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Abstract—This paper presents a novel hyperspectral target 
detection based 2D-3D parallel convolutional neural network 
(HTD 2D-3D-PCNN) model, which integrates the hyperspectral 
target detection (HTD) technique to achieve outstanding 
performance in hyperspectral image classification (HSIC). The 
proposed model effectively leverages both spectral and spatial 
information through a dual-branch architecture in hyperspectral 
imaging (HSI). In the first branch, HTD is utilized to enhance the 
spectral features of targets of interest, while suppressing 
background. The resulting enhanced image is then inputted to a 
2D-CNN, augmented with an additional deconvolution layer to 
highlight spatial characteristics. Concurrently, the second branch 
employs dimensionality reduction via PCA, and a 3D-CNN is 
employed to capture both spectral and spatial attributes. 
Subsequently, the feature maps from both CNNs are combined 
and processed through fully connected layers for classification. 
To validate the effectiveness of the proposed HTD-2D-3D-PCNN, 
extensive experiments are conducted on five widely used 
hyperspectral public datasets (Indian Pines, Pavia University, 
Salinas Scene, Kennedy Space Center, and Botswana) with a 
consistent training sample ratio of either 10% or 5%. The results 
show that HTD-2D-3D-PCNN  can achieve overall accuracy 
values of 98.41%, 99.85%, 99.92%, 99.82%, and 98.82% for the 
respective datasets, surpassing the performance of recent 
methodologies. 
 
Index Terms—Convolutional neural networks (CNN), 
Hyperspectral image classification (HSIC), Hyperspectral target 
detection (HTD).  

 

I. INTRODUCTION 
VER the past two decades, hyperspectral remote sensing 
has witnessed significant advancements. Leveraging the 

unique spectral characteristics of different materials, such as 
their reflectance and absorption properties, enables more 
precise detection and identification of various substances. 
Hyperspectral image classification (HSIC) technology serves 
as the foundation for numerous applications, including 
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precision agriculture [1–3], forest monitoring [4], urban 
planning [5], food safety [6], and industrial production [7].  

In the past, conventional classification methods such as 
Support Vector Machine (SVM) [8], K Nearest Neighbor 
(KNN) [9], Random Forest [10], Logistic Regression [11], and 
sparse representation [12] were commonly used in HSIC. 
However, recent years have brought significant advancements 
in deep learning for various computer vision tasks. In 
hyperspectral image classification, techniques like 
convolutional neural networks (CNN) [13–15], recurrent 
neural networks (RNN) [16–18], generative adversarial 
networks (GAN) [19], graph convolutional networks (GCN) 
[20], deep belief networks (DBN) [21], and autoencoders (AE) 
[22] have been widely adopted and have produced impressive 
classification results. Notably, 2D-CNN has become a 
prevalent approach in hyperspectral image classification 
(HSIC) for capturing spatial features. Several studies, 
including the work by M. Ahmad et al. [23], have compiled 
various classification techniques utilizing 2D-CNN. 

2D-CNN has become a common approach for spatial 
feature extraction. For instance, Ding et al. [24] introduced an 
adaptive kernel approach combined with 2D-CNN, which 
improved the classification accuracy through learned 
convolution kernels. Chen et al. [25] addressed overfitting 
using a combination of Gabor filters and 2D-CNN. [26] used 
2D-CNN with multiscale covariance maps for effective feature 
extraction. Other methods, like Pyramidal Residual Network 
(pResNet) [27] and CNNDH [28], integrate 2D-CNN with 
different techniques to enhance feature extraction. 

However, solely relying on 2D-CNN might not effectively 
capture spectral features. The incorporation of 3D-CNN to 
simultaneously extract spectral and spatial features has shown 
enhanced performance. For instance, [29] introduced the 3D-
Deep CNN model for deep feature extraction. Another study 
by [30] integrated stacked auto encoders with a spatial-
spectral feature learning network for improved classification. 
Furthermore, [31] combined 3D-CNN with GAN [32] to 
process overlapping 3D patches with a 3D kernel function, 
and [33] proposed a multi-scale 3D CNN for end-to-end 
spatial and spectral feature learning. SSRN [34] designed an 
end-to-end spectral-spatial residual network. 

Previous studies have identified limitations when using 
either 2D-CNN or 3D-CNN independently. In response, 
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Fig. 1. Proposed HTD-2D-3D-PCNN architecture. 

 
researchers have proposed various hybrid models. For 
instance, some models adopt a 3D in series 2D hybrid 
approach, such as Attention-fused hybrid network (AfNet) 
[35], HybridSN [36], Hybrid 3D-2D CNN [37], and hybrid 
3D/2D CNN [38]. Others utilize a multi-branch approach, 
combining multiple channels into parallel or serial 3D in series 
2D structures, like Multibranch 2D–3D CNN [39]. 
Conversely, some models employ a 2D in series 3D 
architecture, as seen in simplified 2D-3D CNN [40]. 
Additionally, end-to-end multilevel hybrid attention networks, 
such as DMCN [41], combine both types of CNNs, 
incorporating attention mechanisms to overcome limitations. 
Models like Collaborative Attention CNN (CACNN) [42], 
Feedback Attention-Based Dense CNN (FADCNN) [43], and 
FFDN [44] integrate attention mechanisms or fusion strategies 
to enhance hyperspectral image classification results. These 
hybrid models offer promising solutions by integrating both 
types of CNNs and attention mechanisms, leading to improved 
classification results in hyperspectral image analysis. 

Recent progress in hyperspectral remote sensing image 
classification, as demonstrated in studies like MGSNet [45], 
has introduced novel approaches such as the Target-
Background Separation Strategy. In MGSNet, background 
information beyond the effective target is utilized as a decision 
aid, enhancing distinguishability among samples with similar 
targets but varying backgrounds. This strategic approach 
aligns conceptually with the Hyperspectral Target Detection 
(HTD) methodology proposed in this paper, which emphasizes 
and highlights the target category. The key difference lies in 
the utilization of the HTD algorithm in this paper, reinforcing 
the spectral features of the target, with each category requiring 
only one target spectral feature for implementation. 

In a similar vein, SLA-Net [46] adopts a multistream design 

that incorporates morphological transformations through 
trainable structuring elements, specifically aiming to extract 
fine-grained spatial details. SLA-Net focuses on enhancing 
tree species classification primarily through spatial features 
rather than spectral features. In the context of classifying 
complex objects, the utilization of spatial morphological 
differences proves beneficial in delineating boundaries for 
fine-grained categories. 

Similarly, SpectralGPT [47] introduces a revolutionary 
Multi-Target Reconstruction Strategy to effectively capture 
spatial-spectral characteristics and spectrally sequential 
information. SpectralGPT excels in learning spatial-spectral 
features. However, the approach proposed in this paper 
diverges from these methodologies by initially enhancing 
spectral features through HTD. Subsequently, a parallel 
deployment of 2D-CNN and 3D-CNN is employed to 
simultaneously extract spatial-spectral features, resulting in a 
notable enhancement in classification performance. 

In the case of RSRNet [48], to alleviate classifier bias and 
maintain the stability of the decision boundary, a status replay 
strategy (SRS) is constructed to regulate the learning and 
optimization of the classifier. For HighDAN [49], the solution 
involves a high-resolution domain adaptation network 
(HighDAN) that bridges feature and category differences 
between different cities. 

The proposed architecture in this paper distinguishes itself 
from previous research in several ways: 

 
1) The innovative HTD-2D-3D-PCNN model features a 

dual-branch architecture. In one branch, the HTD algorithm, in 
conjunction with the optimal signature generation process 
(OSGP), is designed to enhance spectral features, suppress 
background noise, reduce bands, and optimize feature 
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 Fig. 2. Data processing of HTD. 
 

extraction and spatial learning efficiency in subsequent 2D 
CNN models. 

2) Concurrently, the second branch integrates PCA and 
3D-CNN for spectral and spatial feature extraction. The 
resulting feature maps from both branches are merged, thereby 
preserving the advantageous features of the original PCA-3D-
CNN model. Additionally, the inclusion of HTD-2DCNN 
further enhances the learning of spectral and spatial 
characteristics. 

3) The proposed approach adeptly addresses class 
imbalance and enhances learning effectiveness, with a 
particular emphasis on benefiting smaller class sizes and 
capturing fine details at the edges. These enhancements 
significantly contribute to the outstanding performance 
observed, further boosting the classification accuracy of the 
network model. 

4) Deconvolution layers were thoughtfully inserted 
within the 2D-CNN to elevate the prominence of spatial 
features in images. Moreover, global average pooling (GAP) 
replaced Flatten layer to counteract overfitting during training. 

In our experiments, we conducted evaluations on five well-
established hyperspectral image (HSI) public datasets. These 
evaluations employed a consistent training sample ratio across 
all datasets. The outcomes of our experiments unequivocally 
establish the superiority of our proposed architecture 
compared to recent methodologies of a similar nature. 
Notably, our approach excels in scenarios involving smaller 
class sizes and the nuanced details at the edges, as evident 
from the improvements in overall accuracy, average accuracy, 
and the KAPPA coefficient. 

