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Abstract—This study provides the first long-time series of 

spatial and temporal distributions for small lakes in the 

Larsemann Hills (69◦23′S, 76◦20′E) in the East Antarctic. In the 

Larsemann oasis, there is a significant number of over 150 small 

lakes, which can be observed with high spatial resolution in remote 

sensing imagery. However, accurately identifying and analyzing 

these small water bodies and elongated rivers has been challenging 

due to the mixed pixels effect and limitations in available middle 

spatial resolution imagery. In our study, we propose a data-driven 

approach within the Conditional Random Fields (CRF) 

framework, which considers three scales: superpixel, pixel, and 

subpixel, to refine the boundaries of small water bodies efficiently. 

The superpixel level quickly identifies the main water body and 

NDWI provides a buffer region, while the pixel level employs SVM 

to obtain a more precise boundary. Subpixel mapping technology 

within the pixel level further reduces mixed pixel effects for 

improved accuracy. The waterbodies were extracted from 

Sentinel-2 images with a spatial resolution of 10 m. The lake 

boundaries derived from the proposed algorithm in this study 

showed good agreement with in-situ measurements of the lake 

shoreline delineated by aerial images from the 39th Chinese 

Antarctic Scientific Expedition. The analysis revealed distinct 

seasonal patterns across the Larsemann Hills while the lake areas 

achieved their peak extents earlier, specifically in February before 

2020 and in January after 2020. The water body mapping based 

on the proposed algorithm can contribute to Antarctic remote 

sensing hydrological observations, particularly in the monitoring 

of outburst events. These findings demonstrate the potential of 

extending this method to other Antarctic oases to enhance intra-

annual lake observations. Moreover, Sentinel-2 images provide 

valuable remote sensing data for studying the seasonal cycles of 

water bodies, including those of varying sizes in the Larsemann 

Hills, based on long-term time series imagery. 
Index Terms—small lakes, Conditional Random Fields (CRF), 

superpixel-pixel-subpixel, spatial and temporal analysis. 
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I. INTRODUCTION 

he Antarctic water bodies primarily consist of 

supraglacial and subglacial lakes, playing a crucial role 

in ice sheet hydrology and the stability of ice sheets 

(Lenaerts, 2017; Bell, 2017; Corr, 2022). Most 

supraglacial lakes tend to be quite small, particularly when 

situated within glacier fractures and ice shelf crevasses, 
potentially serving as significant precursors to ice shelf 

disintegration. Given the inherent trade-off between spatial and 

temporal resolution in remote sensing, developing a subpixel 

mapping approach becomes essential to accurately assess the 

interannual variability of lake distribution. In the Larsemann 

Hills oasis, there are 150 lakes distinguished by their compact 

sizes, with a maximum area of 0.13 km2. Monitoring the spatial 

and temporal distribution of lakes in the Larsemann Hills is 

important for understanding the dynamics of the local 

hydrological system and its response to climate change, 

scientists gain insights into the water cycle in the region, its 
impact on the local ecosystem, and the potential implications 

for broader Antarctic ice sheet dynamics. The Larsemann Hills 

oasis is prone to regular and unpredictable occurrences of lake 

drainage, including outbursts, which have been observed 

annually. Of notable concern is the Boulder outburst flood that 

took place on January 30, 2017, located in the vicinity of the 

Russian expedition station (Boronina, 2021). These instabilities 

in the oasis demonstrate the dynamic nature of the region and 

its susceptibility to abrupt changes in lake behavior that holds 

immense importance for monitoring the temporal and spatial 

variations of water bodies within the Larsemann Hills oasis 

even in the wider Antarctic region. 
Long-time series monitoring using remote sensing 

technology is significant in understanding the lake dynamic 

changes of lakes, offering valuable insights into local climate 

variability and Antarctic ice sheet dynamics (Zhang, 2023). 

Satellite remote sensing provides continuous coverage, 

allowing for day and night monitoring of lakes with high 

spatial-temporal-spectral resolution. The remote and harsh 

environment of Antarctica presents significant challenges in 

establishing hydrological stations for widespread lake 

monitoring. Only a limited number of large lakes near the 

Indian, China Zhongshan Station, and Russian stations have 
hydrological stations dedicated to lake monitoring. This limited 

coverage poses difficulties in meeting the continuous and 

extensive monitoring requirements in the region. Satellite 

remote sensing imagery can provide extensive data support 
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enabling continuous monitoring of temporal and spatial 

changes in lakes. Optical remote sensing sensors are classified 
into three categories based on their spatial resolution: coarse 

resolution (>200 meters), medium resolution (5-200 meters), 

and high resolution (<5 meters). High-resolution optical remote 

sensing images have distinct advantages in observing and 

classifying land-use categories, particularly in capturing 

detailed information and accurately distinguishing small-sized 

land cover classifications, such as small water bodies (Li, 2022; 

Yang, 2020). In polar regions, the availability of remote sensing 

imagery is mainly concentrated at medium resolution. 

Enhancing the spatial resolution of optical satellites has always 

been one of the most critical tasks in the field of polar remote 

sensing. The subpixel unmixing technique is important in 
achieving improved spatial resolution by extracting subpixel 

information to enhance the classification of land cover (Liu, 

2020; Wang, 2018). Specifically, the medium-resolution 

Sentinel-2 data, which is freely accessible and offers a 

resolution of 10 meters, is well-suited for the monitoring of 

small-scale lakes within the Larsemann Hills. In addition to 

deep learning-based approaches for water body extraction (Sui, 

2022), conventional methods can be categorized into three 

types. The first method is based on water body indices, wherein 

discriminative water body indices are formulated by relying on 

the spectral responses in different bands, and efforts are made 
to effectively combine them for water body extraction 

(McFeeters, 1996; Wu, 2018). The second method involves 

exploring the spatial features of water bodies on imagery, such 

as edges and shapes, and performing pixel clustering to separate 

water from non-water regions (Sui et al., 2013; Qi, 2019). The 

third method combines the first and second approaches (Zhang, 

2015; Zhang, 2021), wherein a water body extraction method 

considering both spectral and spatial features is constructed 

within the framework of conditional random fields, enabling 

effective extraction of water bodies. 

