniform evaporation ducts 

often exhibit significant variations with distance [10]. 

Accurate OHPL prediction is important for understanding 

and responding to the performance variations of RES in 

complex marine environments. According to the predicted 

results, we can optimize the RES parameters configuration to 

ensure maximum signal transmission reliability and 

efficiency [11]. This further ensures that the RES can achieve 

the best monitoring coverage and effectively use resources. 

However, compared to normal atmospheric environments, the 

radio wave propagation characteristics in non-uniform 

evaporation ducts show obvious anomalies [12], [13], [14], 

[15]. These anomalies increase the difficulty of accurately 

predicting the OHPL of radio waves in the evaporation duct. 

Since the 21st century, the rapid development of deep 

learning has promoted the wide application of neural 

T 
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networks. Zhang et al. [16] proposed a prediction model for 

propagation loss in atmospheric duct using a feedforward 

neural network (FNN). This FNN-based model takes 

parameters such as duct parameters and antenna parameters 

as inputs to predict the propagation loss. Moreover, the FNN-

based model prediction accuracy under specific frequency 

bands can reach more than 90%. Shu et al. [17] proposed a 

lightweight propagation loss prediction model based on a 

deep neural network (DNN). The model fully considers the 

influences of evaporation duct environment and antenna 

parameters on propagation loss, thus enhancing the 

applicability of the model in natural scenes. The results show 

that the model can achieve better prediction performance than 

k-nearest neighbor, random forest, and linear regression 

models at different frequencies. 

While the above models can accurately predict the OHPL 

to some extent, they don’t consider the temporal relationships 

of the OHPL. The temporal relationships are very important 

for OHPL because they reflect the attenuation of radio waves 

over time during propagation. Unlike regular neural networks, 

the long short-term memory (LSTM) network is specifically 

designed for processing temporal data [18], [19]. It realizes 

the effective management of information flow, and can 

selectively remember and forget information at different 

moments through the unique gate mechanism. Therefore, the 

LSTM network is a suitable method to process the temporal 

relationships of the OHPL. Ji et al. [20] established a 

multiscale decomposition prediction model for OHPL based 

on the LSTM network. They used the variational mode 

decomposition method to decompose the OHPL into multiple 

subsequences and then used the LSTM network to build the 

corresponding prediction models for each subsequence. 

Finally, the predicted results are obtained by reconstructing 

the predicted results of subsequences. However, the 

researchers have studied the combined decomposition 

prediction methods and indicated some of their shortcomings 

[21], [22], [23], [24]. Some main shortcomings include large 

calculations, longer time required for establishing models and 

prediction, causing information leakage, and reducing the 

temporal relationships within the subsequence. These 

shortcomings limit the efficiency and reliability of these 

decomposition prediction models, making them less applied 

in practical engineering. 

Due to the influence of non-uniform evaporation ducts, the 

OHPL shows strong local fluctuations, which restricts the 

efficient learning of temporal relationships of OHPL by the 

LSTM network. Therefore, it is necessary to improve the 

ability of the LSTM network to extract and learn local 

features in OHPL. The Transformer is an Encoder-Decoder 

architecture designed for processing sequential data [25]. 

With multi-head attention, parallel processing, and positional 

encoding, it excels at extracting local features without 

sacrificing global information. The multi-head attention 

mechanism enables the Transformer to discern various 

features, facilitating the extraction of local features.  

Therefore, this study uses an LSTM-Transformer structure, 

obtained by combining the LSTM network and Transformer, 

to enhance the accuracy of predicting OHPL in non-uniform 

evaporation ducts. Furthermore, in non-uniform evaporation 

ducts, the OHPL is directly correlated with the EDH. In this 

study, by incorporating the EDH as an environmental prior 

information into the LSTM-Transformer, a novel OHPL 

prediction model (IPILT-OHPL) is established. The main 

contributions of this study can be summarized as follows: 

1) This IPILT-OHPL model takes full advantage of the 

Transformer’s ability to extract local features, 

alongside the LSTM network’s proficiency in 

processing temporal relationships. By incorporating 

EDH as prior information, the model can better 

cognize the influences of non-uniform evaporation 

ducts on OHPL, thereby improving the accuracy of the 

prediction model. Incorporating prior information can 

facilitate the model better improve interpretability. 

This is very important for the application of the OHPL 

prediction model in marine atmospheric environments. 

2) This study comprehensively evaluates the IPILT-

OHPL model performance by comparing prediction 

performance and testing generalization ability. The 

evaluation results show that the comprehensive 

performance of the IPILT-OHPL model is superior. Its 

evaluation indicators are superior to other models. 

Meanwhile, the IPILT-OHPL model has strong 

generalization ability and can have better predicted 

results for different OHPLs. 

3) The IPILT-OHPL model not only performs well in 

one-step prediction but also in multiple-step prediction, 

which is an important aspect overlooked by existing 

models. Even when the predicted step length is 16, the 

predicted results of the IPILT-OHPL model are still 

significantly better than other models. By integrating 

the feature extraction ability and environmental prior 

information, the IPILT-OHPL model provides a 

superior method in the field of OHPL prediction. 

The remainder of this study is constructed as follows: 

Section II presents the modeling of the prediction problem of 

the OHPL. Section III presents the methods. The data used 

for this study, including the ERA5 data, measured OHPL data, 

and measured EDH data are presented in Section IV. In 

Section V, the establishment process of the IPILT-OHPL 

model is introduced in detail. Section VI presents the 

predicted results of the IPILT-OHPL model and other models. 

The evaluation process and corresponding results of the 

IPILT-OHPL model are also detailed in this section. Finally, 

the conclusion is presented in Section VII. 