II. HYPERSPECTRAL TARGET DETECTION 
Hyperspectral imaging contains valuable spectral 

information about different materials, allowing researchers to 
identify the types of materials represented by each pixel. This 
process, known as hyperspectral target detection (HTD), can 
be carried out using active or passive methods. Active HTD 
methods can be broadly classified into three categories [50]: 

hypothesis testing-based detection, signal to noise ration-based 
detection, and spectral angle-based detection. Among these, 
the SNR-based detectors, such as constrained energy 
minimization (CEM) and normalized adaptive matched 
detector (AMD), stand out for their effective background 
suppression and improved target detectability. The squared 
version of these detectors further enhances the target's spectral 
features and increases the separation between target and 
background. In our experiments, we chose CEM, CEM2, 
NAMD, and NAMD2 as the target detectors, and their impact 
on the model's performance were thoroughly explored and 
analyzed. This chapter delves into the details of the HTD 
algorithms used in our experiments and emphasizes the 
significance of extracting spectral features for accurate 
material identification. 

 

A. Constrained Energy Minimization 
The constrained energy minimization (CEM) algorithm in 

active hyperspectral target detection [50] demonstrates 
stability and excellence in subpixel detection. One of the main 
advantages of CEM is its ability to perform target detection 
with only one spectral feature (also known as the target 
signature or region of interest), set as parameter t, without 
requiring prior knowledge of other targets or background 
information. This simplicity is a key strength of CEM.  

Another advantage of CEM lies in its approach of 
transposing the data's correlation matrix R. The correlation 
matrix is defined as  퐑 = 1

푁 ∑ 푟 푟 , where r denotes 
the spectral response of each pixel in the data. By utilizing 
correlation matrix R, CEM achieves background suppression 
and enhances detection capabilities through the customization 
of finite impulse response (FIR) filters, which are matched 
with target feature t. The formula for the CEM detector is as 
follows: 

δ (r) =
퐭 퐑 퐫
퐭 퐑 퐭 (1) 
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Fig. 3. Flowchart of the optimal signature generation process. 
 

If we square the entire formula, it becomes the CEM2 
detector: 

δ (r) =
퐭 퐑 퐫
퐭 퐑 퐭  (2) 

  

B. Normalized Adaptive Matched Detector 
The normalized adaptive matched detector (AMD) [50] is 

an SNR-based detection method and a commonly used 
adaptive matched filter. It utilizes data sphered (DS) whitening 
of the spatial data to eliminate the first and second-order 
statistics in the original data space. It requires the target signal 
t, all data samples (r), covariance matrix K, and the 
background mean μb, which are described by Gaussian 
distributions. The formula for the NAMD detector is as 
follows: 
 

δ (r) =
(퐭 − 훍 )  퐊  (퐫 − 훍 )
(퐭 − 훍 )  퐊  (퐭 − 훍 )  (3) 

 
When the entire formula is squared, it becomes the NAMD2 

detector: 
 

δ (r) =
(퐭 − 훍 )  퐊  (퐫 − 훍 )
(퐭 − 훍 )  퐊  (퐭 − 훍 )  (4) 

 

III. HYPERSPECTRAL TARGET DETECTION-BASED 2D-3D 
PARALLEL CONVOLUTIONAL NEURAL NETWORKS 

A. Network Structure of the Proposed Framework 
In this paper, we proposed a novel network architecture 

called HTD-2D-3D-PCNN, which is depicted in Figures 1 and 
2. The network comprises two main convolutional channels: 
2D-CNN and 3D-CNN. The upper channel first processes the 
original data using the HTD algorithm, which enhances the 
spectral features and then extracts rich spatial features through 
the 2D-CNN. This combination effectively integrates spectral 
and spatial information for improved classification 
performance. 

On the other hand, the lower channel handles the original 
data after dimensionality reduction through PCA, and utilizes 
the 3D-CNN to simultaneously extract spectral and spatial 
features. Pooling layers are introduced between the 
convolutional layers to maintain feature invariance and reduce 
the parameter count, ensuring robustness in feature extraction 
even after feature map scaling. Additionally, to enhance 
feature representation and retain excellent classification 

performance, we added a deconvolutional (upsampling) layer 
after the 2D-CNN. This up-ampling operation helped improve 
feature representation To address overfitting, we implemented 
a GAP layer and applied Dropout method in the three fully 
connected layers (FC1, FC2, FC3). The GAP layer calculated 
the average of each feature map, reducing the risk of 
overfitting. Dropout was applied in the fully connected layers 
to prevent the model from becoming overly reliant on specific 
features during training, thus enhancing generalization. 
Further details about the CNN architecture are elaborated in 
subsequent chapters, thereby providing a comprehensive 
understanding of the proposed HTD-2D-3D-PCNN model. 

 

B. Data processing of HTD 
The previous section introduced the hyperspectral target 

detection (HTD) algorithm used in our experiments. This 
paragraph provides a detailed description of how the original 
data is transformed via HTD before being input into 2D-CNN 
shown in Fig 2. The HTD process served multiple purposes, 
including image enhancement, background suppression, and 
data dimensionality reduction, resulting in improved 
efficiency during model training due to decreased data volume. 

The success of HTD relies on obtaining appropriate 
signatures, as the accuracy of the target information is crucial. 
Incorrect signatures can lead to false alarms and missed target 
detections. Therefore, obtaining the correct target signature is 
a critical step in the process. To achieve this, we utilized the 
optimal signature generation process (OSGP) [51], which 
facilitated obtaining optimal target feature t. OSGP involves 
an iterative process that enhances the accuracy of target 
selection, leading to effective target detection and stability, as 
confirmed by the experimental results. In this study, we 
combined OSGP with HTD to iteratively determine the best 
target feature t. 

Figure 3 illustrates the flowchart of the OSGP process. 
Below is a step-by-step outline of the OSGP process, using 
Class 1 of HTD as an example: 

Step 1) A random pixel is selected from Class 1 of HSI 
ground truth as the initial target feature t. 

Step 2) HTD is performed on t, and Otsu’s method [52] is 
applied for binary segmentatiuon. 

Step 3) All pixels with a binary value of 1 in the binary 
segmentation result are averaged to obtain the new 
target feature 푡′. 

Step 4) The spectral angle mapper (SAM) [53] between 푡′ 
and t is computed. If the SAM value is smaller 
than preset condition α, the iteration stops. 
Otherwise, 푡′  is used as the new target and 
iteratively input into the HTD detector. Steps 2 to 4 
are repeated until the condition is met. 

Step 5) Finally, 푡′ is employed as the optimal signature for 
the HTD detector. 

 
Once the optimal 푡′ is obtained for HTD computation using 

Class 1 of the dataset as the target, an image of size 512 x 217 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3394704

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
is generated. This image enhances the spectral features of 
Class 1, highlights their differences from the other 15 classes, 
and uses R-1 for background suppression. Similar results can 
be achieved when detecting other classes as targets. By 
generating 16 different HTD results using various 푡′ , the 
subsequent 2D-CNN can learn spatial information with 
enhanced spectral features of specific classes, achieving the 
fusion of spectral and spatial information. After detecting all 
16 classes as targets, the 16 images are stacked together to 
form a 512 x 217 x 16 image, which serves as the input to the 
2D-CNN in our proposed model. 
 

C. 2D-CNN 
In the proposed model, 2D-CNN is utilized to extract spatial 

feature information from the data. Convolutional layers with 
activation functions perform non-linear transformations to 
obtain feature maps, while deconvolutional layers expand the 
size of the feature maps, acting as the inverse operation of the 
convolution. Pooling layers are employed to reduce the size of 
feature maps while retaining important features, resulting in 
reduced model parameters and improved computational 
efficiency. Global average pooling (GAP) is used to calculate 
the average of each feature map and reduce the risk of 
overfitting. 

To enhance the desired target class in the image based on 
spectral features, the data is processed through the HTD 
algorithm. Subsequently, 2D-CNN is used to learn spatial 
features from the image. This approach demonstrates 
improved classification performance compared to 
simultaneously extracting spectral and spatial features using 
3D-CNN. The experimental results indicated that the former 
yielded a slightly higher overall accuracy compared to the 
latter, by approximately 0.01% to 1.21%. Therefore, in this 
study, we employed the HTD algorithm to detect targets on 
the data and then used 2D-CNN to learn spatial features. 

For example, in the case of the Indian Pines dataset with an 
original data size of 145 x 145 x 200, after using the CEM 
detector, we obtained a size of 145 x 145 x 16, as this dataset 
contained 16 classes. The objective was to predict the label of 
each pixel in the image. To achieve this, we generated cubes 
of size L x W x B as the input to the model, where L 
represents the length, W represents the width, and B represents 
the number of bands, and B represents the number of bands in 
each cube. 

