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Abstract—The accuracy and reliability of the latest version of 

multisource satellite derived Arctic sea ice thickness (SIT) in 
thinner ice regions are currently uncertain. This study integrated 
a comprehensive comparison and assessment of Arctic SIT 
derived from CryoSat-2, Soil Moisture and Ocean Salinity 
(SMOS), fusions of CryoSat-2 and SMOS (CS2SMOS), and Ice, 
Cloud, and Land Elevation Satellite-2 (ICESat-2) during 2011–
2022. The focus was on the region with mean SIT less than 1 m. 
The five datasets from the Operation IceBridge (OIB) L4 and 
Quick Look, IceBird campaign, CryoSat Validation Experiment 
(CryoVEx), and the Canadian Arctic Archipelago (CAA) stations 
were utilized as the reference data in the assessment. The four 
satellite products could capture similar major spatiotemporal 
variations in SIT. During 2011–2022, CryoSat-2 generally 
derived the largest multi-year mean SIT, followed by CS2SMOS, 
and SMOS exhibited the smallest mean. During 2018–2022, 
ICESat-2 recorded the largest mean SIT and the rankings of the 
other three satellite products remained consistent. The 
comparison and assessment results indicated that all four satellite 
products generally exhibited some underestimations of SIT. 
During 2011–2022, the comprehensive results highlighted 
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CryoSat-2 as the best overall performance product, exhibiting 
optimal agreement with all five reference datasets. During 2018–
2022, CryoSat-2 consistently demonstrated the best overall 
performance. CS2SMOS exhibited a performance similar to 
CryoSat-2 in the two selected periods. This study contributes to 
further understandings of reliabilities and potential disparities 
among the latest versions of multisource satellite products in the 
thinner ice region. 
 

Index Terms—Arctic, assessment, comparison, satellite, sea ice 
thickness, thin ice. 

 

I. INTRODUCTION 

RCTIC sea ice, an important indicator of global 
climate change, plays a critical role in the albedo 
effect, oceanic and atmospheric circulation, 

regulation of heat exchange, biological activity, and 
freshwater balance, exerting a profound influence on Earth's 
climate system [1], [2], [3], [4], [5], [6]. In the past decades, 
the Arctic sea ice has declined significantly with the retreat of 
sea ice cover, reduction of sea ice thickness (SIT), and the 
acceleration of sea ice drift through the changes in the annual 
sea ice freeze–thaw cycle [7], [8], [9], [10], which has resulted 
in increased opportunities for maritime activities [11], [12].  

Compared with the data on Arctic sea ice concentration and 
sea ice drift, the available SIT data are limited in 
spatiotemporal scales [13], [14], [15]. Presently, various 
methods are employed to measure SIT, encompassing drill 
holes, upward looking sonars, sea ice mass balance buoys, 
airborne observations equipped with radar and laser altimeters, 
as well as electromagnetic methods [16], [17], [18], [19], [20]. 
However, these measurement methods face challenges in 
achieving relatively complete spatiotemporal coverage of SIT. 
The advancements in satellite products featuring high spatial 
resolution, extensive measurement range, and long time series 
are extensively applied in studies related to sea ice [21], [22], 
[23], [24]. Over the last two decades, several satellite derived 
SIT products have been developed. The Ice, Cloud, and Land 
Elevation Satellite (ICESat), equipped with a precision laser 
altimeter system, covered the observational period from 2003 
to 2008 [25]. The CryoSat-2 product, featuring a synthetic 
aperture radar/Interferometric Radar Altimeter, was initiated 
in 2010 [26]. The SIT data of Soil Moisture and Ocean 
Salinity (SMOS) satellite was carried out in 2010 [27]. The 
CS2SMOS product, a fusion of CryoSat-2 and SMOS data, 
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was developed by the Alfred Wegener Institute (AWI) and the 
University of Hamburg [28]. The Ice, Cloud, and Land 
Elevation Satellite-2 (ICESat-2) was launched by the National 
Aeronautics and Space Administration (NASA) and the 
measurement was commenced in 2018 [29].   

However, these products exhibit noticeable measurement 
discrepancies in the derived SIT owing to differences in 
measurement instruments and retrieval methods, in particular 
over the region with thinner ice. Considering a 1-m SIT 
threshold was employed as the criterion for identifying thin ice 
when merging CryoSat-2 and SMOS data into CS2SMOS, and 
the SMOS relative uncertainties are lowest for thin ice (< 1 m) 
[28], the region where the mean SIT derived from SMOS is 
less than 1 m during January–April and October–December 
from 2011 to 2022 is defined as thinner ice region in this 
study. The Arctic thinner ice region, characterized by 
significant sea ice melting and freezing processes, exhibits 
sensitive responses to climate change. Due to the inverse 
relationship between SIT and its insulative properties, the heat 
loss in the thinner ice region during winter is significantly 
greater, ranging from one to two orders of magnitude, 
compared to thicker ice areas [30]. 