II. PROBLEM MODELING 

Since the radio waves propagate forward in uniform 

evaporation ducts through trapping propagation patterns, the 

OHPL is closely associated with the propagation distance and 

the time required for radio wave propagation. The temporal 

relationships of OHPL at each propagation distance enable it 
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to predict feature OHPL based on previous OHPL. Therefore, 

this study considers the temporality of OHPL and performs 

sequence modeling on it. Considering the OHPL as a time 

sequence { }tL  of length T . This time sequence { }tL  can be 

expressed as: 

 
   1 2, ,...,

where 1,2,..., 

t T
L L L L

t T

=

=
 (1) 

where L  is the OHPL at different moments. The target is to 

predict the OHPL at future moments based on a known 

sequence of length T : 

 1 2 1 2, ,..., ( , ,..., )

where1 1

pred pred pred

T T T h TL L L F L L L

T T

     



+ + + + + + + + +=

  − + 
 (2) 

where 
1 2, ,..., TL L L  + + +

 is a known OHPL sequence that 

constructs the input features of the prediction model and T  is 

also considered as the size of prediction window. Given the 

known OHPL sequence, 
1 2, ,...,pred pred pred

T T T hL L L  + + + + + +
are the 

predicted OHPLs in the future and h  is the predicted step 

length. F  is the function used to model the prediction 

method. 

III. MATHODS 

A. Naval Postgraduate School Evaporation Duct Model 

The evaporation duct model is a common method to 

obtain the atmospheric refractivity profile and EDH in the 

evaporation duct. For the radio waves in the frequency range 

of 100MHz-100GHz, the atmospheric modified refractivity 

(M-profile) can be expressed by the following empirical 

equation [26]: 

 
77.6 4810

( ) 0.157
e

M z P z
T T

 
=  + + 

 
 (3) 

where T , P , and e  are the atmospheric temperature (AT), 

atmospheric pressure (AP), and water vapor pressure (WVP), 

respectively. z  is the height above the mean marine surface. 

According to (3), to calculate the M-profile, it is necessary to 

obtain vertical profiles of AT, AP, and WVP. Based on the 

Monin-Obukhov similarity theory (MOST) for the 

atmospheric boundary layer, vertical profiles of AT, AP, and 

WVP near the marine surface can be calculated by the 

following equations: 

 0
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where q  is specific humidity. 
 and q

 are scaling 

parameters of temperature and specific humidity. 
0z 

 and 

0qz  are the roughness lengths of temperature and specific 

humidity.   is the von Karman’s constant. 
  is 

temperature correction function. L  is the Monin-Obukhov 

length. 
dΓ  is dry adiabatic lapse rate. g  is gravity 

acceleration. R  is the gas constant of dry air. T  is the mean 

value of the virtual temperature at height 
1z  and 

2z .   is a 

constant with a value of 6.22.  

This study uses the Naval Postgraduate School (NPS) 

model to determine the M-profile and EDH by diagnostic 

calculations [27]. Babin [28] and Ivanov [29] extensively 

analyzed and validated various evaporation duct models, 

identifying the NPS model as the most reliable. The NPS 

model employs the Tropical Oceans Global Atmosphere-

Coupled Ocean Atmosphere Response Experiment (TOGA-

COARE) bulk flux algorithm version 2.6 [30], developed 

from the TOGA-COARE, for the calculation of scaling 

parameters of temperature and specific humidity. In addition, 

the NPS model uses near marine surface AT, AP, wind speed 

(WS), relative humidity (RH), and sea surface temperature 

(SST) at the same or different heights to calculate the M-

profile. When the atmospheric modified refractivity is the 

smallest at a certain height in the M-profile, this height is 

EDH. Therefore, the NPS model implements the conversion 

of meteorological variables to EDH. With the development of 

the TOGA-COARE algorithm version 3.0 [31], this study 

employs the upgraded TOGA-COARE_3.0 algorithm to 

calculate temperature and specific humidity scaling 

parameters to improve the NPS model. 

B. Three-Parameter Paulus-Jeske Refractivity Profile Model 

To describe the influence of the evaporation duct on 

atmospheric refractivity, researchers derived simplified 

evaporation duct refractivity profile models to calculate the 

M-profile. The Paulus-Jeske (PJ) model [32] has been widely 

used in practical applications because it makes empirical 

adjustments to unstable conditions. It only uses the EDH 

parameter to describe the M-profile in the evaporation duct. 

The PJ model has the following logarithmic functional form: 

 
0

0.00015
( ) 0.125 0.125 ln

0.00015

z
M z M z 

 
 =


+ −


+
 (8) 

where 
0M  is the modified refractivity of marine surface.   

is EDH. Since the PJ model is only a function of EDH, the 

shape of the M-profile calculated using the PJ model is 

largely fixed. Douvenot et al. [33] indicated limitations in M-

profile modeling when using only EDH. The three-parameter 

PJ model (3-PJ) is a variant based on the “Stacked” model 

proposed by Gerstoft [34]. In addition, Saeger et al. [35] 

modified and evaluated the 3-PJ model and showed that it 

could fit the measured atmospheric refractivity profile better. 

The 3-PJ model is formally a segmented function, including 

an evaporation layer segment and a mixed layer segment: 
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where 
0c  is defined as potential refractivity gradient (PRG). 

1m  is mixed layer slope (MLS). 
Lz  is evaporation layer 

height, 2Lz = . The three parameters 
0c , 

1m , and   are the 

modeling parameters in the 3-PJ model.
1M  is used to ensure 

that the profile is continuous between the two layers, and is 

defined by other parameters (
0c , 

1m , and  ). The 

uniqueness of the 3-PJ model is that it can make the shape of 

the M-profile more variable by adjusting the EDH, PRG, and 

MLS so that it can have a more accurate fit to measured 

atmospheric refractivity profile than the PJ model [14].  