In the context of accurately detecting and delineating small 

lakes within the Larsemann Hills, the utilization of high-
resolution imagery, such as WorldView-2 data, has been 

employed by Jawak et al. (2015) to generate a series of 

normalized difference water index (NDWI) features. The 

selection of different water indices for various types of water 

bodies determines the accuracy of identification and analysis. 

Nevertheless, there still exists a notable disparity in achieving 

precise extraction of small-sized lakes when employing 

imagery with lower spatial resolutions. The inaccuracies in 

water body extraction results at lower spatial resolution 

primarily are attributed to the presence of mixed pixels 

containing rock or shadow elements, which commonly occur at 
the water body boundaries. Subpixel mapping techniques can 

be employed to provide a spatial distribution of each class 

within these mixed pixels (Wang, 2021; Wang, 2019). To 

ensure the efficiency of the unmixing and subpixel mapping 

algorithm, the conditional random fields (CRF) can be 

employed to describe the interior, exterior, and boundary 

components of the water body at pixel, superpixel, and subpixel 

respectively. Subpixel mapping aims to obtain more detailed 

information by dividing low-resolution pixels into higher-

resolution subpixels. This process proves to be particularly 

effective in identifying boundaries, especially for small lakes in 

middle-resolution remote sensing imagery (Wu, 2018; Wang, 

2019). By performing subpixel mapping under the constraints 
of least squares and non-negativity, each coarse pixel can be 

divided into subpixels, resulting in more precise boundary 

information (Wang, 2020). It is worth mentioning that the 

Conditional Random Fields (CRF) framework takes spatial 

relations into account when modeling subpixel labels. By 

incorporating spatial adaptive attraction values and a spatially 

smoothed prior, the CRF framework ensures that the subpixel 

labels among neighboring pixels are accurately represented, 

while also considering the abundance constraints (Chen, 2023). 

At the superpixel scale, a segmentation technique is utilized to 

group similar pixels into superpixels, which greatly enhances 

the efficiency and time-saving aspect of the process. When it 
comes to superpixels, such as those used in the conditional 

random fields (CRF) framework, they are constructed based on 

pairwise potential and unary terms (Zhu, 2016). Unary terms 

provided by SVM do not take into account contextual 

information, but we can enhance the classification results by 

incorporating multiple textural information, such as Gray Level 

Co-occurrence Matrix (GLCM). 

Continuous observations of ice-free lakes during the austral 

summer in the oasis are primarily based on field experiments 

involving meteorological and hydrological measurements. 

However, a comprehensive investigation of the spatial and 

temporal changes in small lakes, which is crucial for 

understanding the seasonal water cycle and monitoring lake 

outburst susceptibility, is lacking. This study aims to address 

this gap by providing long-term spatial and temporal 

distributions of lake areas in Larsemann Hills. Our focus is on 

developing algorithms for detecting small lake types using mid-

high spatial resolution remote sensing technology and multiple 

machine learning algorithms. Section II presents the study area 

and data used for detecting small lakes in middle-spatial 

resolution remote sensing images. Section III provides details 

on the proposed algorithms, while Section IV showcases the 

major experimental results and an assessment of these 

experiments. A comparison of different machine learning 

algorithms and strategies is presented, followed by the 

conclusions in Section V. 

II. STUDY AREA AND MATERIALS 

A. Study area, climate, lakes 

The Larsemann Hills (69◦23′S, 76◦20′E) are located on the 

shoreline of Princess Elizabeth Land, in the southeastern region 

of Prydz Bay, East Antarctica. Situated between the Amery Ice 

Shelf and Dålk Ice Shelf, the Larsemann Hills predominantly 

consist of outcrop rocks, making it a coastal ice-free oasis. 

Fig.1(a) displays the map provided by the Sentinel-2 optical 

imagery depicting the Larsemann Hills, which exhibit three 

primary land cover classes: water bodies, glacier ice, and 

exposed rocks (Markov, 2019). Lakes can be found in the 

vicinity of rock islands which can be observed from the aerial 

images in Fig.1(b) collected from the 39th Chinese Antarctic 

Scientific Expedition Fig.1(c). The weather of the Larsemann 

Hills is under the influence of the Katabatic winds that blow      
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（a）The proposed algorithm derived 

from the Sentinel-2 imagery 

(b) Ground truth by manual delineation 

from the 39th Chinese Antarctic Scientific 
Expedition 

(c) The 39th Chinese Antarctic Scientific 

Expedition for aerial survey experiment of 
the Zhongshan Station in Antarctica  

Fig. 1. The location of the Larsemann Hills. Major inland water bodies in blue (a). Water map generated from Sentinel-2 and layers 

derived through the proposed algorithm. The accuracy of the lake areas was verified through in-situ measurements taken by the 

39th Chinese Antarctic Scientific Expedition (b) and aerial images were collected from the Dolphin helicopter which is equipped 

with an ice survey camera payload (c). 

 
TABLE I 

SENTINEL-2 SATELLITE DATA 

Band name 
Central wavelength/nm Bandwidth/nm 

Spatial resolution/m 
S2A S2B S2A S2B 

1-Coastal aerosol 443.9 442.3 27 45 60 

2-Blue 496.6 492.1 98 98 10 

3-Green 560.0 559.0 45 46 10 

4-Red 664.5 665.0 38 39 10 

5-Vegetation Red Edge 703.9 703.8 19 20 20 

6-Vegetation Red Edge 740.2 739.1 18 18 20 

7-Vegetation Red Edge 782.5 779.7 28 28 20 

8-NIR 835.1 833.0 145 133 10 

8A-Vegetation Red Edge 864.8 864.0 33 32 20 

9-Water Vapor 945.0 943.2 26 27 60 

10-SWIR-Cirrus 1373.5 1376.9 75 76 60 

11-SWIR 1613.7 1610.4 143 141 20 

12-SWIR 2202.4 2185.7 242 238 20 

 

from the northeast continuously throughout the year. It rarely 

rains in the Antarctic ice-free zone (Larsemann Hills also 

known as an oasis). The region's average annual precipitation 

(in the form of snow) is only 100-150 mm of water equivalent. 

According to the Reference Elevation Model for Antarctica 

(REMA), the terrain around the Larsemann Hills consists of 

hills ranging in elevation from 30 to 120 m (Howat, 2019). The 

average air temperature in summer is about 3°C while the 

average air temperature in winter is around -16 ° C. 