A few studies have been undertaken to compare disparities 
among various satellite-based SIT products including 
CryoSat-2, SMOS, CS2SMOS, and ICESat-2, but most studies 
have only involved the comparison of a limited number of 
satellite product types, typically no more than three types [31], 
[32], [33], [34], [35], [36], [37], [38]. The types of 
measurement data used as the assessment reference are also 
restricted, leading to a scarcity of comprehensive comparison 
and assessment of multisource satellite derived products. In 
addition, a noteworthy development is the recent version 
upgrade of SIT retrieval for CS2SMOS, CryoSat-2, and 
ICESat-2 in October, November, and December 2023, 
respectively. The majority of current studies were focused on 
Arctic-wide comparisons and previously released data 
versions, with limited emphasis on the thinner ice region and 
the latest product version. It remains unclear about the 
accuracy and reliability of the latest data version, the extent of 
disparities among satellite products in the thinner ice region, 
and the degree of alignment with other observational data.  
Therefore, this study, for the first time, integrated a 
spatiotemporal comparison and assessment of the latest 
versions of diverse satellite products from CryoSat-2, SMOS, 
CS2SMOS, and ICESat-2 over the period 2011–2022, with a 
specific focus on the thinner ice region. Four types of datasets 
from airborne and in situ measurements were used 
comprehensively in the assessment as the reference data. The 
comparison and assessment of multisource satellite derived 
SIT facilitates the validation and calibration of satellite 
products, aiding in the refinement of algorithms and 
methodologies used in SIT retrieval in the thinner ice region. 
This, in turn, provides valuable insights into the vulnerability 
in the Arctic thinner ice region and the response of the region 
to climate change. 

 
Fig. 1. Distribution of the assessment data and the division of 
Arctic thinner ice region. The subregions encompass the 
following: (a) Chukchi Sea, (b) East Siberian Sea, (c) Laptev 
Sea, (d) Kara Sea, (e) Barents Sea, (f) Greenland Sea, (g) 
Canadian Arctic Archipelago, and (h) Beaufort Sea. Blue 
shading indicates the defined thinner ice region in this study. 
 

II. DATA AND METHOD 

A. Satellite data 

1) CryoSat-2 
In this study, the latest version 2.6 of monthly CryoSat-2 

SIT data released in November 2023 from AWI was selected 
[39]. CryoSat-2 covers the sea ice growth season from 
October to April. The spatial resolution of CryoSat-2 is 25 km 
and the period used is from January 2011 to December 2022. 

 
2) SMOS 
The latest version 3.3 of daily SMOS SIT data released in 

November 2021 from AWI was utilized [40]. SMOS has a 
spatial resolution of 12.5 km and also covers the sea ice 
growth season from October to April. The study period is the 
same as CryoSat-2. 

 
3) CS2SMOS 
Since the weekly CS2SMOS SIT data was developed by 

AWI based on the fusion of CryoSat-2 and SMOS, it can 
maintain the same study period with CryoSat-2 and SMOS 
[28]. The spatial resolution is 25 km and the latest version 206 
released in October 2023 was used. 

 
4) ICESat-2 
The latest version 3 of monthly ICESat-2 SIT data released 

in December 2023 from the National Snow and Ice Data 
Center (NSIDC) was used in the study [41]. ICESat-2 also 
encompasses the sea ice growth season, spanning from 
October to April. The study period is from November 2018 to 
December 2022. The spatial resolution is 25 km. 
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B. Reference data in the assessment 

1) Operation IceBridge (OIB) 
The OIB SIT was retrieved from the IceBridge Airborne 

Topographic Mapper, Snow Radar, Digital Mapping System, 
Continuous Airborne Mapping By Optical Translator, and 
KT19 pyrometer. Two versions including OIB L4 [42] and 
OIB Quick Look [43] were used in the study. The OIB L4 
dataset covers the period from 2011 to 2013 and has been 
validated to demonstrate consistency with independent 
datasets [19]. Although the OIB Quick Look dataset has an 
additional uncertainty, it contains a longer observational 
period than OIB L4. The OIB Quick Look with the period 
over 2014–2019 was included. The tracks of OIB L4 and OIB 
Quick Look are shown in Fig. 1. 

 
2) IceBird campaign (IceBird) 
AWI IceBird campaign series were measured in 2017 [44] 

and 2019 [45]. For each flight, the geolocated total thickness 
data (sum of SIT and snow depth) and snow depth from an 
airborne electromagnetic induction sensor are provided with a 
point spacing of approximately 5–6 m. According to the AWI 
validation report, the uncertainty of IceBird is approximately 
0.1 m for level ice [46]. The snow depth from IceBird is 
subtracted from the total thickness to acquire the SIT data. The 
tracks of IceBird are shown in Fig. 1. 

 
3) CryoSat Validation Experiment (CryoVEx) 
The CryoVEx was performed with airborne electromagnetic 

and laser measurements to compute total thickness in 2014 
[47]. The ice thickness distributions of CryoVEx are in 
relatively good agreement with drill hole data both in the 
Beaufort Sea and north of Greenland. CryoVEx data agrees 
well with OIB data over the Greenland ice camp. In order to 
estimate the SIT data, the snow depth derived from the 
Chinese Feng Yun-3 satellite with the MicroWave Radiometer 
Imager (FY3/MWRI) [48] was used to be subtracted from the 
total thickness. The snow depth data had been validated and 
exhibited smaller biases when compared to the OIB data. The 
tracks of CryoVEx are shown in Fig. 1. 

 
4) Canadian Arctic Archipelago stations (CAA stations) 
The in situ SIT observation from the CAA stations during 

2011–2022 can be obtained from the Canadian Ice Service. 
Four sites of Cambridge Bay, Resolute, Hall Beach, and Alert 
YLT were selected (Fig. 1). The measurements are primarily 
collected using drill holes at nearly identical locations each 
year on a weekly basis. This process begins after freeze-up 
when the ice is safe to walk on and continues until break-up or 
when the ice becomes unsafe. This limitation leads to 
incomplete measurements at certain sites. 
 