C. Markov Chain 

To simulate the propagation of radio waves in non-uniform 

evaporation ducts, it is essential to calculate the M-profiles 

along the radio wave propagation path. The EDH parameters 

at different propagation distances can be calculated using the 

NPS model. Additionally, the non-uniform PRG and MLS 

parameters along the radio wave propagation path can be 

generated by the Markov chain simulation [34]. The non-

uniform variations of PRG and MLS can be simulated as 

follows according to the Markov chain: 

 
1 2[ , , ]p p=H  (10) 

 
1 0

p p=  (11) 

 
1i i ipp + = +  (12) 

 
2(0, )i N    (13) 

where H  is a Markov chain.
ip  is the PRG or MLS 

parameter. 
0p  is the PRG or MLS at the initial distance. It is 

a random variable that follows a Gaussian distribution, with a 

mean of zero and a variance of 
2

 . 
2

  reflects the variation 

of the two parameters with the propagation distance.  

D. Standard Parabolic Equation Algorithm 

The standard parabolic equation (SPE) is a commonly used 

algorithm to describe the propagation characteristics of radio 

waves in atmospheric ducts [36]. It relies on the parabolic 

partial differential equation [37]. Furthermore, the SPE can 

be used to calculate radio wave propagation problems in 

irregular terrain and non-uniform atmospheric environments. 

In the Cartesian coordinate system, assuming that radio wave 

propagates along the horizontal direction, the SPE can be 

derived from the Helmholtz equation and has the form [38]: 

 

2
2 2

2

( , ) ( , )
2 ( ( , ) 1) ( , ) 0

u x z u x z
ik k n x z u x z

z x

 
+ + − =

 
 (14) 

where k  is the free-space wavenumber. x  and z  are the 

horizontal distance and the height. n  is refraction index. u  is 

a simplified field component function introduced to describe 

the amplitude variation of the electric field or magnetic field. 

The relation between field component and electric field or 

magnetic field is: 

 ( , ) ( , ) ikxu x z x z e −=  (15) 

where   is the electric field or magnetic field. In addition, 

the SPE is mainly suitable for calculating the propagation 

problems of radio waves with propagation angles less than 

15° [36]. Because the propagation angle of long-distance 

propagation is relatively small, the SPE has sufficient 

accuracy. This is consistent with the over-the-horizon 

propagation of radio waves in atmospheric ducts. 

The commonly used method for solving SPE is the Split-

Step Fourier Transform (SSFT) [39]. The SSFT allows for a 

larger step length and uses Fast Fourier Transform (FFT) 

without matrix operation, thus greatly speeding up the 

solution. Moreover, SSFT has different implementations 

depending on the lower boundary. For impedance boundary 

conditions the discrete mixed Fourier Transform (DMFT) is 

usually used to solve the SPE [38]. Kuttler et al. [40] 

analyzed forward, backward, and center differential DMFT 

and showed that backward differential DMFT has the best 

numerical stability. Therefore, this study employs the 

backward differential DMFT_SPE algorithm to study radio 

wave propagation in non-uniform evaporation ducts. The 

detailed solution processes for the DMFT_SPE algorithm can 

be found in [38]. 

E. LSTM Network and Transformer 

1) LSTM Network: The LSTM network introduces a gating 

mechanism to effectively manage information flows [18], 

which consists of a forget gate, an input gate, and an output 

gate, as shown in Fig. 1. This gating mechanism allows the 

LSTM network to remember and forget information 

selectively at different moments, facilitating better processing 

of temporal relationships. In addition, memory cell in the 

LSTM block allows the network to selectively forget or 

remember information, thus effectively solving the problem 

of long-term dependence. The calculation processes of the 

three gates can be calculated as: 

  1 ),( tt i t ff W H bX −= +  (16) 

  1 ),( tt i iti W H bX −= +  (17) 

  1 ),( tt o oto W H bX −= +  (18) 

The update of memory cell can be expressed as: 

  11 ( ),t tt tt t c cC f C i tan bH Xh W −−= + +  (19) 

Finally, the output of the LSTM block is obtained: 

 tanh( )t t tH o c=  (20) 

where 
tf  , 

ti , and 
to  are forget gate, input gate, and output 

gate, respectively. 
tC  is memory cell. 

tX  and 
tH are the 

input and final output. W  is the weight and b  is the bias 

(their subscripts are omitted for convenience). ( )   and 

tanh( )  represent the sigmoid and hyperbolic tangent 

functions. 
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Fig. 1. LSTM block and its gating mechanism. 

2) Transformer: The Transformer is a sequence-to-

sequence model with an Encoder and a Decoder [25]. As 

shown in Fig. 2, the Encoder includes a multi-head self-

attention module and a position-wise feed forward network 

(FFN). The self-attention is an important component, that 

enables the Transformer to calculate the importance of each 

position of the sequence. The self-attention maps each 

position in the input sequence into Query, Key, and Value 

vectors, and obtains the attention score of the position 

through dot product operation and weighted summation. To 

enhance the feature extraction ability, the Transformer uses 

multiple parallel self-attention. Therefore, multi-head self-

attention allows the Transformer to learn different 

expressions of Query, Key, and Value vectors in each self-

attention, and then combine the results of different self-

attention to obtain a more comprehensive expression of 

features. The output of the multi-head self-attention in the 

Encoder is: 

 

1 )

wher

( , , ) Concat( , ,

( )
Softmax (e )  i i

i

h

i

k

OMultiHead head head W

W W
head W

d

= 

 
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 
 

Q K

V

Q K V

Q K
V

(21) 

where 
ihead  is self-attention. h  is the number of heads of 

self-attention. Q , K , and V  are the Query, Key, and Value 

vectors, respectively. W
Q

, W
K

, W
V

, and 
OW  are weights. 

kd  is the dimensional number of the Key. Softmax( )  

represents a softmax activation function. Concat( )  

represents the concatenation operation.  