The detailed architecture of the 2D-CNN used in this 
experiment was as follows: the 25 x 25 x 16 cube was input 
into the 2D-CNN, passing through two consecutive 
convolutional layers with a kernel size of 3 x 3 and a stride of 
1 x 1. Next, it entered a max pooling layer, followed by a 
convolutional layer with a kernel size of 5 x 5 and a 
deconvolutional layer with a kernel size of 5 x 5. Finally, it 
underwent global average pooling. This architecture allowed 
the 2D-CNN to effectively learn spatial features from the data 
and contributed to the improved classification performance. 
 

D. Principle component analysis processing of HSI data 
Due to the high dimensionality of HSI, which may contain 

hundreds of spectral bands, PCA was used to identify the main 
elements in the data. The objective was to maximize the 
variance of the data after projection, thereby removing 
redundant information and achieving dimensionality reduction 
while preserving the original characteristics of the data. In this 
experiment, PCA was applied to reduce the dimensionality of 
the original data, which was then input into the 3D-CNN to 
simultaneously extract spectral and spatial information. The 
experimental results demonstrated that the best classification 
performance was achieved when the data dimensionality was 
reduced to the number of classes present in the dataset. For 
instance, in the case of the Indian Pines dataset, which 
contained a total of 16 classes, reducing the original data size 
from 145 x 145 x 200 to 145 x 145 x 16 yielded the optimal 
overall accuracy. 
 

E. 3D-CNN 
The main difference between 3D-CNN and 2D-CNN lies in 

the ability of 3D-CNN to effectively extract both spectral and 
spatial information simultaneously, leading to improved 
classification performance compared to 2D-CNN. While 2D-
CNN focuses solely on spatial features, 3D-CNN considers 
both spectral and spatial characteristics, making it more 
suitable for hyperspectral image classification tasks. 

When data is dimensionally reduced through PCA, PCA 
method does not consider the inherent spectral and spatial 
features of the data. The primary objective of PCA is to 
maximize the variance of the data after projection, without 
considering the specific information contained in different 
spectral bands. However, when the reduced data is then 
processed through 3D-CNN, that can effectively extract both 
spectral and spatial features together, leading to better 
classification performance. The experimental results showed 
an overall accuracy increase of approximately 3.83% 
compared to using 2D-CNN, which only learns spatial features. 
In this study, the dimensionality of the original data was first 
reduced using PCA, and then training was performed using 
3D-CNN. The detailed architecture of the 3D-CNN in this 
experiment was as follows: the data, of size 25 x 25 x 16, 
entered a convolutional layer with a kernel size of 3 x 3 x 7, 
followed by another convolutional layer with a kernel size of 3 
x 3 x 5. Subsequently, a max-pooling was is applied. After 
that, the data entered a convolutional layer with a kernel size 
of 3 x 3 x 3 and then went through GAP before being passed 
to the fully connected layers for classification. This 
architecture allowed the 3D-CNN to effectively capture both 
spectral and spatial information from the reduced data. 
 

F. Concatenated 2D-3D-CNN 
After applying the HTD algorithm, the association between 
feature maps and inter-layer information was significantly 
reduced during the 2D-CNN convolution. Therefore, no 
substantial benefits in feature learning would be found after 
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Fig. 4. Grayscale images of (a) Indian Pines; (b) University of 
Pavia; (c) Salinas Scene; (d) Kennedy Space Center; (e) 
Botswana. 
 
concatenating the results of 2D-CNN and PCA+3D-CNN in a 
sequential manner for further convolution using 3D-CNN.  

Instead, adopting a parallel architecture that combined the 
results from 2D-CNN and PCA+3D-CNN and passed them 
through subsequent fully connected layers for classification 
led to better overall accuracy compared to the sequential 
approach. According to the experimental results, this parallel 
approach yielded an overall accuracy improvement ranging 
from approximately 0.01% to 29.65%. In this study, the 2D-
CNN method and the 3D-CNN method both processed 
through GAP to obtain the feature maps, were merged and 
connected. They were then sequentially passed through three 
fully connected layers with neurons number of 1024, 512, and 
128, respectively. A dropout rate of 0.25 was added between 
each fully connected layer to prevent overfitting. Finally, the 
softmax activation function was applied for classification. 
 

IV. EXPERIMENTS 

A. Data set 
This study validated the proposed model's performance 

using five publicly available HSI datasets. The grayscale 
images for each dataset are displayed in Figures 4. 
1) The first dataset was the Purdue Indian Pines Scene (IP), 

captured at the Indiana Pine Tree Test Site in 
northwestern Indiana. It had a data resolution of 145 x 
145 and contained 200 spectral bands. The Purdue 
Indian Pines Scene consisted of 16 different plant 
categories. 

2) The second dataset was the Pavia University (PU) 
dataset, acquired by the ROSIS-03 satellite sensor. This 
scene included 610 x 340 pixels, with a spatial resolution 
of 1.3 meters and 103 spectral bands. 

3) The third dataset was the Salinas Scene (SA), collected 
by the AVIRIS sensor in the Salinas Valley of California, 
known for its high spatial resolution (3.7-meter pixels). 
The data size was 512 x 217, and after removing 20 
water absorption bands, it contained 204 spectral bands, 
with 16 land cover categories. 

4) The fourth dataset was the Kennedy Space Center (KSC) 
dataset, collected from the KSC in Florida. The data size 
was 512 x 614, and after removing water absorption 
bands, it had 176 spectral bands. 

5) The final dataset was the Botswana (BOT) dataset, 
acquired by the Hyperion NASA EO-1 satellite over the 
Okavango Delta in Botswana between 2001 and 2004. 
After removing the uncalibrated and noisy bands 
covering water features, the data size was 1476 x 256, 
with 145 spectral bands. 

 

B. Experimental setup 
After applying HTD and PCA dimensionality reduction, the 

dimensions were reduced to the number of classes corresponding 
to each dataset (IP and SA had 16 bands, PU had nine bands, 
KSC had 13 bands, and BOT had 14 bands). To improve the 
model's performance, the window size for generating image 
cubes before inputting into the CNN was set to 19 x 19 for the 
PU dataset, 15 x 15 for the SA dataset, and 25 x 25 for the rest of 
the datasets. For the IP, PU, SA, and KSC datasets, the samples 
were randomly split into 10% as the training set, 5% as the 
validation set, and 85% as the test set. Effective data partitioning 
methods were employed to ensure there was no sample overlap 
between the training and testing datasets. The use of stratified 
sampling further ensured a consistent distribution in the training 
and test sets, resulting in the best possible global fit. As for the 
BOT dataset, it was split into 5% for training, 5% for validation, 
and 90% for testing. The number of epochs for the IP, SA, and 
KSC datasets was set to 300, while for the PU and BOT datasets, 
it was set to 100. The initial learning rate was set to 0.001, and 
the batch size was set to 100 for all datasets. The detailed 
number of training samples for the five datasets is shown in 
Tables I to V. 

The hardware and software specifications used in this 
experiment were: a 12th Gen Intel® Core™ i9-12900KF CPU, 
an NVIDIA GeForce RTX 3090 Ti, 24.0 GB of RAM, and 
Python 3.9. The evaluation of the model's performance was done 
using the overall  

accuracy, average accuracy, and kappa coefficient. The 
overall accuracy referred to the percentage of correctly classified 
pixels. The average accuracy referred to the average of overall 
accuracy measured for each class. The kappa coefficient was a 
statistical measure of the agreement between qualitative items.  

The experimental results presented in this paper were based 
on the average of 10 runs. Each experiment was performed 10 
times, and the obtained data were averaged to ensure the 
reliability and robustness of the results. This approach helped to 
reduce the impact of randomness or variability in the training 
process and provided more accurate and stable performance 
metrics for the proposed HTD-2D-3D-PCNN model using the 
five different datasets. 
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TABLE I 
NUMBER OF IP DATASET SAMPLES 

Class 
No. Class Name Total Training Validation Testing 

1 Alfalfa 46 5 3 38 

2 Corn-notill 1428 143 72 1213 

3 Corn-mintill 830 83 42 705 

4 Corn 237 24 12 201 

5 Grass-pasture 483 49 25 409 

6 Grass-trees 730 73 37 620 

7 Grass-pasture-mowed 28 3 2 23 

8 Hay-windrowed 478 48 48 382 

9 Oats 20 2 1 17 

10 Soybean-notill 972 98 49 825 

11 Soybean-mintill 2455 246 123 2086 

12 Soybean-clean 593 60 30 503 

13 Wheat 205 21 11 173 

14 Woods 1265 127 64 1074 

15 Buildings-Grass-
Trees-Drives 386 39 20 327 

16 Stone-Steel-Towers 93 10 5 78 

 
TABLE II 

NUMBER OF PU DATASET SAMPLES 
Class 
No. Class Name Total Training Validation Testing 