C. Comparison of satellite products 

To maintain consistency in comparing different satellite 
products, all the SIT datasets were averaged into monthly 
mean data and interpolated to generated grids with a resolution 
of 12.5 × 12.5 km north of 65°N. This interpolation has been 
performed using the inverse distance weighting (IDW) 
method, addressing disparities in spatiotemporal resolution  

 
Fig. 2. Spatial distribution of multi-year mean SIT for 
CryoSat-2, SMOS, and CS2SMOS over the period 2011–
2022. 
 
among the various satellite products. 

Given that the sensitivity of SMOS diminishes when the ice 
thickness exceeds 1 m, the thinner ice region is determined by 
the mean SIT of SMOS over the period 2011–2022 which is 
less than 1 m. Due to the different available periods of these 
satellite products, the comparison time periods are categorized 
into two sets: the comparison involving CryoSat-2, SMOS, 
and CS2SMOS spanning from 2011 to 2022, and the 
comparison involving CryoSat-2, SMOS, CS2SMOS, and 
ICESat-2 for the period from 2018 to 2022.  

In order to compare the regional disparities of these satellite 
products, the thinner ice region is divided into 8 sub-regions: 
Chukchi Sea, East Siberian Sea, Laptev Sea, Kara Sea, 
Barents Sea, Greenland Sea, the CAA and Baffin Bay, and 
Beaufort Sea (Fig. 1). The metrics of Bias, root mean squared 
error (RMSE), and correlation coefficient (CC) were used in 
the comparisons of various satellite products to examine their 
agreements and similarities. 

 

D. Assessment of satellite products 

The assessment time periods of satellite products are also 
categorized into the same two sets, 2011–2022 and 2018–
2022. In the assessment of multisource satellite SIT using 
OIB, IceBird, and CryoVEx data, we followed the method 
used in the reference [49]. We utilized the same generated 
grids as those employed for satellite products and calculated 
the gridded mean of OIB, IceBird, and CryoVEx by averaging 
the reference data within a 12.5-km radius of each generated 
grid. Besides, we additionally evaluated the SIT from 
multisource satellites along some long trajectories of OIB by 
using the approach in the reference [50]. Data grids are 
generated at 12.5 km intervals along the trajectories of OIB. 
The mean SIT of OIB for each data grid is calculated by 
averaging the OIB data within a 12.5-km range along the 
trajectory. Satellite data is interpolated onto these data grids 
using the IDW method. In the assessment of multisource 
satellite SIT with the CAA stations data, the satellite data is 
interpolated to the location of the stations by the IDW method. 

The assessment employed metrics including Bias, RMSE, 
CC, and Distance between Indices of Simulation and 
Observation (DISO). In this study, bias is defined as the mean 
difference between satellite data and reference data. DISO 
provides a versatile approach for determining statistical  
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Fig. 3. The bias, RMSE, and CC of SIT between the satellite products, calculated using all spatial monthly samples over the 
period 2011–2022 and 2018–2022. Bias is defined as the difference between the satellite products of the Y-axis and X-axis. 

 

 
Fig. 4. Multi-year mean SIT in the subregions for CryoSat-2, 
SMOS, and CS2SMOS over the period 2011–2022. The black 
vertical bar indicates the positive range of standard deviation. 
The subregions comprise: (a) Chukchi Sea, (b) East Siberian 
Sea, (c) Laptev Sea, (d) Kara Sea, (e) Barents Sea, (f) 
Greenland Sea, (g) Canadian Arctic Archipelago, and (h) 
Beaufort Sea, identical to those illustrated in Fig. 1. 
 
metrics and their numbers [51]. A lower DISO value 
represents a higher ranking. In this study, we established a 
composite metric that integrates three statistical metrics of 
Bias, RMSE, and CC to assess the performance of satellite 
products. The equation of DISO is defined as:  

DISO = 𝑁𝐵𝑖𝑎𝑠 + 𝑁𝑅𝑀𝑆𝐸 + (𝑁𝐶𝐶 − 1)      (1) 
where i = 0, 1, …, m, 0 indicates the observational data, and m 
is the total number of satellite products. NBias, NRMSE, and 
NCC indicate the normalized metrics of Bias, RMSE, and CC, 
respectively. Bias, RMSE, and CC are normalized to be 
between 0 and 1 and the normalization equation is expressed 
as 

NM =
 ( )

( )  ( )
               (2) 

where M indicates the metric, such as Bias, RMSE, and CC. 
When i = 0, the metrics of Bias, RMSE, and CC between the  
observational data and itself are 0, 0, and 1, respectively. The 
overall performance of satellite products is assessed by 
combining all of the reference data from different datasets and 
calculating DISO. 
 
 

 
Fig. 5. Spatial distribution of seasonal mean SIT for 
CryoSat-2, SMOS, and CS2SMOS over the period 2011–
2022. 
 

III. COMPARISONS OF MULTISOURCE SATELLITE 

DATA 

A. CryoSat-2, SMOS, and CS2SMOS over 2011–2022 

The multi-year mean SIT for CryoSat-2, SMOS, and 
CS2SMOS over the period 2011–2022 showed reasonable 
agreement of major spatial distribution patterns (Fig. 2). 
CryoSat-2 indicated the largest mean SIT among three satellite 
products. CS2SMOS showed the second largest result, and the 
smallest SIT was for SMOS. The lowest bias, lowest RMSE, 
and highest CC between CS2SMOS and SMOS suggested that 
CS2SMOS had a closer agreement with SMOS than with 
CryoSat-2 in the thinner ice region (Fig. 3). In the subregions, 
CryoSat-2 and CS2SMOS showed the largest mean SIT in the  
Beaufort Sea, while SMOS displayed the largest values in the 
East Siberian Sea (Fig. 4). All the three satellite products 
indicated the Barents Sea as the subregion with the smallest  
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Fig. 6. Monthly variations of spatial mean SIT for CryoSat-2, SMOS, CS2SMOS, and ICESat-2 over the period 2011–2022. The 
shading indicates the standard deviation of SIT for all the spatial samples. 
 