 
Fig. 2. Basic architecture of Transformer and its main 

components. 

IV. DATA 

A. ERA5 Reanalysis Data 

The ERA5 is the fifth generation of atmospheric reanalysis 

data [41]. It incorporates diverse global observations from 

weather stations, satellites, and other sources. Through data 

assimilation into a numerical weather prediction model, it 

produces a comprehensive and coherent representation of the 

atmospheric state. Therefore, ERA5 reanalysis data is widely 

used in the study of evaporation ducts [41]. In this study, the 

meteorological variables extracted from ERA5 include AT, 

AP, u-component of wind, v-component of wind, dewpoint 

temperature (DT), and SST. The reanalysis heights of 

extracted meteorological variables are shown in Table I.  

TABLE I 

REANALYSIS HEIGHTS OF METEOROLOGICAL VARIABLES 

Meteorological variable Reanalysis height Unit 

AP 0 m (surface) hPa 

SST 0 m (surface) ℃ 

AT 2 m ℃ 

DT 2 m ℃ 

U-component of wind 10 m m/s 

V-component of wind 10 m m/s 

In addition, this study selects the South China Sea (SCS) to 

study the propagation of radio waves. For this region, this 

study extracts the above six meteorological variables at 0:00 

on May 1, 2023 (UTC). The regional distributions of these 

variables are shown in Fig. 3. It can be seen that each 

meteorological variable is non-uniform in different regions. 

This is because the environments in different regions are 

influenced by meteorology to different degrees. The non-

uniformity of meteorological variables can also cause the 

non-uniformity of the evaporation duct. 

  

  

  
Fig. 3. Extracted (a) AT, (b) AP, (c) u-component of wind, (d) 

v-component of wind, (e) DT, and (f) SST variables from the 

ERA5 dataset. 
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Since the NPS model uses AT, AP, WS, RH, and SST to 

calculate the EDH, this study uses u-component of wind and 

v-component of wind to calculate the WS. Moreover, the DT 

and AT are used to calculate the RH using the Magnus-

Tetens Approximation (MTA) equation [42], [43]. This MTA 

equation considers Magnus coefficients and can express the 

relation between DT, AT, and RH as: 

 exp 100
p

p

D T
R

T
H

D

 

 

 
= − 

 









+ +
 (22) 

where pD  is DT.  =17.625 and  =243.04℃ are revised 

Magnus coefficients [42]. According to (22) the conversion 

of AT and DT to RH can be realized. 

B. Measured OHPL Data and EDH Data 

The measured OHPL Data and EDH Data used in this 

study are provided by the China Research Institute of 

Radiowave Propagation (CRIRP), which are obtained from 

the Radio Wave Over-the-Horizon Propagation Measurement 

Experiment (RWOHPME) [44]. As shown in Fig. 4(a), the 

RWOHPME was conducted in the SCS, using a shipborne S-

band radar installed on the “Qiongsha 3” ship.  

 

 

Fig. 4. Scene for conducting the RWOHPME: (a) “Qiongsha 

3” ship and shipborne S-band radar, (b) equipment installed 

on the deck. 

During the RWOHPME, the “Qiongsha 3” ship navigates 

from Wenchang City (19°33’ N, 110°49’ E) to Yongxing 

Island (16°84’ N, 112°33’ E), during which the shipborne S-

band radar continuously transmits signals to a receiver 

located on the coast of Wenchang City. The receiver was 

equipped with an EMI signal receiver to continuously 

monitor and receive over-the-horizon signals. Simultaneously, 

a low-noise amplifier was installed at the front end of the 

receiver to enhance the signal-to-noise ratio. Therefore, the 

OHPL is collected during the navigation of the “Qiongsha 3” 

ship. According to the radar equation, the one-way OHPL of 

radio waves is calculated as [45]: 

 
1 2t t r LNA r r rL P G G G P L L= + + + − − −  (23) 

where 
tP  and 

rP  are the radar transmitting power and 

receiver receiving power. 
tG  and 

rG  are the transmitting 

gain and receiving gain. 
LNAG  is the low noise amplifier gain, 

1rL  and 
2rL  are the feedline losses of transmitter and 

receiver. The configurations of the above equipment 

parameters are shown in Table ⅠⅠ. 

TABLE ⅠⅠ 

EQUIPMENT PARAMETERS CONFIGURATIONS 

Parameter Value Unit 

t
P  41.8 dBm 

t
G  28 dBi 

r
G  16 dBi 

LNA
G  22.25 dBi 

1r
L , 

2r
L  2 dB 

Three sets of over-the-horizon propagation signals were 

measured in the RWOHPME. According to (23) and 

equipment parameters, this study calculates the OHPLs of 

these three sets of over-the-horizon signals. The measured 

OHPLs for the three sets are shown in Fig. 5.  

 

 

 
Fig. 5. Measured OHPLs of (a) Set 1, (b) Set 2, and (c) Set 3.  
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In addition, an evaporation duct monitoring system (EDMS) 

is installed on the “Qiongsha 3” ship to measure EDH on the 

“Qiongsha 3” ship route. The EDMS and other auxiliary 

systems are shown in Fig. 4(b). During the RWOHPME, the 

S-band radar and the EDMS worked simultaneously, and the 

measured EDH were used to support the analysis of the radio 

waves over-the-horizon propagation characteristics. Three 

sets of EDH data simultaneously measured are shown in Fig. 