1 Asphalt 6631 664 332 5635 

2 Meadows 18649 1865 933 15851 

3 Gravel 2099 210 105 1784 

4 Trees 3064 307 154 2603 

5 Painted metal 
sheets 1345 135 68 1142 

6 Bare Soil 5029 503 252 4274 

7 Bitumen 1330 133 67 1130 

8 Self-Blocking 
Bricks 3682 369 185 3128 

9 Shadows 947 95 48 804 

 
 
 
 
 
 
 
 

TABLE III 
NUMBER OF SA DATASET SAMPLES 

Class 
No. Class Name Total Training Validation Testing 

1 Brocoli_green_
weeds_1 2009 201 101 1797 

2 Brocoli_green_
weeds_2 3726 373 187 3166 

3 Fallow 1976 198 99 1679 

4 Fallow_rough_p
low 1394 140 70 1184 

5 Fallow_smooth 2678 268 134 2276 

6 Stubble 3959 396 198 3365 

7 Celery 3579 358 179 3042 

8 Grapes_untraine
d 11271 1128 564 9579 

9 Soil_vinyard_de
velop 6203 621 311 5271 

10 Corn_senesced_
green_weeds 3278 328 164 2786 

11 Lettuce_romain
e_4wk 1068 107 54 907 

12 Lettuce_romain
e_5wk 1927 193 97 1637 

13 Lettuce_romain
e_6wk 916 92 46 778 

14 Lettuce_romain
e_7wk 1070 107 54 909 

15 Vinyard_untrain
ed 7268 727 364 6177 

16 Vinyard_vertica
l_trellis 1807 181 91 1535 

 
TABLE IV 

NUMBER OF KSC DATASET SAMPLES 
Class 
No. Class Name Total Training Validation Testing 

1 Scrub 761 77 39 645 

2 Willow swamp 243 25 13 205 

3 Cabbage palm 
hammock 256 26 13 217 

4 
Cabbage 
palm/oak 
hammock 

252 26 13 213 

5 Slash pine 161 17 8 136 

6 Oak/Broadleaf 
hammock 229 23 12 194 

7 Harwood 
swamp 105 11 6 88 

8 Graminoid 
marsh 431 44 22 365 

9 Spartina marsh 520 52 26 442 

10 Cattail marsh 404 41 21 342 

11 Salt marsh 419 42 21 356 

12 Mud flats 503 51 26 426 

13 Water 927 93 47 787 
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TABLE V 
NUMBER OF BOT DATASET SAMPLES 

Class 
No. Class Name Total Training Validation Testing 

1 Water 270 14 14 242 

2 Hippo grass 101 6 6 89 

3 Floodplain Grasses 
1 

251 13 13 225 

4 Floodplain Grasses 
2 

215 11 11 193 

5 Reeds 1 269 14 14 229 

6 Riparian 269 14 14 241 

7 Firescar 2 259 13 13 233 

8 Island interior 203 11 11 181 

9 Acacia woodlands 314 16 16 282 

10 Acacia shrublands 248 13 13 222 

11 Acacia grasslands 305 16 16 273 

12 Short mopane 181 10 10 161 

13 Mixed mopane 268 14 14 240 

14 Exposed soils 95 5 5 85 

 

V. RESULTS AND ANALYSIS 
In our proposed model, the input data for 2D-CNN was 

obtained after applying the HTD algorithm, which enhanced 
the spectral features of the target objects and reduced data 
while suppressing background noise. For 3D-CNN, the input 
data was obtained by reducing the original data to the number 
of classes corresponding to each dataset using PCA. After 
separate processing in 2D-CNN and 3D-CNN, the feature 
maps were combined and further processed through 
convolutional operations before being fed into fully connected 
layers for classification. 

For the experimental setup, we randomly split the samples 
of the IP, PU, SA, and KSC datasets into 10% for training, 5% 
for validation, and 85% for testing. As for the BOT dataset, 
we used a random split of 5% for training, 5% for validation, 
and 90% for testing. To prevent overfitting, we applied a 
dropout rate of 25% between each fully connected layer. The 
number of epochs was set to 300 for the IP, SA, and KSC 
datasets, while for the PU and BOT datasets, it was set to 100. 
Additionally, we used a batch size of 100 for all datasets. 
These parameters were carefully chosen to achieve the best 
balance between training efficiency and model performance 
for each dataset. The experimental results presented in this 
section are averages derived from 5 individual results, and 
standard deviations are included to provide insights into the 
stability of the obtained results. It's crucial to note that some 
references listed in our tables did not provide the standard 
deviation. As a result, we have selectively included the 
standard deviation only for our proposed models where 

applicable, as these values are implementable and contribute 
to a more comprehensive understanding of the experimental 
outcomes. 

 

A. Results of the Indian Pines dataset 
Figure 5 shows the classification results of different CNN 

model architectures on the IP dataset. Table 6 presents the 
performance data of our proposed HTD-2D-3D-PCNN model 
on the IP dataset, along with a comparison to recent methods, 
including SVM, SSRN [34], CNNDH [28], CACNN [42], 2D-
3D-D [40], and FADCNN [43]. If the KAPPA coefficient 
result was not provided in the literature, it was marked as 
blank in the table.  

Based on the data presented in the table, it is clear that our 
HTD-2D-3D-PCNN model surpasses other recent methods in 
terms of overall accuracy, average accuracy, and the KAPPA 
coefficient. We achieved scores of 98.41%, 98.23%, and 
98.17%, respectively. Notably, our model excels in achieving 
exceptionally high accuracy in Classes 8, 9, 13, and 15, where 
accuracy reaches 100%. Furthermore, for Classes 10, 12, and 
13, our model outperforms all recent methods in terms of 
accuracy. The second-highest overall accuracy was recorded 
by the 2D-3D-D model, at 98.33%. 

This superiority is particularly pronounced in classes with 
limited sample sizes, such as Classes 10, 12, and 13. These 
classes typically possess restricted spatial information and 
heavily rely on spectral data. The HTD-2D-3D-PCNN model 
leverages the strengths of both 2D-CNN and 3D-CNN. 
Specifically, the 2D-CNN component, in conjunction with the 
HTD method, enhances spectral features via HTD and learns 
to extract spatial characteristics. Conversely, the 3D-CNN 
excels at capturing spatial-spectral features, harnessing the 
advantages of both networks to enhance accuracy across 
various classes. Our proposed approach consistently achieves 
higher accuracy compared to alternative methods. 

 

B. Results of the University of Pavia dataset 
Figure 6 shows the classification results of different CNN 

model architectures on the PU dataset. Table 7 presents the 
performance data of the proposed HTD-2D-3D-PCNN model 
on the PU dataset, along with the comparison results of recent 
methods, including SVM, SSRN [34], AfNet [35], CACNN 
[42], FFDN [44], and HybridSN [36]. 

Based on the data presented in the table, our proposed 
HTD-2D-3D-PCNN model consistently outperforms other 
recent methods in terms of overall accuracy, average accuracy, 
and the KAPPA coefficient, achieving scores of 99.85%, 
99.73%, and 99.80%, respectively. Notably, our model attains 
a perfect accuracy of 100% in Classes 3 and 7, and it surpasses 
all recent methods in accuracy for Classes 2 and 4. The 
second-highest overall accuracy is observed in the HybridSN 
[36] model, at 99.69%. 

In classes 3 and 4, where the presence of Class 2 
surrounding their edges makes them particularly susceptible to  
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TABLE VI 
CLASSIFICATION RESULTS OF THE IP DATASET WITH THE COMPARED METHODS

Class 

POA% 
SVM 2D-CNN 3D-CNN SSRN [34] 

CNNDH 

[28] 

CACNN 

[42] 
2D-3D-D [40] FADCNN [43] 

HTD-2D-

3D-PCNN 

1 84.78±5.11 100.0±0.00 100.0±0.00 95.81 60.43 77.78 100.0±0.00 88.26±7.73 97.43±0.34 

2 70.38±10.37 99.30±0.45 91.67±3.27 99.58 92.06 92.31 98.36±0.62 98.04±0.27 96.95±0.59 

3 62.05±12.31 96.38±2.81 93.97±4.58 99.61 88.05 98.79 97.80±0.76 97.04±1.50 98.72±1.86 

4 89.03±2.04 100.0±0.00 98.12±0.57 99.91 95.69 100.0 97.20±1.86 96.03±3.21 92.53±2.18 

5 90.89±3.10 94.84±3.29 95.41±2.64 100.0 95.65 94.84 99.30±0.50 99.34±0.44 94.16±2.22 

6 95.48±2.26 99.31±0.36 96.19±0.98 96.85 98.82 100.0 99.07±0.41 99.48±0.48 97.58±0.54 

7 96.43±0.71 100.0±0.00 76.0±11.67 93.53 87.86 80.00 100.0±0.00 75.72±20.50 87.50±5.63 

8 96.86±0.42 100.0±0.00 100.0±0.00 99.08 100.0 100.0 99.83±0.18 100.0±0.00 100.0±0.00 