Consequently, the Larsemann Hills have been selected as 

expedition sites by China, Russia, and India. With over 150 

lakes, varying in water temperature from 0 to 10°C and water 

depth ranging from 5 to 50 m, these lakes cover an area ranging 

from 0.001 to 0.13 km2. Most of these lakes are landlocked and 

occupy depressions around the rock and ice-free areas. They 

can be classified as supraglacial lakes, epiglacial lakes, and 

englacial lakes. During the austral summer, these lakes may be 

free of ice. Supraglacial lakes are typically located at the edges 

of the continental ice sheet, often in blue ice regions like 

Boulder Lake, which is characterized by a thick ice cover. 

Epiglacial lakes occur at the boundary between rocks and the 

continental ice sheet, such as Lake Ledyanoe. Notably, on 

January 30, 2017, the drainage of Dålk lakes occurred due to 

outburst floods. This study primarily focuses on two 

representative lake types in the Larsemann Hills: landlocked 

lakes and supraglacial lakes. 

B. Sentinel-2 data 

The Sentinel Satellite system is a key component of the 

Copernicus Program, which was announced by the European 

Space Agency (ESA). The Sentinel-2A(S2A) platform was 

launched on June 23, 2015, and operates in a near-polar orbit 

with a repeat cycle of 10 days. Since the launch of the Sentinel-

2B (S2B) satellite on March 7th, 2017, the Sentinel-2 

constellation system has been able to provide high-quality 

optical images with a repeat time of up to 5 days. With 13 

spectral channels covering the visible/near-infrared (VNIR) and 

short-wave infrared (SWIR) spectral ranges, the S2A and S2B 

optical instruments are designed to support the Global 

Monitoring for Environment and Security service, as well as 

land and ocean environment observation. This paper utilizes a 
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total of 67 Sentinel-2 imagery scenes, including both L1C and 

L2A data, spanning from September 2016 to March 2023, for 

lake extraction in the Larsemann Hills of Antarctica. The L1C 

data provided includes level-1 top-of-atmosphere reflectances 

in UTM projection, with tiles measuring 100 km by 100 km. 

The aforementioned data have been subject to both radiometric 

and geometric corrections. The L2A data, on the other hand, 

consists of surface reflectance products. To produce the 

monthly lake area product, we have selected 49 scenes from 

each year and month, spanning from September to March. The 

lake extraction experiments utilized Sentinel-2 data with a 

spatial resolution of 10 meters, including the red, green, blue, 

and near-infrared bands. Detailed information regarding the 

Sentinel-2 data can be found in Table I. Sentinel-2 Level-1A 

and C data covering the Larsemann Hills are collected and then, 

these Sentinel-2 images are preprocessed to eliminate the 

invalid pixels covered by the cloud. 

C. In-situ data 

We use the aerial survey dataset for evaluating the results of 

the lake areas and boundaries. For the validation, the in-situ 

measurements were collected during the 39th Chinese Antarctic 

Scientific Expedition. An aerial survey experiment and 

application demonstration of sea ice conditions in key Antarctic 

regions was conducted using the polar research helicopter and 

the developed high-resolution airborne polar remote sensing 

software and hardware system. The study focused on the 

Zhongshan Station in Antarctica and its surrounding sea ice 

areas. The aim was to provide data and technological support 

for the assessment of resource potential in polar regions and the 

planning of Antarctic expedition icebreaker routes. The aerial 

observation missions for two survey lines were conducted on 

the morning and evening of January 8th during the 39th Chinese 

Antarctic Scientific Expedition. The observation areas included 

the offshore sea ice area of Zhongshan Station and the 

Larsemann Hills region. The maximum straight-line distance of 

each survey line was 50 km, with a total flight distance of 300 

km. The helicopter maintained a constant altitude of 2 km and 

a speed of 150 km per hour throughout the flight, resulting in a 

flight time of over 2 hours for each survey line. A total of more 

than 1600 high-resolution photographs were successfully 

captured during the entire survey, meeting the predetermined 

quality standards and fulfilling the planned objectives. 

III. METHODOLOGY 

The proposed algorithm can extract water boundaries at three 

different scales. Algorithms for extracting water bodies at pixel, 

superpixel, and subpixel scales are introduced in the following 

respectively. 

 

A. Pixel-level lake extraction by Normalized Difference Water 

Index (NDWI) 

To infer water pixels of Larsemann Hills, the multispectral 

water indices are utilized to automatically distinguish water 

pixels from non-water pixels based on reflectance differences 

in the Green (𝜌𝐺𝑟𝑒𝑒𝑛 = 0.56μm  ) and near-infrared spectra 

(𝜌𝑁𝐼𝑅 = 0.842μm), respectively. The Normalized difference 
water index (NDWI) water index proposed by McFeeters 

(McFeeters, 1996) is based on the strong absorption of water in 

NIR and reflectance peaks in the Green band. It can be 

expressed as: 

𝑁𝐷𝑊𝐼 =
𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅
𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅

 (1) 

 

In Sentinel-2 imagery, the green spectra refer to band 3, and 

near-infrared (NIR) is band 8. In large-scale water mapping, 

spectral indices are significant such as NDWI, MNDWI, and 

AWEI (Feyisa, 2014). Then, NDWI is used to extract water 

features and then Otsu's global threshold (Otsu, 1979) is used 

to divide NDWI calculation results into water pixels and non-

water pixels. Otsu’s method is a nonparametric and 

unsupervised image segmentation algorithm based on the 

threshold to segment NDWI into water and non-water pixels. 

The threshold is selected from the maximum inter-class 

variance globally and calculated from the corresponding 

histogram of the NDWI of the image. Otsu’s method is the 

simplest and adaptive algorithm for selecting thresholds since 

it is independent of image brightness and contrast. 

Nevertheless, small-scale water mapping faces some 

challenges. For example, the accurate water boundary can be 

omitted since the muddy and shallow water bodies widely can 

be observed in the in-situ images. The snow, the muddy and 

shallow water bodies, and the shadows of the outcrops can 

contribute to the noise and thus impede the water extraction. To 

decrease the above-mentioned noise artifact and improve the 

accuracy of the boundary extraction, the subpixel mapping 

based on CRF for lake extraction has been proposed and 

described in Section 3.2. 