6. 

 

 

 
Fig. 6. Simultaneously measured EDH of (a) Set 1, (b) Set 2, 

and (c) Set 3. 

V. ESTABLISHMENT OF THE IPILT-OHPL PREDICTION MODEL 

A. The Overall Establishment Process of the IPILT-OHPL 

Model 

This study purposely establishes the IPILT-OHPL 

prediction model to accurately predict the OHPL by 

incorporating EDH as an environmental prior information to 

the combined LSTM-Transformer. The overall establishment 

process of the IPILT-OHPL model is shown in Fig. 7. This 

study extracts the meteorological variables needed to 

calculate EDH from the ERA5 dataset. Additionally, this 

study uses the 3-PJ model to calculate the non-uniform M-

profiles. Subsequently, the M-profiles at different propagation 

distances are calculated. These non-uniform M-profiles are 

then integrated into the SPE algorithm to simulate the OHPL. 

Subsequently, a specific dataset is constructed using 

measured and simulated OHPLs and divided into training and 

test sets. The training set is used to train the LSTM-

Transformer, completing the training to obtain the LT-OHPL 

model. This study then uses the test set to evaluate the 

performance of LT-OHPL. The detailed establishment 

process is described in the following sections. 

 
Fig. 7. Overall establishment process of the IPILT-OHPL 

model. 

B. Calculating the Non-Uniform Evaporation Ducts 

To simulate the OHPL in non-uniform evaporation ducts, 

the M-profiles of non-uniform evaporation ducts are crucial. 

Therefore, this study uses specific meteorological variables to 

calculate the M-profiles that vary with distance. This study 

first extracts six meteorological variables from the ERA5 

dataset. This study then calculates WS based on the 

components of WS and calculates RH using DT and AT. The 

five meteorological variables are linearly interpolated and 

then are input into the NPS model to obtain the regional 

distribution of the EDHs. The calculated non-uniform EDHs 

in the SCS are shown in Fig. 8.  

 
Fig. 8. Non-uniform EDH distribution and study region. 

Furthermore, to simulate different OHPLs for verifying the 

generalization ability of the IPILT-OHPL model, a specific 

study region is selected for this study. This study takes “S” as 

the transmitter source of the radio waves and simulate the 
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OHPL for three different directions in this region, as shown 

in Fig. 8. The EDHs in the three directions have certain 

fluctuations with the propagation distance, reflecting different 

degrees of regional non-uniformity. 

Then the calculated non-uniform EDHs in three directions 

are input into the 3-PJ model to calculate the M-profiles 

varying with the propagation distance. In addition, the 3-PJ 

model is determined by EDH, PRG, and MLS parameters. 

The PRG and MLS parameters varying with the propagation 

distance can be simulated by the Markov chain. Similarly, 

this study uses the Markov chain to simulate three sets of 

non-uniform PRG and MLS parameters, respectively. The 

Markov chain simulation results for two parameters are 

shown in Fig. 9. Finally, the non-uniform EDH, PRG, and 

MLS parameters in each direction are then input into the 3-PJ 

model to calculate non-uniform M-profiles in that direction. 

 

 

Fig. 9. Markov chain simulation results of non-uniform (a) 

PGR and (b) MLS parameters in three directions.  

C. Simulating the OHPL in Non-uniform Evaporation Ducts  

The OHPL at different propagation distances can be 

calculated as: 

 20log ( , ) 20log(4 ) 10log 30logL u x z x = − + + − (24) 

where   is the wavelength. The field components ( , )u x z  at 

different distances can be derived by conducting stepwise 

calculations on (14). When using the backward differential 

DMFT_SPE algorithm to conduct stepwise calculations of 

the field components, this study adjusts the refractive 

environment at each propagation distance using the calculated 

non-uniform M-profiles. This method allows for obtaining the 

field components at different distances in non-uniform 

evaporation ducts. Ultimately, the OHPL in non-uniform 

evaporation ducts can be calculated by inputting field 

components at different propagation distances into (24). Fig. 

10 shows the spatial distributions of the simulated OHPL.  

 

 

 

 
Fig. 10. Spatial distributions of the simulated OHPLs in (a) 

Direction 1, (b) Direction 2, and (c) Direction 3. 

It can be observed that there are significant differences in 

spatial distributions of simulated OHPL in different 

propagation directions. This is because the non-uniform 

evaporation duct environments in different propagation 

directions are different. Under the influence of non-uniform 

evaporation ducts, the trapping layers at different distances 

have different trapping degrees for radio waves. This 

significantly influences the variation of OHPL distribution 

with propagation distance and height. The radar system 

parameter configurations used for simulating the OHPL are 

shown in ⅠⅠⅠ.  

TABLE ⅠⅠⅠ 

RADAR SYSTEM PARAMETERS CONFIGURATIONS 

Parameter Value Unit 

Frequency 10 GHz 

Beam width 0.7 ° 

Antenna tilt angle 0 ° 

Antenna height 6 m 

Antenna type Gaussian antenna - 

Polarization Vertical - 

In three spatial distributions of simulated OHPL, this study 

selects the OHPL at a height of 13m above the marine surface. 

The selection of this height considers the operational height 

of RES in the marine environment, as it is the typical height 
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used for RES on ship [46]. The simulated OHPLs used in this 

study are shown in Fig. 11. 

 

 

 
Fig. 11. Simulated OHPLs in (a) Direction 1, (b) Direction 2, 

and (c) Direction 3 in non-uniform evaporation ducts. 