9 85.00±3.39 100.0±0.00 66.66±16.74 99.78 93.00 100.0 92.72±3.73 78.00±25.42 100.0±0.00 

10 72.94±11.97 97.42±1.72 89.37±5.38 91.52 94.98 97.93 97.34±0.84 96.50±0.89 98.18±0.19 

11 65.42±9.08 97.75±2.11 99.09±0.48 98.36 96.67 98.98 98.23±0.53 98.49±0.69 98.08±1.50 

12 67.79±6.71 90.75±6.93 91.94±4.96 96.29 92.62 94.95 97.66±0.93 95.45±1.77 98.80±1.01 

13 97.56±0.72 97.56±1.28 90.81±3.75 99.02 99.41 90.24 99.32±0.65 99.02±1.02 100.0±0.00 

14 89.96±4.62 100.0±0.00 99.47±0.23 96.90 99.41 100.0 99.01±0.47 99.48±0.66 99.62±0.21 

15 71.50±13.26 100.0±0.00 99.71±0.16 95.65 94.04 100.0 98.60±0.86 99.74±0.16 100.0±0.00 

16 100.0±0.00 94.73±3.69 91.66±5.28 93.95 98.92 100.0 92.59±3.08 82.80±9.40 94.93±4.41 

OA 73.39±2.44 97.90±0.32 97.02±0.29 96.88±0.26 95.29 97.51 98.33±0.21 97.95±0.15 98.41±0.17 

AA 83.50±2.38 98.01±1.41 94.07±3.79 97.24±0.59 92.98 95.37 97.94±0.96 93.96±4.63 98.23±1.29 

KAPPA 68.82±6.65 97.61±1.82 96.61±1.37 96.26±0.30  97.16   98.17±0.94 

 
misclassification, our proposed method demonstrates superior 
accuracy compared to alternative approaches. This is 
attributed to our utilization of the HTD method, which 
enhances the visibility of targets while suppressing 
background noise. Consequently, it highlights features that are 
relatively small and have blurred edges in the image. These 
enhanced features serve as input for 2D-CNN, enabling better 
spatial learning and, consequently, an enhancement in overall 
accuracy. 
 

C. Results of the Salinas Scene dataset 
Figure 7 shows the classification results of different CNN 

model architectures on the SA dataset. Table 8 presents the 
performance data of the proposed HTD-2D-3D-PCNN model 
on the SA dataset, along with the comparison results of recent 
methods, including SVM, SSRN [34], AfNet [35], CACNN 
[42], FFDN [44], and pResNet [27]. 

Based on the data presented in the table, our proposed 
HTD-2D-3D-PCNN model consistently outperforms other 
recent methods in terms of overall accuracy, average accuracy, 
and the KAPPA coefficient, achieving scores of 99.92%, 
99.86%, and 99.91%, respectively. Notably, our model attains 
a perfect accuracy of 100% in multiple classes, specifically in 
Classes 2, 3, 9, 10, 11, 13, 14, 15, and 16. The second-highest 
overall accuracy is observed in the 3D-CNN model, at 99.78%. 
In classes 8-15, our method significantly benefits from the use 
of the HTD method to enhance spectral information and the  
 

 
subsequent application of 2D-CNN for spatial feature 
enhancement. This approach effectively highlights the edges  
 
of these classes and distinguishes fine details from areas that 
are similar to other classes. As a result, it excels in handling 
subtle nuances. While other methods may struggle with edge 
cases and intricate details, our proposed method achieves an 
accuracy rate of 100%. 

Furthermore, our method incorporates Global Average 
Pooling (GAP) and Dropout in the fully connected layers, 
effectively preventing overfitting. These strategies, coupled 
with the features mentioned above, contribute to the successful 
improvement in accuracy. 

 

D. Results of the Kennedy Space Center dataset 
Figure 8 displays the classification results of different CNN 

model architectures on the KSC dataset. Table 9 presents the 
performance data of the proposed HTD-2D-3D-PCNN model 
on the KSC dataset , along with the comparison results of 
recent methods, including SVM, CNNDH [28], FADCNN 
[43], and 2D-3D-D [40]. Blank cells in the table indicate that 
the corresponding literature did not provide KAPPA 
coefficient results. 

Based on the data in the table, our proposed HTD-2D-3D-
PCNN model consistently outperforms other recent methods 
in terms of overall accuracy, average accuracy, and the 
KAPPA coefficient, achieving scores of 99.82%, 99.75%, and 
99.79%, respectively. Remarkably, our model attains a perfect 
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TABLE VII 
CLASSIFICATION RESULTS OF THE PU DATASET WITH THE COMPARED METHODS

Class 

POA% 
SVM 2D-CNN 3D-CNN SSRN [34] AfNet [35] CACNN [42] FFDN [44] HybridSN [36] 

HTD-2D-3D-

PCNN 

1 81.87±2.73 99.44±0.28 99.91±0.03 98.45 99.49 99.09 98.24 99.96 99.81±0.16 

2 81.81±2.49 99.81±0.07 99.94±0.02 97.90 99.97 99.16 98.90 99.93 99.99±0.01 

3 82.99±1.66 98.83±1.03 98.88±1.07 96.99 100.0 99.19 98.07 99.43 100.0±0.00 

4 95.48±1.32 98.98±0.84 95.95±2.39 98.36 97.59 98.76 97.82 98.54 99.56±0.37 

5 99.59±0.05 98.92±1.50 98.01±1.48 99.91 95.63 99.90 99.93 99.38  99.17±0.44 

6 86.73±1.94 99.42±0.24 100.0±0.00 97.48 100.0 99.26 99.46 100.0 99.97±0.02 

7 93.76±0.88 99.41±0.19 100.0±0.00 100.0 100.0 99.77 99.79 100.0 100.0±0.00 

8 82.96±1.92 99.21±0.23 99.51±0.21 99.27 99.93 99.03 98.52 99.77 99.48±0.23 

9 99.93±0.02 100.0±0.00 97.18±1.34 99.55 92.48 99.77 99.69 95.40 99.88±0.08 

OA 84.66±1.12 99.53±0.09 99.42±0.11 98.19±0.09 99.43 99.17 98.78 99.69 99.85±0.07 

AA 89.46±1.45 99.16±0.48 98.72±0.72 98.02±0.17 98.35 99.33 98.93 99.16 99.73±0.15 

KAPPA 80.03±2.03 99.38±0.17 99.23±0.25 97.57±0.12 99.24 98.89 98.36 99.59 99.80±0.12 

 
TABLE VIII 

CLASSIFICATION RESULTS OF THE SA DATASET WITH THE COMPARED METHODS
Class 

POA% 
SVM 2D-CNN 3D-CNN SSRN [34] AfNet [35] CACNN [42] FFDN [44] pResNet [27] 

HTD-2D-3D-

PCNN 

1 97.84±1.08 99.94±0.02 100.0±0.00 99.95 100.0 100.0 99.96 99.98 99.83±0.11 

2 94.38±2.41 100.0±0.00 100.0±0.00 100.0 99.97 99.93 99.96 100.0 100.0±0.00 

3 86.71±3.37 100.0±0.00 100.0±0.00 99.94 99.25 99.79 99.61 99.99 100.0±0.00 

4 99.41±0.15 99.91±0.02 98.40±0.97 99.91 98.11 99.79 99.88 99.96 99.84±0.06 

5 92.98±2.20 99.64±0.14 99.50±0.23 99.57 99.56 99.83 99.80 98.81 99.75±0.14 

6 99.33±0.26 99.97±0.01 99.57±0.16 100.0 99.86 99.96 99.77 100.0 99.97±0.01 

7 98.93±0.83 99.73±0.17 99.78±0.13 100.0 100.0 99.89 99.80 99.96 99.78±0.19 

8 55.30±9.58 99.92±0.03 99.98±0.01 87.13 100.0 95.69 93.77 91.47 99.99±0.00 

9 94.29±3.60 100.0±0.00 100.0±0.00 100.0 100.0 99.76 99.75 99.99 100.0±0.00 

10 85.61±5.76 100.0±0.00 100.0±0.00 99.39 99.51 99.26 99.43 99.64 100.0±0.00 

11 89.98±4.90 98.78±1.04 94.79±2.66 99.99 94.87 99.86 99.98 100.0 100.0±0.00 

12 99.77±0.06 99.81±0.05 100.0±0.00 100.0 92.79 99.96 99.95 100.0 99.36±0.27 

13 97.91±0.75 99.87±0.08 99.51±0.25 100.0 97.70 99.92 99.85 100.0 100.0±0.00 

14 91.03±3.09 96.69±1.18 99.48±0.24 99.98 99.21 99.89 99.90 100.0 100.0±0.00 

15 71.02±9.11 99.82±0.09 99.77±0.11 94.06 98.69 97.20 96.63 93.43 100.0±0.00 

16 91.66±2.86 100.0±0.00 100.0±0.00 99.99 100.0 99.75 99.86 99.97 100.0±0.00 

OA 82.69±2.55 99.73±0.08 99.78±0.06 96.31 99.27 98.55 98.04 97.15 99.92±0.02 

AA 90.39±3.12 99.46±0.17 99.61±0.29 98.44 98.72 99.41 99.24 98.95 99.86±0.04 

KAPPA 80.75±3.64 99.69±0.14 99.76±0.16 95.88 99.19 98.38 97.81 96.81 99.91±0.05 

 
100% accuracy in more than half of the classes, specifically 
Classes 1, 2, 4, 7, 8, 10, 12, and 13, with Classes 4 and 8 
surpassing all other recent methods in accuracy. The second- 
highest overall accuracy is observed in the 2D-CNN model, at 
99.34%.In this dataset, many classes have limited sample sizes, 
with Class 4 posing particular challenges due to its small 
target size and limited spatial features. To address these 
challenges, our method employs the HTD technique to 
enhance spectral features, followed by spatial feature 
extraction using 2D-CNN. Additionally, we utilize PCA to  

 
reduce the dimensionality of the original images and employ 
them as input for 3D-CNN to extract spatial-spectral features. 
This strategic fusion of methods significantly enhances the 
Overall Accuracy (OA). 
 