B. Superpixel-level lake boundary from Conditional random 

fields CRF 

Conditional random fields (CRF) model includes unary 

potential and pairwise potential. The unary potential 

individually deals with the pixel-level spectral information. The 

pairwise potential models the contextual information of 

neighborhood pixels. CRF models considering the superpixel 

strategy have successfully integrated multiscale contextual 

information into remote sensing identification. As a 

discriminative probability model, CRF directly builds the 

posterior distribution of the labels X conditioned on the 
observations Y. The pairwise potential is constructed on 

superpixels, which can be obtained by the mean shift 

segmentation method. The unary and pairwise potentials in the 

CRF model are described as follows: 

𝑃(𝑥|𝑦) =
1

𝑍𝐶𝑅𝐹
exp⁡ [∑𝑓𝑖

𝑢𝑛𝑎𝑟𝑦(𝑥𝑖)

𝑖∈𝑆

+∑ ∑ 𝑓𝑖𝑗
𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒(𝑥𝑖 , 𝑥𝑗|𝑦)

𝑗∈𝑁𝑖𝑖∈𝑆

] 

(2) 

 

The unary potential 𝑓𝑖
𝑢𝑛𝑎𝑟𝑦

 contributes to the probability of 
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a single superpixel taking the label of water or non-water. It can 

be constructed using the SVM classifier, which takes the 

multispectral bands (bands 3 and 8 in Sentinel-2) and NDWI 

features as the input. In this study, 24-dimensions data have 

been used to construct the unary potential. The pairwise 

potential 𝑓𝑖𝑗
𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒

⁡ models the contextual information by 

considering the interactions of the neighborhood superpixels. 

The pairwise potential is achieved by the graph cut method, 

which divides two nodes into water and non-water. In the graph 

cut method, the edge is defined as the neighbor superpixels. The 

relationships between the nodes (central superpixel) and 

neighbor superpixels are calculated. Under the minimum 

criteria of least energy loss object term, each superpixel takes 

the label of water or non-water. Since the melting ice of the 

lakes may lead to some misclassification, we design a further 

step to remove these types of errors. It can also improve the 

accuracy along the lake boundary. The spatial relation between 

a superpixel and its neighboring superpixels is taken into 

account for comparing the superpixel and pixel level 

information that will be provided in a detailed description as the 

following. Within the water body, some pixels are classified as 

non-water labels. If the comparison results indicate 

inconsistency, we utilized the contextual information from the 

pairwise potential to update the wrong superpixels, which get 

the new label as most of the neighborhood superpixels. 

Especially during the freezing period, some lakes are buried by 

snow, some misclassified superpixels can be corrected by this 

strategy. 

 

C. Subpixel-level lake boundary based subpixel mapping 

Since lakes in Larsemann Hills are very small lakes 

(<0.13km2), pixel and subpixel level lake identification are 
collaborative on Sentinel-2 imagery with a spatial resolution of 

10 m. Pixel-level classification provides both the criteria for the 

pairwise potential and refinement of the unary potential which 

is constructed on the superpixels. Subpixel mapping can 

provide the spatial distribution of water within each mixed 

boundary pixel, leading to a more accurate lake boundary. 

Along the boundary, the mixed pixels usually degrade the water 

area calculation which can be resolved by using the spectral 

unmixing technique. Since the lakes in the Larsemann Hills are 

usually small (<0.13km2), the CRF algorithm is insufficient to 

describe the characteristics of small lakes (<0.01km2), which 

often leads to missed detection. On the other hand, the highest 
spatial resolution of Sentinel-2 is 10 m, and the lake boundary 

area often exists in the form of mixed pixels.  

 

1) Features for the SPM based on CRFs 

To improve the ability to identify small lakes and improve 

the accuracy of lake boundary extraction, this paper proposes a 

subpixel mapping method based on the CRF model, which can 

provide the probability belonging to the lake pixel in the Unary 

potential. In this study, the water relative features are calculated 

including the pixel-level feature NDWI, and the subpixel-level 

feature including the abundance feature map, spatial attraction 
value and the adaptive attraction value for water. Additionally 

in this study, GLCM features including mean, variance, 

homogeneity, second moment, and entropy have been used for 

water mapping. The features constructed for the unary potential 
in the CRF model can be expressed as the following: 

𝐷𝑁 = ∑ 𝑓𝑡
𝑘𝑇𝑘

𝑘=1
𝑖=1 , where 𝑓𝑘 > 0⁡&∑ 𝑓𝑘

𝐾
𝑘=1 =1 (3) 

at𝑖,𝑗
𝑘 = ∑

𝑓𝑡
𝑘

𝐷𝑡⁡𝑖,𝑗

𝑁
𝑡=1 , where 𝐷𝑡⁡𝑖,𝑗 =

√𝑑2 + (0.5𝑑 + 0.5)2 

(4) 

Homogeneity =
∑ ∑ (𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)𝑆𝑑(𝑖, 𝑗)

𝐾
𝑗=1

𝑘=1
𝑖=1

𝜎𝑥𝜎𝑦
 (5) 

  Entropy = ∑ ∑ 𝑆𝑡(𝑖, 𝑗)𝑙𝑜𝑔10𝑆𝑡(𝑖, 𝑗)
𝐾
𝑗=1

𝑘=1
𝑖=1  

 

(6) 

Angular Second Moment(ASM)=
∑ ∑ 𝑆𝑑,𝜃(𝑖, 𝑗)

2𝐾
𝑗=1

𝐾
𝑖=1  

(7) 

 

Equation (3) is the abundance calculation method using fully 

constrained least squares unmixing (FCLSU) techniques, where 

𝑓𝑡
𝑘  is the abundance under the constraint that each abundance 

should be nonnegative and sum-to-one (Heylen, 2011). 

In equation (4), at𝑖,𝑗
𝑘  is the spatial attraction value at the 

subpixel position 𝑖, 𝑗  for the category k. 𝑁  is the number of 

subpixels within each single pixel. 𝐷𝑡⁡𝑖,𝑗  represents the 

Euclidean distance between the subpixel located at coordinates 

𝑖, 𝑗 and the neighboring pixel at position t. The parameter 𝑑 

denotes the scale of the subpixel, and in this study, we have set 

𝑑 equal to 5. 