D. Training the LSTM-Transforermer Structure 

1) Combining LSTM Network and Transformer: This study 

constructs an LSTM-Transformer structure that combines the 

LSTM network and Transformer specifically for OHPL 

prediction. As the Encoder block excels in processing 

sequence features, employing only the Encoder suffices for 

OHPL prediction. Using only the Encoder simplifies the 

LSTM-Transformer, mitigating overfitting risk and thus 

enhancing generalization and calculation efficiency.  

 
Fig. 12. LSTM-Transformer structure and its components. 

As shown in Fig. 12, the LSTM-Transformer mainly 

consists of four components: an LSTM network layer, a 

position encoding layer, a Transformer Encoder block, and a 

liner layer. The LSTM-Transformer extracts the temporal 

relationships of OHPL using the LSTM network. The LSTM 

network’s output serves as the input to the Transformer, 

which then uses multi-head self-attention for additional local 

features extraction. Moreover, the position encoding layer 

uses sine and cosine functions to encode the LSTM network’s 

output, and the encoded feature is input into the multi-head 

self-attention layers for parallel feature extraction. Finally, 

the feature from the multi-head self-attention undergoes 

linear transformation via a linear layer to output the predicted 

results. 

2) Constructing the Dataset: The OHPL is directly 

correlated with the EDH in non-uniform evaporation ducts. 

Both EDH and OHPL need to be considered as input feature 

variables. Therefore, the LSTM-Transformer can more fully 

understand the influences of non-uniform evaporation ducts 

on OHPL, thereby enhancing the accuracy and robustness of 

prediction. According to the input and output of the IPILT-

OHPL model, this study constructs a specific dataset 

( & , )H L L , where the input variables &H L  can be 

expressed as:  

  1 2& ( ) ,( ) ,..., (, , ),
T

H L H L H L=H L  (25) 

where H  is the EDH at different moments. Given that the 

OHPL in the future serves as the IPILT-OHPL model’s 

output, OHPL is designated as the output variable of the 

LSTM-Transformer, which can be expressed as: 

  1 2, ,...,
T

L L L=L  (26) 

Since this study uses six sets of OHPLs and their 

corresponding EDHs, six different datasets ( & , )H L L  are 

constructed. In addition, the first 80% of each ( & , )H L L  is 

divided into training set for training the LSTM-Transformer. 

The remaining 20% is used as a test set to evaluate the 

prediction performance of the IPILT-OHPL model. 

Furthermore, to enhance the convergence velocity and 

prediction accuracy, the OHPL sequence is processed using 

the Min-Max normalization method before training.  

3) Configuring Loss Function and Optimization Method: 

This study selects the MSE as the loss function, which is 

calculated as (27). In the LSTM-Transformer training, the 

loss function measures its performance by calculating the 

difference between predicted results and the corresponding 

OHPL in the training set. Through iterating loss function, the 

LSTM-Transformer improves its performance, aiming for 

strong generalization to unseen data.  

 
( )

2

1

pred

i

H

ii
L

L
H

L
oss =

−
=


 (27) 

where H  is the size of the training set. 
pred

iL  and 
iL  are the 

predicted OHPL and corresponding label. Furthermore, this 

study uses the Adaptive Moment Estimation optimization 

method to modify the weights of LSTM-Transformer, aiming 

to minimize the loss function until achieving a stable state.  

4) Configuring Hyperparameters: By performing 

prediction experiments for the LSTM-Transformer on the 

training set, this study finally obtains the OHPL prediction 

model, i.e., the IPILT-OHPL model. Since the 
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hyperparameters have a crucial influence on the performance 

of the trained model, it is important to select and debug these 

hyperparameters. This study involves configuring 

hyperparameters for the main components in the LSTM-

Transformer and training-related hyperparameters, such as 

batch size, learning rate, and epochs. In the training process, 

this study gets the feedback on the training results through 

many prediction experiments, and gradually optimizes the 

selection of parameters based on certain empirical knowledge. 

The detailed configurations of the hyperparameters are shown 

in Table IV. 

TABLE IV 

DETAILED HYPERPARAMETERS CONFIGURATIONS 

Hyperparameter Value 

LSTM-Transformer 
structure component 

LSTM network 

 layer (M=1) 

Input size (d=32) 

Hidden layer  

neurons (n=64) 

Dropout (p=0.2) 

Output (dout=64) 

Positional 

encoding 
Encoding (dmodel=64) 

Transformer 

Encoder block  

(N=1) 

Multi-head  

self-attention (h=2) 

Add, Layer Norm,  

Dropout (p=0.1) 

Position-wise FFN 

(dinner=128), RELU 

Add, Layer Norm,  
Dropout (p=0.1) 

Linear layer 

(L=1) 
Output (dout=1) 

Training-related hyperparameter 

Batch size (batch_size=32) 

Epochs (i=150) 

Learning rate (l=0.005) 

VI. PREDICTED RESULTS AND EVALUATIONS 

In this study, the input variables in the test set are input 

into the established IPILT-OHPL model, and then the 

predicted results of the IPILT-OHPL model are compared 

with the output variable in the test set to evaluate the 

performance of the IPILT-OHPL model. In addition, to show 

the superiority of the IPILT-OHPL model, this study uses the 

LSTM network, Transformer, LSTM-Attention, RNN-

Transformer, and LSTM-Transformer to additionally 

establish OHPL prediction models for comparison with the 

IPILT-OHPL model. There is no EDH in the input variables 

of the above comparison models, only OHPL. To further test 

the performance of the IPILT-OHPL model in different 

application scenarios, this study evaluates the model from 

two different aspects: one-step prediction and multiple-step 

prediction. 