 
Fig. 7. Linear trend of SIT for CryoSat-2, SMOS, CS2SMOS, and ICESat-2 over the period 2011–2022. The black dots indicate 
the regression slopes at the 95% confidence level. 
 
mean SIT. In terms of the seasons, the ranking of three 
satellite products in relation to seasonal mean SIT remained 
consistent (Fig. 5). All three satellite products indicated that 
the region of Barents Sea with the minimum seasonal mean 
SIT was the same as the region highlighted by the multi-year 
mean SIT. Nevertheless, some distinct variations were 
observed in the regional characteristics of maximum seasonal 
mean SIT. In spring (March–April), SMOS showed the 
Chukchi Sea as the region with the maximum mean SIT. In 
fall (October–November), the location of the maximum 
thickness region shifted to the East Siberian Sea for 
CryoSat-2, and the Laptev Sea for SMOS and CS2SMOS. In 
winter (December–February), the region of maximum mean 
SIT for each satellite product was consistent with the region of 
multi-year mean. 
The monthly variations of spatial mean SIT over the period 
2011–2022 were highly correlated with the range of CC from 
0.82 to 0.97 (p < 0.01) among the three satellite products (Fig. 
6). Similar to the multi-year spatial mean findings, the time 
series mean SIT also suggested that CryoSat-2 exhibited the 
largest mean SIT, followed by CS2SMOS with the 
second-largest result, while SMOS recorded the smallest SIT. 
Both SMOS and CS2SMOS typically showed the minimum 

SIT in October, while CryoSat-2 occasionally identified 
November as the month with the smallest SIT. In contrast, 
CryoSat-2 and CS2SMOS usually exhibited the maximum SIT 
during March–April, but SMOS sometimes identified January 
or February as the month with the largest SIT. All three 
satellite products exhibited very slight decreasing trends, 
implying that the SIT in the thinner ice region did not 
experience a substantial decline. In terms of spatial 
distribution, the regions with significant changes in SIT were 
primarily concentrated in the Atlantic sector (Fig. 7). All three 
satellite products indicated declines in SIT within the 
Greenland Sea region and CS2SMOS revealed the most 
extensive area with significantly reduced SIT. In the Pacific 
sector, all three satellite products indicated that reductions in 
SIT were primarily concentrated in the Chukchi Sea and 
CryoSat-2 showed the most extensive area. 

B. CryoSat-2, SMOS, CS2SMOS, and ICESat-2 over 2018–
2022 

Since 2018, with the inclusion of ICESat-2, the spatial 
distribution of multi-year mean SIT from four products 
indicated that ICESat-2 retrieved the maximum SIT, with 
CryoSat-2 following in the second place. CS2SMOS was in  
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Fig. 8. Spatial distribution of multi-year mean SIT for CryoSat-2, SMOS, CS2SMOS, and ICESat-2 over the period 2018–2022. 
 

 
Fig. 9. Multi-year mean SIT in the subregions for CryoSat-2, 
SMOS, CS2SMOS, and ICESat-2 over the period 2018–2022. 
The black vertical bar indicates the positive range of standard 
deviation. The subregions comprise: (a) Chukchi Sea, (b) East 
Siberian Sea, (c) Laptev Sea, (d) Kara Sea, (e) Barents Sea, (f) 
Greenland Sea, (g) Canadian Arctic Archipelago, and (h) 
Beaufort Sea, identical to those illustrated in Fig. 1. 

 
the third position, and SMOS exhibited the smallest thickness 
(Fig. 8). Based on the bias, RMSE, and CC results, in the 
thinner ice region, the similarity between CS2SMOS and 
SMOS was the highest, followed by the difference between 
CS2SMOS and CryoSat-2 as the second smallest, and the third 
closest agreement was observed between ICESat-2 and 
CS2SMOS (Fig. 3). In the subregions, all the four satellite 
products showed the largest mean SIT in the Beaufort Sea and 
the smallest mean SIT in the Barents Sea (Fig. 9).  

In the different seasons, the ranking characteristics had a 
slight change. CryoSat-2 displayed a seasonal mean SIT in 
spring that was 0.02 m larger than ICESat-2, and SMOS 
showed a seasonal mean SIT in winter that was 0.04 m larger 
than CS2SMOS (Fig. 10). During all three seasons, the 
findings from all the four satellite products consistently 
identified the Barents Sea as the region with the smallest 
seasonal mean SIT, aligning with the region emphasized in the 
multi-year mean SIT results. Compared to the region where 
the multi-year mean SIT was maximum in the Beaufort Sea, 
all four satellite products consistently indicated that the region 
with the maximum winter mean SIT remained the Beaufort 
Sea. However, in spring, SMOS and ICESat-2 suggested that 
the region with maximum seasonal mean SIT shifted to the 

Chukchi Sea. In fall, CryoSat-2 and SMOS indicated a shift in 
the region with the maximum seasonal mean SIT to the East 
Siberian Sea and Laptev Sea, respectively. 