In equation (5) to (7), where 𝜇𝑥 , 𝜇𝑦  represents mean value 

and 𝜎𝑥 , 𝜎𝑦 is the corresponding standard deviation of different 

cells. 𝑆𝑡  is a descriptor that computes the similarity of different 

pixels over each cell. For GLCM features, the window size is 4, 

the separated distance 𝑡 is 4, the moving steps are set to 4, and 

the gray level is 64. 

 

2) Lake boundary mapping based on SPM with CRFs 

Because the lake boundary area is usually composed of 

mixed pixels, to improve the positioning accuracy of the lake 

boundary, this study employs a subpixel mapping (SPM) 

method based on conditional random fields (CRFs), taking into 

account the influences of spatial position and observation 

sequence. Additionally, adaptive attraction features are 

introduced to enhance the accuracy of lake boundaries. 
In the extraction of adaptive attraction features, we initially 

leverage the spectral reflectance information from the original 

Sentinel-2 imagery to obtain pixel-level abundance information. 

Building upon this, a subpixel-level attraction feature is 

constructed through a resampling strategy, where the spatial 

attraction feature calculation formula is depicted in equation 4. 

The scaling factor is set to 5, indicating that each pixel in the 

original image corresponds to a 5 * 5 region in the subpixel-

level image. The spatial attraction primarily determines the 

category of each subpixel by calculating the attraction value 

between neighboring subpixels and within the central subpixel, 
which does not require any prior information. Subpixel 

mapping essentially involves mapping pixel-level features to 

the subpixel space. The accurate mapping of these features 

determines the assignment of subpixel categories. In this study, 

we introduced three endmembers, namely lakes, rocks, and  
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Fig. 2. Flowchart of the process of extracting small lake areas from Sentinel-2 data. 

 

snow/ice, and their allocation in the subpixel space is 

determined based on the spatial attraction values. The spatial 

attraction value considers the spatial and contextual information 

between pixels, while the observation order takes into account 

the relationships within subpixels. Without prior information, 

assuming lakes are known observed objects, the attraction value 

of lakes to subpixels of the lake category should be greater than  
that for subpixels of other categories. By iterating through the 

defined categories using this approach, we obtain three-

dimensional features for each endmember. Combining these 

with the 24-dimensional features, such as the GLCM features 

constructed in Section 1), results in a total of 33 dimensions of 

features. The primary focus of this study is on lake extraction, 

and thus the Moran index is employed to determine the 

observation order for water bodies. All these features are used 

to construct the CRF models.  

In CRFs modeling, the discriminant model can be described 

in the following corresponding energy function: 

𝐸(L) = −log𝑃(𝑥|𝑦)
= 𝑙𝑜𝑔𝑍𝐶𝑅𝐹

−∑𝑓𝑖
𝑢𝑛𝑎𝑟𝑦(𝑥𝑖)

𝑖∈𝑠

−∑ ∑ 𝑓𝑖𝑗
𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒(𝑥𝑖 , 𝑥𝑗|𝑦)

𝑗∈𝑁𝑖𝑖∈𝑆

⁡⁡ 

(8) 

 

Minimizing energy is equivalent to maximizing the posterior 

probability of the label field in the CRF framework. Therefore, 

based on the maximum posterior probability criterion, we can 
derive the new expressions for unary and pairwise potentials. 

𝑓𝑖
𝑢𝑛𝑎𝑟𝑦(𝑥𝑖) =∑𝜔𝑖𝛿(𝑦𝑖 , 𝑙)𝜑𝑖(𝑥𝑖)

𝑖∈𝑠

⁡⁡ (9) 

 

The unary is constructed by the normalized features 𝜑
𝑖
(𝑥𝑖) 

we have described in Section A. 𝜔𝑖 is the weight coefficient of 

the features. 𝛿(𝑦𝑖 , 𝑙) is the Dirac function indicating a value of 

1 when the current superpixel label 𝑦
𝑖
 for water otherwise with 

0. In the subpixel scale, similar pixels are grouped into 

superpixels, which can be obtained by the mean-shift algorithm. 

𝑓𝑖𝑗
𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒(𝑥𝑖 , 𝑥𝑗|𝑦) =∑ ∑ 𝜑𝑖,𝑗(𝑥𝑖 , 𝑥𝑗|𝑦)

𝑗∈𝑁𝑖𝑖∈𝑆

⁡⁡ (10) 

The pairwise potential corresponds to the correlation between 

the superpixel 𝑆 and neighbor superpixels 𝑁𝑖 when the labels of 

both are the same, the value is 1 divided by their Euclidean 

distance. When the labels are different, the value is 0. 

 

3) The overall workflow  

The flowchart of the proposed Tri-SF algorithm and the 
validation of the obtained lake boundary is illustrated in Fig.2. 

The algorithm proposed in this paper comprises two main 

components: model training and lake boundary extraction. The 

model training involves three steps. The first step is the 

selection of training samples, where the Normalized Difference 

Water Index (NDWI) is employed to compute potential water 

regions. A lake buffer zone is established, within which 

endmembers (pure pixels) are chosen as training samples (1000 

pixels per class). Then, feature extraction including abundance, 

spatial attraction value and GLCM statistics (mean, variance, 

homogeneity, second moment, and entropy) is performed using 
four original bands including red, green, blue, and near-infrared. 

Abundance features are computed based on the reflectance of 

the four original Sentinel-2 bands using a fully constrained least 

squares algorithm. Then, adaptive spatial attraction features are 

computed at the subpixel scale, considering the position 

relationships between subpixels and original pixels and the 

impact of different class observation sequences. The final 

subpixel scale Conditional Random Fields (CRF) model is 

constructed using the unary and pairwise potentials. To separate 

the water body and background, a minimum energy function 

loss constraint is applied using a criterion based on the 
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Maximum A Posteriori (MAP) principle. A graph-cut method 

is employed to classify the buffer zone into water and 
background classes. 