E. Results of the Botswana dataset 
Figure 9 displays the classification results of different CNN 

model architectures on the BOT dataset. Table 10 presents the 
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TABLE IX 
CLASSIFICATION RESULTS OF THE KSC DATASET WITH THE COMPARED METHODS

Class 

POA% 
SVM 2D-CNN 3D-CNN CNNDH [28] FADCNN [43] 2D-3D-D [40] 

HTD-2D-3D-

PCNN 

1 92.16±3.47 100.0±0.00 97.37±1.68 98.13 99.97 98.19 100.0±0.00 

2 86.16±5.79 100.0±0.00 84.01±10.27 72.84 98.68 96.75 100.0±0.00 

3 42.55±9.13 100.0±0.00 87.82±5.72 95.39 96.72 98.31 99.56±0.24 

4 67.69±10.35 99.55±0.21 73.12±14.81 65.95 92.86 87.50 100.0±0.00 

5 0.00 100.0±0.00 88.27±6.47 82.24 97.14 91.40 97.93±1.17 

6 54.71±10.82 99.51±0.38 96.11±2.09 86.20 97.73 98.73 98.05±0.49 

7 0.00 100.0±0.00 94.68±3.44 92.96 99.24 95.87 100.0±0.00 

8 65.12±9.29 96.64±2.13 93.29±4.15 87.19 98.98 96.32 100.0±0.00 

9 67.82±8.83 99.78±0.12 92.52±4.37 92.08 99.77 97.34 98.51±0.72 

10 93.40±2.56 100.0±0.00 99.45±0.35 86.29 100.0 97.35 100.0±0.00 

11 100.0±0.00 100.0±0.00 98.14±1.15 99.76 99.86 99.48 99.73±0.20 

12 83.75±6.22 98.89±0.82 100.0±0.00 94.83 100.0 98.90 100.0±0.00 

13 100.0±0.00 100.0±0.00 100.0±0.00 100.0 100.0 99.70 100.0±0.00 

OA 80.29±3.77 99.34±0.18 94.29±2.88 91.86 99.10 97.47 99.82±0.13 

AA 65.64±5.11 99.14±0.28 92.19±4.19 88.76 98.53 96.81 99.75±0.21 

KAPPA 77.98±3.40 99.27±0.23 93.64±3.58    99.79±0.11 

 
TABLE X 

CLASSIFICATION RESULTS OF THE BOT DATASET WITH THE COMPARED METHODS 
Class 

POA% 
SVM 2D-CNN 3D-CNN SSRN [34] AfNet [35] HybridSN [36] 

HTD-2D-3D-

PCNN 

1 92.57±2.03 98.04±0.73 97.65±1.07 97.26 100.0 100.0 100.0±0.00 

2 100.0±0.00  100.0±0.00 100.0±0.00 100.0 100.0 100.0 100.0±0.00 

3 70.17±11.2 68.48±13.64 70.58±11.05 73.17 71.00 70.17 99.15±0.30 

4 84.80±9.25 83.82±10.30 100.0±0.00 100.0 100.0 100.0 100.0±0.00 

5 34.76±9.97 68.35±15.41 80.46±8.70 87.89 97.26 86.32 92.96±3.85 

6 64.06±13.7 55.85±6.77 83.98±8.86 94.92 82.81 89.84 84.37±10.57 

7 100.0±0.00 100.0±0.00 100.0±0.00 100.0 100.0 100.0 100.0±0.00 

8 81.34±6.24 99.48±0.12 100.0±0.00 100.0 100.0 97.92 100.0±0.00 

9 82.88±6.01 82.88±8.83 100.0±0.00 98.99 97.65 99.66 98.33±0.61 

10 100.0±0.00 99.15±0.46 100.0±0.00 100.0 100.0 100.0 99.15±0.49 

11 91.03±3.30 83.79±10.72 100.0±0.00 100.0 100.0 89.65 100.0±0.00 

12 80.23±7.06 97.67±1.68 100.0±0.00 100.0 95.34 100.0 100.0±0.00 

13 99.21±0.29 99.21±0.31 100.0±0.00 100.0 100.0 100.0 100.0±0.00 

14 71.11±9.82 86.66±7.04 100.0±0.00 95.83 98.88 100.0 98.89±0.88 

OA 82.02±3.95 86.20±5.09 94.59±2.67 95.92 95.59 94.59 97.58±1.34 

AA 82.30±5.64 87.39±5.42 95.19±2.12 96.29 95.93 95.26 97.51±1.19 

KAPPA 80.51±4.38 85.05±6.78 94.14±3.03 95.57 95.23 94.14 97.54±0.99 

 
performance data of the proposed HTD-2D-3D-PCNN model 
on the BOT data set , along with the comparison results of 
recent methods, including SVM, SSRN [34], AfNet [35], and 
HybridSN [36]. 

According to the data in the table, our proposed HTD-2D-
3D-PCNN model achieved the highest overall accuracy, 
average accuracy, and KAPPA coefficient compared to other  

 
recent methods, with scores of 97.58%, 97.51%, and 97.54%, 
respectively. Remarkably, our model achieved 100% accuracy  
in more than half of the classes, specifically in Classes 1, 2, 4, 
7, 8, 11, 12, and 13, with Class 3 exhibiting significantly 
higher accuracy compared to all other recent methods. The 
second-highest overall accuracy was achieved by the SSRN 
[34] model, at 95.92%. Especially in Class 3, where the targets 
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Fig. 5. Land cover categories and classification results of the IP dataset with the compared methods: (a) ground truth; (b) SVM; (c) 
2D-CNN; (d) 3D-CNN; (e) SSRN; (f) CNNDH; (g) CACNN; (h) 2D-3D-D; (i) FADCNN; (j) HTD-2D-3D-PCNN. 
 

 
Fig. 6. Land cover categories and classification results of the PU dataset with the compared methods: (a) ground truth; (b) SVM; (c) 
2D-CNN; (d) 3D-CNN; (e) SSRN; (f) AfNet; (g) CACNN; (h) FFDN; (i) HybridSN; (j) HTD-2D-3D-PCNN. 
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Fig. 7. Land cover categories and classification results of the SA dataset with the compared methods: (a) ground truth; (b) SVM; 
(c) 2D-CNN; (d) 3D-CNN; (e) SSRN; (f) AfNet; (g) CACNN; (h) FFDN; (i) pResNet; (j) HTD-2D-3D-PCNN.

 
Fig. 8. Land cover categories and classification results of the KSC dataset with the compared methods: (a) ground truth; (b) SVM; 
(c) 2D-CNN; (d) 3D-CNN; (e) CNNDH; (f) FADCNN; (g) 2D-3D-D; (h) HTD-2D-3D-PCNN. 
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Fig. 9. Land cover categories and classification results of the BOT dataset with the compared methods: (a) ground truth; (b) SVM; 
(c) 2D-CNN; (d) 3D-CNN; (e) SSRN; (f) AfNet; (g) HybridSN; (h) HTD-2D-3D-PCN.
 
are small and closely related to other classes, we employ the 
NAMD2 method. This method enhances the differentiation of 
closely related classes and serves as input for 2D-CNN to 
learn spatial feature extraction. Similar to our experiments on 
previous datasets, this approach combines features extracted 
by 2D-CNN and 3D-CNN, enabling more effective learning of 
both spatial and spectral features, ultimately resulting in an 
improved Overall Accuracy (OA). 
 