Over the period 2018–2022, the monthly variations of 
spatial mean SIT showed relatively high correlations with the 
range of CC from 0.82 to 0.98 (p < 0.01) among the four 
satellite products (Fig. 6). The time series mean SIT also 
indicated that ICESat-2 had the maximum SIT, with 
CryoSat-2 in the second place. CS2SMOS took the third 
position, and SMOS displayed the smallest thickness. 
CroySat-2, SMOS, and CS2SMOS exhibited very slight 
decreasing trends, while ICESat-2 showed very slight 
increasing trends. Further analyses of the spatial distribution 
of linear trend confirmed that the locations with significant 
changes in SIT were limited (Fig. 11). Notably, only 

CryoSat-2 and ICESat-2 primarily exhibited some areas 
with noticeable changes of SIT in the Atlantic sector. 

 
IV. ASSESSMENTS OF MULTISOURCE SATELLITE 

DATA 
The preceding comparative analysis of SIT enables us to 

quantify the extent of disparities among multisource satellite 
products. However, to evaluate the accuracy and reliability of 
the latest version of SIT, it is crucial to depend on the 
assessments with airborne and in situ measurement data. 
 

A. CryoSat-2, SMOS, and CS2SMOS over 2011–2022 

Over the period 2011–2013, the assessment of three satellite 
products with the OIB L4 reference data indicated that 
CryoSat-2, SMOS, and CS2SMOS generally underestimated 
SIT in some of the Alaska and Greenland coast regions. The 
CryoSat-2 exhibited the smallest mean negative error, with 
75.6% of the samples showing negative errors. While the 
percentage of negative errors was 92.8% and 84.2% for SMOS 
and CS2SMOS, respectively (Fig. 12a). Among the three 
products, CryoSat-2 showed the smallest DISO (Table I) with 
the lowest bias and RMSE (Fig. 12a), indicating the best 
match with OIB L4. The CS2SMOS showed a similar DISO to 
CryoSat-2 and had the highest CC with OIB L4. During 2014–
2019, when compared with OIB Quick Look data, three  
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Fig. 10. Spatial distribution of seasonal mean SIT for CryoSat-2, SMOS, CS2SMOS, and ICESat-2 over the period 2018–2022. 
 

 
Fig. 11. Linear trend of SIT for CryoSat-2, SMOS, CS2SMOS, and ICESat-2 over the period 2018–2022. The black dots indicate 
the regression slopes at the 95% confidence level. 

 
satellite products also exhibited the underestimation of SIT 
and CryoSat-2 still demonstrated the smallest mean negative 
error (Fig. 12b). The CryoSat-2 showed the smallest DISO of 
0.99 and CS2SMOS showed the similar DISO of 1.02 (Table 
I). The SMOS always had the largest discrepancy with OIB 
data. 

Further analyses were focused on the SIT variation along 
the flight trajectories of OIB (Fig. 13). The six longer 
trajectories from OIB L4 and Quick Look data in different 
regions and periods were selected as representative examples. 
The analysis results supported the major findings that all three 
satellite products mostly derived smaller mean SIT than the 
OIB data. Only CS2SMOS exhibited a slight overestimation 
of mean SIT along the trajectory of April 2017. Furthermore, 
CS2SMOS generally demonstrated a relatively good 
performance among the three satellite products, with 
CryoSat-2 exhibiting better performance than CS2SMOS only 
along the trajectory in April 2012.  

In the assessment with IceBird data in 2017 and 2019, the 
mean SIT in all three satellite products was underestimated 
(Fig. 14a). CryoSat-2 showed the smallest DISO of 1.11 
(Table I) with the lowest bias, lowest RMSE, and highest CC, 

thus suggesting the most favorable performance in comparison 
to the IceBird data. CS2SMOS demonstrated a DISO close to 
that of CryoSat-2, while SMOS displayed the least favorable 
match with the IceBird data. 

When assessed with CryoVEx data in 2014, CryoSat-2 was 
the only satellite that showed a slight overestimation of mean 
SIT (Fig. 14b). CryoSat-2 showed the smallest DISO. Despite 
SMOS displaying the highest CC, it displayed the highest bias 
and RMSE (Fig. 14b). Consequently, this led to a larger DISO 
for SMOS compared to CS2SMOS (Table I).  

In the assessment with the observational data from the CAA 
stations, due to differences in spatial coverage among the three 
satellite products, the time series of SIT data differs in the four 
stations. The assessment was focused on the common period 
of the derived datasets and the reference data. The SIT of all 
three satellite products was underestimated in the Resolute and 
Hall beach stations (Fig. 15). In addition, only SMOS 
overestimated SIT in the Cambridge Bay station and 
underestimated SIT in the Alert YLT station. According to the 
results of DISO, SMOS and CS2SMOS displayed the optimal 
agreement of SIT with the Alert YLT and Cambridge Bay 
stations, respectively, and CryoSat-2 demonstrated the best  
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Table I  
DISO values of satellite derived SIT with various reference datasets in the assessment. 
 2011−2022 2018−2022 
 CryoSat-2 SMOS CS2SMOS CryoSat-2 SMOS CS2SMOS ICESat-2 

OIB L4 1.18 1.73 1.20 / / / / 
OIB Quick Look 0.99 1.73 1.02 1.04 1.65 1.12 1.14 

IceBird 1.11 1.73 1.14 1.19 1.71 1.27 1.54 
CryoVEx 1.25 1.55 1.40 / / / / 

CAA stations 1.23 1.61 1.42 1.00 1.24 1.15 1.71 
Overall performance 1.09 1.73 1.14 0.78 1.73 0.83 1.18 

 

 
Fig. 12. Assessment of satellite SIT derived from CryoSat-2, 
SMOS, and CS2SMOS with (a) OIB L4 data during 2011–
2013 and (b) OIB Quick Look data during 2014–2019. 
 
match with the Resolute and Hall beach stations. Considering 
the common data from all stations, CryoSat-2 exhibited the 
best performance in SIT retrieval (Table I). 