The second part concerning the lake boundary extraction, 

involves four sequential steps. Initially, the algorithm computes 

the NDWI based on the original image to identify potential 

water distribution areas. A buffer of 50 m with the water 

boundary identified by NDWI is then applied to set the potential 

lake boundary buffer zone. Within this buffer zone, 

independent testing samples are selected, ensuring mutual 

independence from the training samples. There are 8,203 

testing pixels, including 4,063 water pixels, 2,302 snow/ice 

pixels, and 1,838 rock pixels, 19.57% of the total buffer zone 

pixels. The second step involves upsampling the features 

obtained during model training to the subpixel scale. This 

includes GLCM, abundance features, and spatial attraction 

features, which are computed at the subpixel scale. 

Consequently, mean-shift over-segmentation is applied at the 

subpixel scale, and a superpixel segmentation algorithm is 

constructed at the subpixel scale, incorporating both unary and 

pairwise potentials of the CRF model. 

IV. RESULTS AND DISCUSSION 

 

A. Experimental setup and accuracy evaluation 

The calculation of the lake area in the Larsemann Hills is 

conducted utilizing the proposed algorithm. Sentinel-2 imagery 

with a spatial resolution of 10 m was selected for a long-time 

series analysis spanning from 2016 to 2023. Since the SVM and 

CRF require training samples, we manually delineated the 

ground truth by manual interpretation according to Antarctic 

aerial imagery, the Antarctic Digital Database (ADD) shape file 

(https://www.add.scar.org/) and the Sentinel-2 true color 

imagery. The samples were divided into training and testing 

datasets. Certain lakes were present in the ADD but were not 

visible in the remote sensing imagery, while others could be 

observed in the imagery but were not recorded in the ADD. 

Therefore, lakes of these types were not selected for analysis. 

For example, on 30 January 2017, the outburst of the englacial 

Lake Dålk flooded to Prydz Bay and finally became a moulin. 

In this study, we focus on three types of lakes including 

supraglacial, epiglacial and englacial lakes. Accuracy 

assessment and area estimation of the lake area calculation 

results were performed. In addition to the overall accuracy 

(OA), the standard accuracy variance and kappa coefficients 

were calculated to assess the performance of each algorithm 

including the comparison algorithm and the proposed algorithm. 

    

    

    

    
(a) NDWI (b) CRF (c) SVM (d)Tri-SF 

Fig. 3. Results from different algorithms based on different processing units. Examples show two representative lake extraction 

results using different algorithms during different periods. Lake extraction results from the pixel level (a), superpixel level (b), 

pixel-level SVM (c), and subpixel-pixel-superpixel level (d) results from the respective algorithm are shown by column. 
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B. Overall evaluation of the extraction results 

1) Comparison with other algorithms 

Different lake mapping algorithms are compared in both 

qualitative and quantitative terms in this section. We design 

three algorithms based on the minimum processing unit into 

groups the superpixel, pixel, and subpixel. We deploy three 

algorithms on these datasets including NDWI, CRF, and SVM 

in addition to the proposed algorithm, which concurrently 
considers the three above-mentioned scales, denoted as the Tri-

SF algorithm. The SVM comparative algorithm utilizes the 

combination of RGB and near-infrared (NIR) bands as input 

data. Four bands are considered, and for each band, five GLCM 

features are computed, including mean, variance, homogeneity, 

second moment, and entropy. Consequently, a total of 24-

dimensional features are extracted and employed as input for 

the SVM algorithm. As SVM is a supervised classifier, training 

samples are necessary. For each class (lake, snow, rock), 1000 

pixels were selected as training samples. The supervised 

algorithms such as the CRF and SVM utilize the buffer regions 
based on the lake shape file, which can be obtained by the 

NDWI or the manual way. We set the buffer regions with a 

distance of 50 m. The testing dataset consists of over 8203 

pixels, including 4063 water pixels, 2302 snow/ice pixels, and 

1838 rock pixels. The training samples and testing samples are 

mutually independent in this study. Ultimately, during lake 

extraction, a buffer of approximately 15326 pixels was 

generated, representing 19.57% of the total. Similarly, both the 

CRF algorithm and the proposed algorithm utilize the same set 

of training samples and testing samples. Since the Unary 

construction of the CRF algorithm is based on the SVM 

classifier, the same ensemble of features is chosen as input. This 
ensures consistency in feature representation across algorithms, 

facilitating a meaningful comparative analysis of their 

performance. From 67 scenes (L1C with 67 scenes, L2A with 

55 scenes), we select two scenes as the example shown in Fig. 

2 to visually show the performance among these comparison 

algorithms. 

To explore the water body during different periods that the 

proposed algorithm can extract, a detailed comparison of 

Progress Lake and Nella Lake. We presented some visual 

results for periods including freezing onset (end of February to 

early March), freezing (April to September), early melting 
onset (October and November) and melting season (December 

to January) in Fig. 3. Compared with machine learning 

algorithms only without considering the different scales 

including the superpixel, pixel, and subpixels, the proposed 

algorithm displays excellent potential for investigating the fine 

boundaries of small water bodies. Fig. 3 also indicates that the 

proposed algorithm can perform well during different seasonal 

changes such as during the freezing onset, the comparison 

method provided rougher boundaries with the same 

performance during the early melting onset. The main reason 

for the unsatisfactory results is the mixed pixels effect of small 

lakes. The second reason is associated with errors introduced 
by the presence of floating ice on the water surface. The 

algorithm proposed in this study integrates three different scales 

to address the influences of both the edges and the floating ice. 

However, the subpixel mapping could be provided for the small 

water body extraction. 

TABLE II 

ACCURACIES OF DIFFERENT ALGORITHMS IN THE STUDY AREA 

Methods 
Average 

OA/% 
Kappa 

Standard 

deviation/% 
NDWI 94.88 0.9316 5.24 
CRF 95.23 0.9231 4.21 
SVM 97.26 0.9464 2.07 

Tri-SF algorithm 97.84 0.9541 1.87 

 

The scene in the first row during the transition from the 

freezing period to melting onset shows the different 
performance on the Nella Lake, where lake ice was 

misclassified by the NDWI algorithm. It can be attributed to the 

ice on the lake starting to melt and the signal is not easy to be 

detected. In the second scene during the melting season, we can 

find the index from NDWI performs worth on some large lakes. 