VI. DISCUSSION 
The introduction of hybrid 2D-3D models in hyperspectral 

image processing has been extensively studied in previous 
research [35-40]. Many existing models in this domain utilize 
Principal Component Analysis (PCA) for dimensionality 
reduction and are integrated into either a 3D CNN architecture 
following a 2D CNN (3D in series 2D) [35-38] or a 2D CNN 
architecture following a 3D CNN (2D in series 3D) [40]. 
Another approach, as presented in [39], involves a multi-
branch strategy where multiple channels are combined into 
parallel 3D CNN architectures. 

In contrast, our proposed HTD-2D-3D-PCNN model 
represents a departure from these established approaches. It 

features a dual-branch architecture tailored to overcome the 
limitations of existing hybrid 2D-3D models. In one branch, 
recognizing the spatial emphasis of 2D CNNs, we integrate 
Hyperspectral Target Detection (HTD) for data filtering and 
dimension reduction, replacing PCA. This methodology 
enhances spectral features, effectively mitigates background 
noise, and reduces spectral bands. Furthermore, the inclusion 
of HTD accelerates training and improves spatial learning 
efficiency in subsequent 2D CNN layers. 

The second branch of our model is constructed upon the 
foundation of the PCA-3D CNN framework, enabling the 
learning of spectral and spatial features using 3D kernels. The 
resultant feature maps from both branches are merged and 
processed for classification through fully connected layers. 
Our approach capitalizes on the strengths of the original PCA-
3D CNN model while further augmenting spectral and spatial 
features through HTD-2D-CNN. 

Experimental results, presented in Tables 6 to 10, 
consistently demonstrate the superiority of our HTD-2D-3D-
PCNN model across all five diverse datasets. This model 
achieves the highest overall accuracy, average accuracy, and 
KAPPA coefficient, outperforming recent CNN models and 
confirming the effectiveness of our proposed methodology.  
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By leveraging the HTD algorithm, which is based on 
spectral features, we effectively enhanced the representation 
of spectral information for each target class within the images. 
Our methodology distinguishes itself from existing attention 
methods, as most attention techniques are an integral part of 
deep learning network architectures, aiming to focus on 
learning specific features during the network training process. 
In contrast, the HTD algorithm utilized in our proposed 
method operates independently of the deep learning network. 
The HTD algorithm is applied to the original images through a 
specific algorithm, enhancing and highlighting the spectral 
signature of each target class. The outcome of this process 
serves as the input for network training. Moreover, the HTD 
algorithm we employ demands minimal prior knowledge or 
background for different classes, solely requiring the spectral 
features of a single target class. This is in contrast to many 
attention methods, which may necessitate a significant amount 
of prior knowledge or background information for various 
categories within the dataset. The distinct feature of our 
proposed approach lies in its pre-processing step using the 
HTD algorithm, augmenting the visibility of target classes 
before integrating the data into the network training process. 

Similar to LRR-Net [54-55], which integrates the low-rank 
representation (LRR) model with deep learning techniques to 
achieve robust separation capabilities for background and 
target features in hyperspectral anomaly detection (HAD), our 
paper focuses on enhancing classification performance in 
hyperspectral image classification (HSIC) using HTD 
techniques. While HAD typically involves binary 
classification, HSIC may encompass over ten classes. In such 
scenarios, the approach in this paper involves leveraging HTD 
technology to enhance each class individually, achieving 
improved classification performance across multiple 
categories. 

Subsequently, we utilized 2D-CNN to extract spatial 
features, thereby achieving a fusion of spectral and spatial 
information. Furthermore, after reducing the data 
dimensionality through PCA, both spectral and spatial features 
played substantial roles in model learning and training. This 
was particularly beneficial when employing 3D-CNN for 
extracting spectral and spatial features. 

However, it was observed that using HTD followed by 2D-
CNN convolution resulted in decreased inter-class correlations, 
limiting the advantages when concatenating these features and 
processing them further with 3D-CNN for feature learning. In 
contrast, adopting a parallel architecture that combined the 
outputs of 2D-CNN and 3D-CNN proved to be more effective, 
as it merged two non-overlapping channels. By utilizing 
subsequent fully connected layers for classification, the 
parallel approach achieved higher overall accuracy compared 
to the sequential method. 

To substantiate the effectiveness of our proposed model 
framework, we conducted comparisons with several recent 
CNN methods, including FADCNN, AfNet, CACNN, SSRN, 
2D-3D-D, pResNet, HybridSN, FFDN, and CNNDH. 
Additionally, the data from Tables 6 to 10 clearly indicate that 

our HTD-2D-3D-PCNN model, built upon the proposed 
framework, outperforms traditional supervised learning 
methods like SVM, 2D-CNN, and 3D-CNN in terms of overall 
accuracy, showcasing improvements ranging from 
approximately 1% to 25%. The experimental results and 
analysis presented in these tables lead to the conclusion that 
our proposed model architecture consistently demonstrates 
superior performance across all five different datasets, 
particularly excelling in smaller classes and effectively 
handling fine details at the edges of each class. 

The advantages of the method proposed in this paper have 
been delineated earlier. One aspect that requires ongoing 
refinement is the selection of the HTD algorithm, as it can 
influence the outcomes across diverse datasets. The choice of 
the method may need to be tailored based on the 
characteristics of each specific dataset. Hence, the 
generalization capabilities of the various HTD algorithms 
discussed in this paper can be continuously optimized to 
enhance adaptability across a range of datasets. 

Other limitations of the proposed method, such as spectral 
variability, present inherent challenges in hyperspectral 
imagery obtained from airborne or satellite sources [56]. In 
practical applications, the computational resources required 
for the training process may impose constraints, necessitating 
higher hardware specifications. Variabilities that warrant 
further exploration encompass environmental conditions, as 
scenes captured in different shooting scenarios and with 
various hyperspectral instruments may yield varying pixel 
resolutions and spectral intensities. Therefore, when applying 
the proposed method to different public datasets, it becomes 
imperative to configure distinct window sizes and employ 
diverse HTD algorithms to address situations where varying 
spectral intensities are exhibited across different datasets. 
 

VII. EFFECT OF PARAMETERS 
This chapter analyzes the impact of different parameters in 

the proposed model architecture on its classification 
performance. Specifically, we investigated the effects of 
various HTD algorithms, window sizes, and training sample 
proportions. 
 

A. Different HTD algorithms 
Table XI shows the results when the training samples were 

fixed at 10%. For the IP, SA, and KSC datasets, the NAMD 
algorithm achieved the best overall accuracy with values of 
98.41%, 99.92%, and 99.82%, respectively. For the PU dataset, 
the CEM algorithm yielded the highest overall accuracy, at 
99.85%. In the case of the BOT dataset, the NAMD2 
algorithm achieved the best classification performance, with 
an overall accuracy of 98.82%. 

      Table XI illustrates that using the results of either HTD 
or PCA as input for the 2D branch in the network model yields 
different outcomes. The classification accuracy obtained when 
employing HTD as the input for the 2D branch is higher 
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TABLE XI 
CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS 

AS INPUT TO THE 2D BRANCH 

Dataset Measure  Target Detection Algorithms 
PCA CEM CEM2 NAMD NAMD2 

 OA 95.71 96.70 97.62 98.41 97.53 
IP AA 94.44 95.72 95.99 98.27 95.58 
 Kappa 95.27 96.24 97.29 98.18 97.19 
 OA 96.42 99.85 99.65 99.52 99.32 

PU AA 96.15 99.73 99.39 99.11 98.82 
 Kappa 96.23 99.82 99.54 99.37 99.09 
 OA 96.87 99.90 99.87 99.92 99.78 

SA AA 96.68 99.81 99.74 99.86 99.48 
 Kappa 96.72 99.90 99.85 99.91 99.75 
 OA 96.83 98.83 88.54 99.82 99.51 

KSC AA 96.57 98.29 85.28 99.75 99.39 
 Kappa 96.63 98.71 87.21 99.80 99.45 
 OA 95.69 98.69 97.95 98.48 98.82 

BOT AA 95.50 98.63 97.72 98.44 98.74 
 Kappa 95.37 98.57 97.78 98.36 98.72 

 

 
Fig. 10. Classification performance on different window sizes. 
 

 
Fig. 11. Classification performance on different network 
model. 
 
compared to using PCA algorithm as the input. Therefore, it 
can be inferred that HTD enhances the spectral features of the 
target class beforehand, allowing the network model to obtain 
clearer spatial information for learning and classification. 

Furthermore, from the experimental results in Table XI for 
the five datasets using different HTD algorithms, it could be 
observed that generally, NAMD outperformed CEM in terms 
of the classification performance. Three main differences were 
identified between the two HTD algorithms discussed in the 
previous chapters. First, the calculation of the signal-to-noise  

 
Fig. 12. Classification performance on different percentages of 
training samples. 