Based on the comprehensive assessment using the data of 
OIB L4, OIB Quick Look, IceBird, CryoVEx, and the CAA 
stations during 2011–2022, CryoSat-2 showed the best overall 
performance, and the CS2SMOS showed a close performance 
to CryoSat-2 (Table I). 

 

B. CryoSat-2, SMOS, CS2SMOS, and ICESat-2 over 2018–
2022 

Starting from 2018, ICESat-2 data was added into the 
assessment and the remaining available reference data only 
included OIB Quick Look, IceBird, and the CAA stations. 

In 2019, compared with the OIB Quick Look data, the mean 
SIT in all the four satellite products were underestimated (Fig. 
16a). The CryoSat-2 showed the smallest DISO (Table I). 
CS2SMOS and ICESat-2 ranked second and third. SMOS 
exhibited relatively large discrepancies with the reference data, 
as both bias and RMSE exceeded 1 m. 

In the assessment with IceBird data in 2019, all four 
satellite products also underestimated the mean SIT (Fig. 16b). 
CryoSat-2 showed the best agreement with IceBird data, with 
CS2SMOS in the second place, and ICESat-2 in the third 
position (Table I).  

For the CAA stations data, due to limited data during the 

common time period at each station for the four satellite 
products, the assessment was focused on the common data 
from all the stations. The CryoSat-2 had the best match with 
the CAA stations data with the smallest DISO, while ICESat-2 
showed the least favorable match (Table I). 

Based on the comprehensive assessment with OIB Quick 
Look, IceBird, and the CAA stations during 2018–2022, 
CryoSat-2 exhibited the best overall performance, and 
CS2SMOS showed a similar performance (Table I). The 
overall performance of ICESat-2 ranked third. SMOS had 
relatively large discrepancies with the airborne and in situ 
measurement data. 
 

V. DISCUSSION AND CONCLUSION 

The comparison and assessment results in the thinner ice 
region suggested that despite optimizations in the latest 
versions of various satellite products for SIT data, notable 
discrepancies persisted in the SIT retrieval. Multiple major 
factors contribute to the differences in SIT retrieval among 
various satellite products. The first major factor is the 
difference in measurement methods. CryoSat-2 used a radar 
altimeter to measure radar freeboard, primarily affected by the 
penetration of radar signals into the snow layer. ICESat-2 
employed a laser altimeter to measure total freeboard, the 
combination of sea ice freeboard and snow depth, with the 
influence of clouds and atmospheric conditions. SMOS used a 
microwave radiometer to measure the brightness temperature 
of sea ice, which depends on the temperatures of ice, as well 
as its emissivity. The second major factor is the difference in 
retrieval algorithm. Both CryoSat-2 and ICESat-2 derived SIT 
by estimating sea ice freeboard and subsequently converting it 
to SIT through the hydrostatic equilibrium equation. For 
CryoSat-2, radar freeboard can be converted to sea ice 
freeboard based on the correction of radar signal propagation 
speed in the snow layer. For ICESat-2, the total freeboard can 
be converted to sea ice freeboard by subtracting snow depth. 
While SMOS used a three layer (ocean-ice-atmosphere) 
dielectric slab model to derive SIT from brightness 
temperature. The third major factor is the difference in 
selected datasets and parameters. Different snow depth data 
were used for CryoSat-2 and ICESat-2. CryoSat-2 utilized a 
combination of snow depth from climatology and passive 
microwave remote sensing, referred to as MW99/AMSR2. 
ICESat-2 utilized snow depth data from the NASA Eulerian 
Snow On Sea Ice Model (NESOSIM). Additionally, there are 
differences in the choice of sea ice and snow densities  
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Fig. 13. Assessment of three satellite derived SIT with OIB L4 and Quick Look data along some OIB L4 and Quick Look 
trajectories. The OIB trajectory is shown in the small inserted figure, with the colors representing the distance from the starting 
position. 
 

 
Fig. 14. Assessment of satellite SIT derived from CryoSat-2, 
SMOS, and CS2SMOS with (a) IceBird and (b) CroyVEx data. 
The dashed black line indicates the best fitting line, and the 
solid line indicates the scatter fitting line. 
 
between CryoSat-2 and ICESat-2. For SOMS, the selections 
of bulk ice salinity and sea ice concentration datasets could 
influence the SIT retrieval. 

The difference in spatial resolutions of satellite products and 
the selection of reference data can also affect the assessment 
results. Due to limited reference data, establishing an 
assessment that effectively evaluates monthly mean SIT 
products is challenging. The currently available reference data 
for assessment lacks the temporal extent necessary to match 

monthly mean satellite data. However, satellite products 
exhibit sparse spatial coverage over short periods, making it 
difficult to spatially align short-term mean satellite data with 
reference data. In order to ensure an adequate number of 
assessment points and comparability between satellite and 
reference data, the use of monthly mean satellite data is 
necessary. In addition, the measurement of these reference 
data can cause some uncertainties into the assessment results. 
The OIB L4 and OIB Quick Look datasets are radar-based, 
introducing significant uncertainties related to radar 
penetration of snow, sea ice roughness, and sidelobes. In 
particular, the OIB Quick Look dataset has relatively poor 
performance over multiyear ice and its underlying algorithm 
suffers from a persistent issue of misidentifying range 
sidelobes from the snow-ice interface as the snow-air interface. 
The IceBird and CryoVEx used in this study are 
electromagnetic datasets. The detection principle takes 
advantage of on the disparity in conductivity between sea ice 
(low conductivity) and seawater (high conductivity). However, 
when measuring thickness near pressure ridges, characterized 
by high roughness, these measurements tend to be 
underestimated by as much as 50%, owing to the effects of 
quality assurance averaging within the instrument's 
approximately 40 m diameter footprint. 