A. Evaluating the IPILT-OHPL Model Performance in One-

Step Prediction 

Firstly, this study evaluates the performance of the IPILT-

OHPL model in one-step OHPL prediction. In this evaluation, 

this study uses the input variables from the former 24 steps to 

predict the subsequent OHPL. The subsequent predicted step 

length is set to 1. This study first visualizes the predicted 

results from all models on the test set to more intuitively 

observe predicted results and compare performance. As 

shown in Fig.13, all prediction models show different 

predicted results across different OHPL sequences, mainly 

influenced by inherent OHPL characteristics and different 

model structures. 

Due to the non-uniform evaporation ducts, the simulated 

OHPLs in the test set show significant fluctuations in Fig. 

13(a) and (c), which have great influences on predicted 

results. Both the LSTM and LSTM-Attention are difficult to 

fit the OHPL effectively due to their limited feature 

extraction ability. In comparison, the Transformer, RNN-

Transformer, and LSTM-Transformer exhibit better OHPL 

fitting due to their superior feature extraction abilities. This is 

because Transformer, RNN-Transformer, and LSTM-

Transformer use multi-head self-attention to extract local 

features in the OHPL. In addition, the OHPL does not 

fluctuate greatly in Fig. 13(b), therefore all the prediction 

models have good predicted results, and the differences 

between them are not obvious. 

Compared with the simulated OHPLs, the measured 

OHPLs show more local fluctuations in Fig. 13(d)-(e). The 

LSTM and LSTM-Attention can only approximately fit the 

overall trend of the OHPL, but they are difficult to extract 

local fluctuation features effectively. Especially when the 

local fluctuations of the OHPL are intense, the predicted 

results of these two models deviate more from the OHPL. 

The Transformer, RNN-Transformer, and LSTM-

Transformer models exhibit better fit on local features. 

However, in the presence of more local fluctuations, the 

Transformer cannot fit the overall trend of the OHPL well.  

Notably, the IPILT-OHPL model shows better predicted 

results on all test sets. It not only effectively fits the overall 

trend of the OHPLs, but also accurately extracts the local 

features of the OHPLs. This shows that the IPILT-OHPL 

model has strong generalization ability and feature extraction 

ability in predicting OHPL. The superior performance of the 

IPILT-OHPL model is not only due to the strong feature 

extraction ability of the LSTM-Transformer structure but also 

because it incorporates the EDH as the environmental prior 

information of the model. By incorporating these EDHs at 

different distances into the input of the model, the model can 

more accurately understand and predict the OHPL in complex 

non-uniform evaporation ducts. 
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Fig. 13. Predicted results of the simulated OHPLs in (a) 

Direction 1, (b) Direction 2, and (c) Direction 3 and the 

measured OHPLs of (d) Set 1, (e) Set 2, and (f) Set 3. 

To quantitatively evaluate the prediction errors of different 

models, this study calculates the evaluation indicators for all 

predicted results on the test set. The evaluation indicators 

include root mean square error (RMSE), mean absolute error 

(MAE), mean absolute percentage error (MAPE), and 

coefficient of determination (R2), which can be calculated by 

the following (28)-(31), respectively. Where RMSE, MAE, 

and MAPE are commonly used evaluation indicators to 

measure the difference between the predicted results and 

corresponding labels [47]. When their values are smaller, it 

means that the model’s predicted results are more accurate 

and the model’s performance is better. In addition, R2 is used 

to describe the degree of fitting between the model’s 

predicted results and corresponding labels. The larger the R2, 

the better the prediction performance of the model. 
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where N  is the size of the test set. L  is the mean value of 

the OHPL in the test set. 

This study then compares the prediction performance 

between the models according to the evaluation indicators. As 

shown in Fig. 14, the IPILT-OHPL model consistently 

maintains the best evaluation indicators in all test sets 

compared to the other models. This shows that the IPILT-

OHPL model always shows superior prediction performance 

in all OHPL test sets. This model not only has good 

prediction performance but also has strong generalization 

ability. Followed by the LSTM-Transformer, its evaluation 

indicators are second only to the IPILT-OHPL model. This 

indicates that the prediction performance of the LSTM-

Transformer is second only to the IPILT-OHPL model. In 

comparison, the LSTM has the worst evaluation indicators in 

most of the test sets (except for the R2 for the measured 

OHPL of Set 1), indicating that its prediction performance is 

the worst among all models. In addition, all models show 

worse RMSE, MAE, and MAPE in predicting the simulated 

OHPL in Direction 1, but the IPILT-OHPL model still 

outperforms the other models in these indicators. Meanwhile, 

these indicators of the IPILT-OHPL model are improved by 

71.376%, 64.571%, and 63.648%, respectively, compared to 

the LSTM. Compared with the LSTM-Transformer, these 

indicators of the IPILT-OHPL model are improved by 

21.542%, 21.643%, and 21.836%, respectively.  

Because there are many local fluctuations in the measured 

OHPLs, most of the models cannot accurately fit the overall 

trend of measured OHPLs. Most models show worse R2 in 

predicting the measured OHPLs, especially showing the 

lowest R2 when predicting the measured OHPL of Set 3. By 

using EDH as the prior information, the IPILT-OHPL model 

can cognize the influences of the environment on OHPL more 

comprehensively, and its predicted results better fit the 

overall trend of the OHPL. Therefore, the R2 of the IPILT-

OHPL model is still higher than that of other models. The R2 

of the IPILT-OHPL model is 0.310 and 0.213 higher than that 

of the LSTM and LSTM-Transformer respectively, in 
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predicting the OHPL of Set 3. In addition, all models have 

better evaluation indicators in predicting the simulated OHPL 

in Direction 2. Meanwhile, the RMSE, MAE, MAPE, and R2 

of the IPILT-OHPL model can reach 0.204, 0.158, 0.094, and 

0.999, respectively. It still has much higher RMSE, MAE, 

and MAPE than other models. Compared to the LSTM, these 

improvements are 50.244%, 54.467%, and 54.808% in the 

RMSE, MAE, and MAPE respectively. Furthermore, 

compared to the LSTM-Transformer, there are improvements 

of 9.735%, 9.714%, and 9.615%, respectively. 