From the visual inspection, Nella Lake has been missed by the 

CRF methods in the third row. However, it is still obvious CRF 

is not suitable for this small lake type. Although the SVM 

algorithm provides similar visual results, its computational 

speed is relatively slow due to pixel-level processing. Subpixel 

mapping can provide more accurate lake boundaries for 

different-sized lakes during different scenes. The details can be 
found in the following discussion. The proposed algorithm 

obtains a good result in terms of edge precision and visual 

classification accuracy compared to the reference map and the 

visual inspection. 

 
(a) Progress Lake 

 
(b) Nella Lake 

Fig. 4. A time series of the monthly lakes for two typical lakes 

including Progress Lake (a) and Nella Lake (b). The solid line 

shows the lake area extracted by the proposed algorithm and 

the dashed line shows the lake area extracted by the algorithm 

that does not consider the subpixel scale. 
 

The monthly area for lakes in Larsemann Hills from 2016 to 

2023 was mapped. The accuracies were calculated based on the 

confusion matrix, from which the average precision, Kappa 
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coefficients, and standard deviation were obtained shown in 

Table 2. The average estimated overall accuracy (OA) for the 
traditional NDWI is 94.88%±5.24%. Meanwhile, the CRF 

achieves an estimated accuracy of 95.23%±4.21%. The SVM 

performs superior to NDWI which can be attributed to the lake 

ice being misclassified as ice. As NDWI with the largest 

standard deviations, the NDWI is susceptible in Cryosphere 

lakes mapping. Although the CRF algorithm can obtain higher 

OA compared to NDWI, the Kappa coefficient is the smallest. 

This is because CRF utilizes the superpixel strategies that cause 

some lake pixels to be missed. Due to the NDWI deals pixel by 

pixel, NDWI provides better results for the small lake type than 

the superpixels algorithm such as the CRF. By benefiting from 

the subpixel mapping technique, the proposed algorithm 
demonstrates the best performance, as depicted in Table II. 

Based on the Tri-SF algorithm, a time series of the monthly lake 

area for Progress Lake and Nella Lake is shown in Fig. 4. The 

inter-annual and intra-annual variations in the water area of 

Progress Lake and Nella Lake can be observed from the 7-year 

dataset. Significant changes occurred primarily after 2020. We 

speculate that these changes may be related to the overflow 

events that took place in 2020. We will discuss this further in 

the subsequent sections. 

An analysis was conducted comparing the lake boundaries 

extracted from satellite remote sensing imagery with the 
reference results obtained from aerial data, shown as yellow in 

Fig. 5. Taking Nella Lake as an example, it can be observed that 

the CRF algorithm does not exhibit an advantage in edge 

extraction, while NDWI tends to underestimate the lake extent. 

The SVM algorithm lacks accuracy in delineating snow-water 

boundaries. However, our proposed algorithm demonstrates the 

resemblance to the in-situ lake boundaries reference. 

 
Fig. 5 The lake boundary extraction from different algorithms. 

The aerial data was acquired from the 39th Antarctic scientific 

expedition's aerial survey conducted on January 8, 2023. The 
Sentinel-2 image as background was acquired on January 19, 

2023, with a time gap of 11 days. 

 

Except for the CRF algorithm, the comparative algorithms 

exhibit relatively smaller deviations from the lake boundaries 

derived from the aerial reference imagery. As shown in Table 

III, the proposed algorithm shows a reduction of 1.7% in the 
lake perimeter compared to the aerial observations. Similarly, 

the lake area demonstrates a similar trend, where the CRF 

algorithm overestimates the lake area by 9.55% relative to the 

aerial reference imagery. The deviation between the lake area 

computed in this study and the aerial imagery is only 1.02%. 

TABLE III 

LAKE AREA AND PERIMETER CALCULATION FROM DIFFERENT 

ALGORITHMS. 

Methods Lake Area (km2) Lake perimeter (m) 
Reference 0.06503 869.03 

NDWI 0.06748 930.74 
CRF 0.07124 1188.04 
SVM 0.06677 884.26 

Tri-SF algorithm 0.06437 854.26 

 

2) Seasonal changes of lakes in Larsemann Hills 

 
(a)  

 
(b)  

Fig. 6. A time series of lake areas in Larsemann Hills. (a) A time 

series of the monthly lake area. (b) Scatter plot showing the 

correlation between surface temperature and the lake area. 

The lakes in the Larsemann Hills show continuous area 

expansion during 2016-2023. The monthly lake areas from 
September to March display seasonal cycles in the Larsemann 

Hills. The lake areas increase from October to December and 

then decrease after peaking in January or February. The intra-

annual lake extents in Larsemann Hills present different 

seasonal features before and after 2020. The area reaches its 

peak usually in February before 2020 while it arrived in January 

ahead of schedule in later years. This can be ascribed to the 

melting ice and snow that provide additional water supply for 

lakes in the polar region. The lake expansion is dominantly 

driven by the melting snow and ice due to the increasing surface 

temperature. However, the lake expansion may lead to lake 
overflow or drainage. The most probable occurrence of outburst 

events is during the austral summer, especially in January or 

February. 
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C. Spatial and temporal analysis 

 
(a) west （14 lakes）lon<70°10′ 

 
(b) middle area （28 lakes）70°10′<lon<70°20′ 

 
(c) east （23 lakes）lon>70°20′ 

Fig. 7. A time series of different lakes in different divided 

regions. 
 

To investigate the regions prone to significant changes in 

water body extent leading to outburst events, an analysis of their 

spatial distribution characteristics is essential. We divided 

Larsemann Hills into three parts including the west region, the 

middle region, and the east region for analyzing these lakes as 
shown in Fig. 7. Lake areas reach their valley value in October 

while reach their peaks in January or February. In the west, 

lakes reached their maximum area in January during 2016-2019 

while the middle and east lakes continued their expansion to 

February. During 2020-2023, their lake’s maximum area 

reached its peak in January. In addition, the overall seasonal 

cycles of lakes in the Larsemann Hills also display their 

expansion accelerating due to the increasing surface 

temperature.   

There are 150 lakes in Larsemann Hills, in the west of the 

Larsemann Hills, lake areas are larger than in the middle and 
east. Larger lakes reach their peaks earlier compared with 

smaller lakes. The rapid accumulation and subsequent 

expansion and contraction of water bodies in the east indicate a 

higher likelihood of outburst events in that region. 