In summary, due to the limited understanding of the 
performance of the latest released versions of various satellite 
SIT data, this study, for the first time, focused on the Arctic 
thinner ice region and conducted a comprehensive comparison 
and assessment of spatiotemporal disparities among the latest 
version of multisource satellite derived SIT from CryoSat-2, 
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Fig. 15. Assessment of satellite SIT derived from CryoSat-2, SMOS, CS2SMOS, and ICESat-2 with the CAA stations data. 

 

 
Fig. 16. Assessment of satellite SIT derived from CryoSat-2, SMOS, CS2SMOS, and ICESat-2 with (a) OIB Quick Look and (b) 
IceBird data. The dashed black line indicates the best fitting line, and the solid line indicates the scatter fitting line. 

 
SMOS, CS2SMOS, and ICESat-2. The comparison and 
assessment of satellite data were divided into two selected 
periods, 2011–2022 and 2018–2022, due to the initiation of 
ICESat-2 data in 2018.  

Over the period 2011–2022, the multi-year mean SIT of 
CryoSat-2, SMOS, and CS2SMOS could capture similar 
spatial distribution patterns in the thinner ice region. Among 
the three satellite products, CryoSat-2 reported the largest 
mean SIT, followed by CS2SMOS, and SMOS exhibited the 
smallest mean SIT. Notably, CS2SMOS demonstrated a closer 
agreement in SIT with SMOS than with CryoSat-2 in the 
thinner ice region. The three products reported a relatively 
large mean SIT in the Beaufort Sea and the East Siberian Sea 
and identified the Barents Sea as the subregion with the 
smallest mean SIT. Despite variations in certain characteristics 
during different seasons, the primary seasonal features 
generally remained consistent with those of the multi-year 
mean. The monthly SIT time series variations among 
CryoSat-2, SMOS, and CS2SMOS displayed high correlations, 
with all three exhibiting slight decreasing trends. 

With the inclusion of ICESat-2, over the period 2018–2022, 
ICESat-2 recorded the largest multi-year mean SIT, followed 
by CryoSat-2 in the second position. CS2SMOS ranked third, 
and SMOS exhibited the smallest mean thickness among the 
four datasets. CS2SMOS maintained the closest agreement 
with SMOS, with the relationship between CS2SMOS and 

CryoSat-2 being the second closest. The third closest 
agreement was observed between ICESat-2 and CS2SMOS. 
ICESat-2 exhibited similar spatiotemporal variation 
characteristics to the other three satellites, encompassing 
multi-year, seasonal, and monthly mean. 

The assessment results based on various airborne and in situ 
measurement datasets revealed that the four satellite products 
generally showed some underestimations of SIT in the thinner 
ice region. Over the period 2011–2022, CryoSat-2 displayed 
the best match of SIT with the reference datasets from OIB L4, 
OIB Quick Look, IceBird, CryoVEx, and the CAA stations. 
Therefore, a comprehensive assessment result revealed 
CryoSat-2 as the best overall performance product. Similarly, 
over the period 2018–2022, CryoSat-2 maintained the bset 
overall performance, displaying the optimal agreement with 
the datasets from OIB Quick Look, IceBird, and the CAA 
stations, respectively. CS2SMOS exhibited a similar 
performance to CryoSat-2 in the two selected periods. 

In this study, the spatiotemporal comparison and assessment 
enhance a comprehensive understanding of the potential 
disparities among the latest versions of multisource satellite 
products, specifically focusing on the thinner ice region, 
contributing to a more nuanced interpretation of the observed 
SIT variations. These insights are crucial for the further 
improvement in the overall quality of satellite derived SIT 
data employed in climate studies and environmental 
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monitoring. There is a note that the assessment results in the 
study only show the performance of satellite products within 
specific time periods and regions. Furthermore, inherent 
uncertainties are present in the reference data used. To address 
these limitations, future endeavors should emphasize the 
integration of more diverse reference data from various 
sources and observation methods. 