 

 

 

 

 

 
Fig. 14. Evaluation indicators of the simulated OHPLs in (a) 

Direction 1, (b) Direction 2, and (c) Direction 3 and the 

measured OHPLs of (d) Set 1, (e) Set 2, and (f) Set 3 for one-

step prediction. 

B. Evaluating the IPILT-OHPL Model Performance in 

Multiple-Step Prediction 

To evaluate the multiple-step prediction performance of 

the IPILT-OHPL prediction model, this study further 

establishes the IPILT-OHPL model and other comparison 

models with predicted step lengths of 2, 4, 8, and 16. This 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3395630

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



13 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

study calculates RMSE, MAE, MAPE, and R2 for all 

prediction models under different predicted step lengths 

based on the test set.  

The evaluation indicators under different predicted step 

lengths are shown in Fig. 15. The evaluation indicators of all 

the models are getting worse as the predicted step length 

increases gradually. This shows that the prediction 

performance of all models is decreasing. When the predicted 

step length is 16, the prediction performance of all models is 

the worst. In addition, the IPILT-OHPL model consistently 

maintains the best evaluation indicators in all models as the 

predicted step increases. This shows that the IPILT-OHPL 

model has superior prediction performance even under larger 

steps. The IPILT-OHPL model also has better predicted 

results when the predicted step length is 16. 

Similar to the predicted step length of 1, when the 

predicted step length is 16, all models also have the highest 

RMSE, MAE, and MAPE in predicting the OHPL in 

Direction 1. In addition, the RMSE, MAE, and MAPE of the 

IPILT-OHPL model are improved by 46.030%, 54.321%, and 

41.927%, respectively, compared to the LSTM. Compared 

with the LSTM-Transformer, the three evaluation indicators 

of the IPILT-OHPL model are improved by 13.892%, 

15.233%, and 21.020%, respectively.  

Moreover, most models show the lowest R2 in predicting 

the measured OHPL of Set 3 when the predicted step length is 

16. The R2 of the IPILT-OHPL model is still higher than that 

of other models, which is 0.297 and 0.211 higher than that of 

LSTM and LSTM-Transformer, respectively. In predicting 

the Simulated OHPL of Direction 2, all models also have 

better evaluation indicators under the predicted step length of 

16. Meanwhile, the evaluation indicators of the IPILT-OHPL 

model are still superior to other models. The RMSE, MAE, 

MAPE, and R2 of the IPILT-OHPL model are 0.487, 0.385, 

0.237, and 0.990, respectively. In addition, the IPILT-OHPL 

model’s RMSE, MAE, and MAPE improved by 36.999%, 

46.379%, and 45.012% respectively compared to the LSTM, 

and improved by 14.860%, 16.847%, and 15.658% 

respectively compared to the LSTM-Transformer. 

Furthermore, the R2 of the IPILT-OHPL model is 0.013 and 

0.004 higher than that of LSTM and LSTM-Transformer, 

respectively. 

This study evaluates the prediction performance of the 

IPILT-OHPL model by calculating the evaluation indicators 

based on the test set in different application scenarios. 

Comprehensively, these evaluation indicators highlight the 

superior prediction performance of the IPILT-OHPL model. 

Its prediction performance is significantly better than that of 

other models. The IPILT-OHPL model not only has high 

accuracy but also shows strong generalization ability, which 

effectively processes the temporal relationships of the OHPL. 

The superior performance of the IPILT-OHPL model is not 

only due to the strong feature extraction ability of the LSTM-

Transformer structure, but the model also uses EDH as prior 

information, thus enhancing its wide applicability. 
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Fig. 15. Evaluation indicators of the simulated OHPLs in (a) 

Direction 1, (b) Direction 2, and (c) Direction 3 and the 

measured OHPLs of (d) Set 1, (e) Set 2, and (f) Set 3 for 

multiple-step prediction. 

VII. CONCLUSION 

To accurately predict the OHPL in marine non-uniform 

evaporation ducts, this study establishes the IPILT-OHPL 

model by incorporating EDH as an environmental prior 

information into the LSTM-Transformer structure. Because 

the radio waves are influenced by the non-uniform 

evaporation ducts, their OHPL will show local fluctuations at 

certain propagation distances. This study combines the LSTM 

network and Transformer and uses the combined LSTM-

Transformer structure to enhance the LSTM network’s ability 

for extracting OHPL features. Combining these two networks, 

the IPILT-OHPL model can capture different dependencies 

and local features more comprehensively when processing 

OHPL, thereby enhancing the prediction performance and 

generalization ability of the model. In addition, by 

incorporating EDH as prior information into the LSTM-

Transformer structure, the model can better cognize the 

influences of non-uniform evaporation ducts on OHPL, 

thereby enhancing the prediction accuracy. This study 

comprehensively evaluates the IPILT-OHPL model 

performance. The evaluation results show the superior 

performance of the IPILT-OHPL model. It outperforms other 

prediction models in both one-step prediction and multiple-

step prediction. Meanwhile, the IPILT-OHPL model has a 

strong generalization ability, which has better predicted 

results for different OHPLs. Therefore, the proposed IPILT-

OHPL model has a more comprehensive performance in the 

field of OHPL prediction, which provides an effective 

method for predicting the OHPL in non-uniform evaporation 

ducts. 
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