As shown in Fig. 8, the lake area larger than 0.05 km2 is 

mainly located in the eastern region (89.35%), which is 

consistent with the change in lake area in the eastern region, 

 
(a) >0.05km2 (6 lakes) 

 
(b) 0.01~0.05km2 （23 lakes） 

 
(c) <0.01km2（36 lakes） 

Fig. 8. A time series of different lakes with different sizes 

 
with the largest seasonal fluctuation in area, and the overall area 

remains stable. The spatial distribution of the 0.01-0.05km2 

lakes is relatively uniform, and the overall change trend is 

consistent with the changing trend of the total lake area in the 

Larsemann Hills. Lakes smaller than 0.01 km2 are mainly 

located in the central and western regions (55% in the central 

region and 30% in the western region), with the smallest 

interannual fluctuations. The accelerating rate of water body 
expansion in larger lakes, possibly attributed to topography 

advantages, is counterbalanced by their faster seasonal 

reduction in area compared to smaller lakes. We can also 

conclude that the smaller the area of the lake, the greater the 

deviation of the estimated lake area before and after reducing 

the mixed pixel effect, and the larger the area, the more stable 

it is. It proves that the lake boundary does exist in the form of 

mixed pixels, which highlights the significance of the proposed 

algorithm. It also shows that the main reason affecting the 

accuracy of lake area estimation is the determination of the lake 

boundary. In addition, the proportion of the area <0.01km2 to 
the total lake area (~12%) is small, so the impact on the overall 

extraction accuracy is limited. 

D. Boulder outburst flood 

Boulder Lake is a supraglacial type and is located near 

Progress Lake as shown in Fig. 9(a). The lake is usually frozen 

it can be observed from the satellite remote sensing imagery  
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(a) location of Boulder Lake 
(b) Boulder Lake 

expansion 
(c) Surface temperature 

Fig. 9. The location of the Boulder Lake outburst caused the drainage of Lake Dålk on 30 January 2017 (a). The before and after 

Sentinel-2 imagery is collected and shows the lake expansion (b). During the outburst period, temperatures above 273K have been 

shown in (c).  
 

 
Fig. 10. Daily air temperature from ERA5 Reanalysis data for the Larsemann Hills. 

 
 

during Austral summer. The lake size is a challenge for 

investigation since it is covered by thick ice. The drainage of 

Dålk Lake has attracted attention due to the outburst event, 
which occurred on 30 January 2017. From the surface 

temperature data, it can be seen that the Larsemann Hills 

melting period was earlier compared with the other year, and 

the temperature above 273 K first appeared in early November 

2016 and continued to melt after December until late January 

2017. Moreover, the temperature in early February was still 

fluctuating around 273 K. The lake could not freeze quickly, 

which led to an increase in the water area expansion in the area, 

which eventually led to overflow events. From the images of 

the two scenes before and after the outburst event as shown in 

Fig. 9(b), it can be seen that the boundary of the lake has a clear 
tendency to expand, then the Lake Ledyanoe shown at the 

bottom of Fig. 9(b). 

Days of the abnormally high temperature above 273 K in 2017 

are far more than other years that showed significant air 

temperature forcing as shown in Fig. 10. It can be explained the 
lakes melted early in the Larsemann Hills and eventually led to 

outburst events. Comparing the ice velocity products, it can be 

seen that the annual ice velocity in the vicinity of Boulder Lake 

area is slightly higher than that in other areas, and after 2017, 

the ice velocity as shown in Fig. 11 has increased dramatically. 

From the direction of ice velocity, the ice flow direction is 

consistent with the drainage direction, which eventually leads 

to the outburst of Boulder Lake to the direction of Lake Dålk. 

In the early stage of the outburst event on January 24, 2017, the 

surface temperature in the Larsemann Hills increased 

significantly, causing continuous melting, and the area of 
Boulder Lake expansion.

76°20'0"E

76°20'0"E

76°10'0"E

76°10'0"E

76°0'0"E

76°0'0"E

6
9

°2
5

'0
"S

6
9

°2
5

'0
"S

76°20'0"E

76°20'0"E

76°10'0"E

76°10'0"E

6
9

°2
5

'0
"S

6
9

°2
5

'0
"S

76°20'0"E

76°20'0"E

76°10'0"E

76°10'0"E

6
9

°2
5

'0
"S

6
9

°2
5

'0
"S

20170108

20170207

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3391881

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



1 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

   
(a) 2014-2015 (b) 2015-2016 (c) 2016-2017 

   

(d) 2017-2018 (e) 2018-2019 (f) 2019-2020 

Fig. 11. The time series ice velocity of the region before and after the drainage. Ice velocity of Larsemann Hills data is 

collected from MeaSUREs. 
 

V. CONCLUSION 

In this paper, a novel algorithm considering the superpixel-

pixel-subpixel scales was proposed for extracting the small 

lakes from the satellite remote sensing images. The proposed 

algorithm for detecting small lakes outperforms those of the 

compared algorithms and demonstrates good agreement with 

the lake shoreline delineated by aerial images, achieving an 

Overall Accuracy (OA) of 97.84%, a Kappa coefficient of 

0.9541, and a Standard Deviation of 1.87. Results show that 

significant seasonal changes in lakes have occurred in the 

Larsemann Hills. The lake areas present a slowly increasing 
trend in total, with an accelerated rate after 2020. In terms of 

the spatial and temporal analysis, the area of lakes in the 

western region has decreased, while lakes in the central region 

are stable. Nevertheless, there is a trend of increasing in the 

northeast region. Affected by surface air temperature, the 

maximum total lake area has been advanced from February to 

January each year since 2020.  

Under the proposed superpixel-pixel-subpixel multi-source 

data fusion framework, airborne data can quickly extract the 

accurate boundaries of lakes through superpixel processing 

strategies. Under the precise registration optimization 

framework, accurate verification is provided for subpixel 

mapping achieved in the case of insufficient resolution of 
onboard data. These comprehensive evaluation results from 

field data suggest the proposed algorithm can extract small 

waterbodies in different seasonal changes, which can be used to 

understand some of the characteristics of seasonal and incident 

events. Thus, outburst hydrographs, channel diameters, volume 

and duration of floods can be calculated. Future research could 

be conducted to generate a comprehensive map of ice-free 

water systems across Antarctica.  
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