 

 
Fig. 13. (a) Training accuracy and (b)Training loss of the 
HTD-2D-3DPCNN. 
 
ratio (SNR) was different. NAMD performs SNR calculations 
in the DS-space, while CEM performs it in the R-space, 
effectively eliminating the correlation matrix representing the 
background in the original data space. Second, both 
algorithms employ different methods to eliminate the 
influence of the background. NAMD uses variance matrix K, 
while CEM uses correlation matrix R. Third, since NAMD is 
an algorithm based on sub-pixel target detection, compared to 
pure pixel target detection, it requires the estimation of 
abundance scores using the Mahalanobis distance (MD). This 
led to the need to subtract the background mean (μb) from all 
pixel samples (r) and target signal (t) in the detector. In Table 
XI, it becomes evident that, with the exception of the BOT 
dataset, the majority of datasets do not yield benefits from 
implementing the HTD algorithm in a squared manner. This 
specific implementation tends to overly emphasize the already 
strong spectral features while sacrificing the weaker ones, 
resulting in a reduction in Overall Accuracy (OA). Hence, it 
can be concluded that the squared form of the HTD algorithms 
are not universally suitable for all datasets. 
 

B. Different Window size 
Figure 10 shows the overall accuracy results obtained with 

different window sizes before feeding the data into the CNN 
model. Eight different window sizes were tested for each of  
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TABLE XII 
TRAINING TIME OF DIFFERENT ALGORITHMS  

Time 
(Seconds) 

HTD 
2D-CNN 

PCA 
3D-CNN 

PCA 
2D+3D 
 series 

HTD 
2D-3D 
PCNN 

IP 22.743 35.714 28.104 85.524 
PU 32.834 42.457 104.215 158.692 
SA 82.901 96.846 130.030 193.107 

KSC 16.167 18.539 17.603 43.691 
BOT 7.041 13.799 12.595 17.201 

 
the five datasets: 25 x 25; 23 x 23; 21 x 21; 19 x 19; 17 x 17; 
15 x 15; 13 x 13; and 11 x 11. 

The experimental findings demonstrated that for the IP and 
BOT datasets, setting the window size to 25 x 25 yielded the 
best performance, achieving overall accuracies of 98.41% and 
98.82%, respectively. For the KSC dataset, the highest overall 
accuracy (99.82%) was achieved when the window size was 
set to 23 x 23. In the case of the PU dataset, the optimal 
window size was 19 x 19, resulting in an overall accuracy of 
99.85%. As for the SA dataset, the best performance was 
obtained with a window size of 15 x 15, achieving an overall 
accuracy of 99.92%. 

Furthermore, the experiments revealed that as the window 
size increased, the overall accuracy showed an upward trend. 
However, the window size also impacted the training time of 
the model, with larger window sizes requiring longer training 
times. Therefore, selecting an appropriate window size was 
essential, as its balanced accuracy and training efficiency for 
the specific requirements of the application. 
 

C. Ablation Analysis 
In Figure 11, an ablation analysis of network models is 

presented, comparing 2D-CNN, 3D CNN, 2D+3D Series CNN, 
and HTD-2D-3D-PCNN. For 3D-CNN and 2D+3D Series 
CNN, experiments were conducted with PCA dimensionality 
reduction after HTD, as the spectral features are already 
enhanced and lack spectral correlations. Following HTD, only 
spatial features need to be captured through 2D-CNN. 

However, PCA, performing a linear transformation, is better 
suited for the simultaneous extraction of spectral and spatial 
features using 3D-CNN. Therefore, in our model design, HTD 
is coupled with 2D-CNN, while PCA is paired with 3D CNN. 

We observe that HTD-2D-CNN performs quite well, 
outperforming PCA-3D CNN in most datasets besides BOT 
data. This is attributed to the relatively small size of targets in 
BOT data, where 2D CNN struggles to extract spatial features. 
In contrast, 3D-CNN, with its capability to simultaneously 
extract spectral and spatial information, performs better in 
such scenarios. 

However, results indicate that, across five different datasets, 
our proposed HTD-2D-3D-PCNN achieved the highest 
classification accuracy when employing a parallel architecture, 
which is superior to using a sequential architecture. This 
implies that through this dual-channel parallel approach, it is 
possible to extract the maximum amount of information, 
thereby producing optimal results. 

 

D. Different Numbers of Training Samples 
Figure 12 illustrates the overall accuracy results obtained 

with different training sample ratios, while keeping the 
validation sample ratio fixed at 5%. The experiments were 
conducted using four different training sample ratios for each 
of the five datasets (20%, 15%, 10%, and 5%). The window 
sizes used were 25 x 25 for the IP and BOT datasets, 23 x 23 
for the KSC dataset, 19 x 19 for the PU dataset, and 15 x 15 
for the SA dataset. 

The experimental findings revealed that the proposed HTD-
2D-3D-PCNN model achieved the highest overall accuracies 
on all five datasets when the training sample ratio was set to 
20%. Specifically, for the IP dataset, the overall accuracy 
reached 99.17%; for the PU dataset, the overall accuracy was 
99.93%; for the SA dataset, the overall accuracy was 99.96%; 
for the KSC dataset, the overall accuracy was 99.93%; and for 
the BOT dataset, the overall accuracy was 99.48%. 

Fig 12. demonstrates that as the training sample ratio 
increased, the overall accuracy also improved. However, the 
training sample ratio also affected the training time of the 
model, with higher sample ratios leading to longer training 
times. Therefore, there was a trade-off between accuracy and 
training time, and selecting an appropriate training sample 
ratio based on the specific requirements and constraints of the 
application was crucial. 
 

E. Convergence and Complexity Analysis 
To provide a comprehensive analysis of the proposed 

method, this paper tracks the variation trends of training 
accuracy and training loss for four different network models 
across five datasets. The accuracy and loss curves are 
illustrated in Figure 13 (a) and Figure 13 (b), where the 
vertical axis represents the evolution of accuracy or loss, and 
the horizontal axis represents the number of epochs. From 
Figure 13 (b), it can be observed that the experiments were 
conducted with a fixed number of epochs set at 300 for the 
network models. The experiments on all five datasets showed 
that the loss value tended towards 0 after approximately 200 
epochs, particularly excelling on the SA and PU datasets. This 
indicates reasonable training and good convergence of the 
proposed method's network models. Given that the proposed 
method employs HTD as a preprocessing technique, spatial 
information holds relative importance. However, the BOT 
dataset, characterized by sparse images, may affect spatial 
features, potentially resulting in slower convergence compared 
to other datasets. 

Table XII compares the training time of the proposed 
method with other experimental models across the five 
datasets. Training time and computational costs are influenced 
by factors such as the size of the hyperspectral image, the 
number of training samples, neural network layers, and 
branches. The results reveal that the training time cost of the 
network model proposed in this paper is longer compared to 
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other experimental models. This is attributed to the proposed 
network model's increased number of branches and deeper 
depth, which nonetheless achieves optimal classification 
performance. Among the datasets, the SA dataset incurs the 
longest training time cost due to its larger number of samples 
per class. In contrast, the BOT dataset exhibits the shortest 
training time cost as it contains fewer samples per class 
compared to other datasets, with this paper setting its training 
ratio to only 5%. 
 

VIII. CONCLUSION 
This paper presents a novel network model for 

hyperspectral image classification, which integrates 
hyperspectral target detection (HTD) with a hybrid 2D-CNN 
and 3D-CNN architecture. The model comprised two branches: 
one utilizing the HTD algorithm to enhance and highlight 
spectral features of the target class in the image, followed by 
learning the spatial features using 2D-CNN. The other branch 
performed PCA dimensionality reduction on the original data, 
followed by extracting both spectral and spatial features using 
3D-CNN. The resulting feature maps from both branches were 
merged and fused, and classification results were obtained 
through fully connected layers. 

This paper contributes to the field in two significant ways. 
Firstly, it introduces the utilization of Hyperspectral Target 
Detection (HTD) in the data preprocessing stage, offering an 
alternative to conventional methods primarily reliant on 
Principal Component Analysis (PCA) for dimensionality 
reduction. HTD enhances spectral features, suppresses 
background noise, and improves feature extraction and 
learning efficiency in subsequent models. Additionally, it 
achieves significant dimension reduction, leading to improved 
training outcomes. 

Secondly, the proposed method combines the strengths of 
PCA + 3D CNN with HTD-2D-CNN to enhance spectral 
features in spatial learning. The independent training of these 
branches synergistically merges feature maps for classification, 
particularly beneficial for handling smaller class sizes and 
capturing fine details at the edges. Comparative evaluations 
across five publicly available hyperspectral datasets 
demonstrate the superior performance of the proposed 
approach in terms of overall accuracy, average accuracy, and 
the KAPPA coefficient, outperforming recent methodologies. 

In future research, further exploration of HTD techniques 
could enhance classification performance and improve our 
method's generalization capabilities. Additionally, 
investigating adjustments to the network architecture, such as 
incorporating attention mechanisms and addressing various 
variabilities, would be valuable. While prioritizing 
classification performance, efforts could focus on optimizing 
the architecture to reduce training time costs. This might 
involve designing alternative networks to enhance 
classification efficiency and continually pushing the 
boundaries of performance. 
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