REFERENCES 

[1] D. K. Perovich, B. Light, H. Eicken, K. F. Jones, K. 
Runciman, and S. V. Nghiem, “Increasing solar heating of the 
Arctic Ocean and adjacent seas, 1979–2005: Attribution and 
role in the ice‐albedo feedback,” Geophys. Res. Lett., vol. 34, 
no. 19, Oct. 2007, doi: 10.1029/2007GL031480. 
[2] Y. Zhang et al., “Studies of the Canadian Arctic 
Archipelago water transport and its relationship to basin‐local 
forcings: Results from AO‐FVCOM,” J. Geophys. Res. 
Oceans, vol. 121, no. 6, pp. 4392–4415, Jun. 2016, doi: 
10.1002/2016JC011634. 
[3] Y. Zhang et al., “Role of sea level pressure in variations 
of the Canadian Arctic Archipelago throughflow,” Adv. Clim. 
Change Res., vol. 12, no. 4, pp. 539–552, Aug. 2021, doi: 
10.1016/j.accre.2021.07.009. 
[4] M. Sturm, D. K. Perovich, and J. Holmgren, “Thermal 
conductivity and heat transfer through the snow on the ice of 
the Beaufort Sea,” J. Geophys. Res. Oceans, vol. 107, no. C10, 
Oct. 2002, doi: 10.1029/2000JC000409. 
[5] W. N. Meier et al., “Arctic sea ice in transformation: A 
review of recent observed changes and impacts on biology and 
human activity,” Rev. Geophys., vol. 52, no. 3, pp. 185–217, 
Sep. 2014, doi: 10.1002/2013RG000431. 
[6] M. G. McPhee, T. P. Stanton, J. H. Morison, and D. G. 
Martinson, “Freshening of the upper ocean in the Arctic: Is 
perennial sea ice disappearing?” Geophys. Res. Lett., vol. 25, 
no. 10, pp. 1729–1732, May 1998, doi: 10.1029/98GL00933. 
[7] J. C. Stroeve et al., “Trends in Arctic sea ice extent from 
CMIP5, CMIP3 and observations,” Geophys. Res. Lett., vol. 
39, no. 16, Aug. 2012, doi: 10.1029/2012GL052676. 
[8] R. Kwok, “Arctic sea ice thickness, volume, and 
multiyear ice coverage: losses and coupled variability (1958–
2018),” Environ. Res. Lett., vol. 13, no. 10, Oct. 2018, doi: 
10.1088/1748-9326/aae3ec. 
[9] E. Olason and D. Notz, “Drivers of variability in Arctic 
sea‐ice drift speed,” J. Geophys. Res. Oceans, vol. 119, no. 9, 
pp. 5755–5775, Sep. 2014, doi: 10.1002/2014JC009897. 
[10] L. Lin, R. Lei, M. Hoppmann, D. K. Perovich, and H. He, 
“Changes in the annual sea ice freeze–thaw cycle in the Arctic 
Ocean from 2001 to 2018,” The Cryosphere, vol. 16, no. 12, 
pp. 4779–4796, Dec. 2022, doi: 10.5194/tc-16-4779-2022. 
[11] Y. Zhang, X. Sun, Y. Zha, K. Wang, and C. Chen, 
“Changing Arctic Northern Sea Route and Transpolar Sea 
Route: A Prediction of Route Changes and Navigation 
Potential before Mid-21st Century,” J. Mar. Sci. Eng., vol. 11, 
no. 12, p. 2340, Dec. 2023, doi: 10.3390/jmse11122340. 
[12] K. Wang, Y. Zhang, C. Chen, S. Song, and Y. Chen, 
“Impacts of Arctic Sea Fog on the Change of Route Planning 
and Navigational Efficiency in the Northeast Passage during 
the First Two Decades of the 21st Century,” J. Mar. Sci. Eng., 

vol. 11, no. 11, p. 2149, Nov. 2023, doi: 
10.3390/jmse11112149. 
[13] M. Johnson et al., “Evaluation of Arctic sea ice thickness 
simulated by Arctic Ocean Model Intercomparison Project 
models,” J. Geophys. Res. Oceans, vol. 117, no. C8, Aug. 
2012, doi: 10.1029/2011JC007257. 
[14] X. Shen et al., “Arctic sea ice variation in the Northwest 
Passage in 1979–2017 and its response to surface 
thermodynamics factors,” Adv. Clim. Change Res., vol. 12, no. 
4, pp. 563–580, Aug. 2021, doi: 10.1016/j.accre.2021.08.004. 
[15] Y. Zhang, C. Chen, R. C. Beardsley, G. Gao, J. Qi, and H. 
Lin, “Seasonal and interannual variability of the Arctic sea ice: 
A comparison between AO-FVCOM and observations,” J. 
Geophys. Res. Oceans, vol. 121, no. 11, pp. 8320–8350, Nov. 
2016, doi: 10.1002/2016JC011841. 
[16] I. P. Romanov, 2004, “Morphometric Characteristics of 
Ice and Snow in the Arctic Basin: Aircraft Landing 
Observations from the Former Soviet Union, 1928-1989, 
Version 1,” Boulder, CO, USA: NASA National Snow and Ice 
Data Center Distributed Active Archive Center, doi: 
https://doi.org/10.7265/N5B8562T. 
[17] D. A. Rothrock and M. Wensnahan, “The Accuracy of 
Sea Ice Drafts Measured from U.S. Navy Submarines,” J. 
Atmospheric Ocean. Technol., vol. 24, no. 11, pp. 1936–1949, 
Nov. 2007, doi: 10.1175/JTECH2097.1. 
[18] J. A. Richter-Menge, D. K. Perovich, B. C. Elder, K. 
Claffey, I. Rigor, and M. Ortmeyer, “Ice mass-balance buoys: 
a tool for measuring and attributing changes in the thickness 
of the Arctic sea-ice cover,” Ann. Glaciol., vol. 44, pp. 205–
210, 2006, doi: 10.3189/172756406781811727. 
[19] N. Kurtz et al., “Sea ice thickness, freeboard, and snow 
depth products from Operation IceBridge airborne data,” The 
Cryosphere, vol. 7, no. 4, pp. 1035–1056, Jul. 2013, doi: 
10.5194/tc-7-1035-2013. 
[20] A. Pfaffling, C. Haas, and J. E. Reid, “Direct helicopter 
EM — Sea-ice thickness inversion assessed with synthetic and 
field data,” Geophysics, vol. 72, no. 4, pp. F127–F137, Jul. 
2007, doi: 10.1190/1.2732551. 
[21] H. Lyu, W. Huang, and M. Mahdianpari, “A 
Meta-Analysis of Sea Ice Monitoring Using Spaceborne 
Polarimetric SAR: Advances in the Last Decade,” IEEE J. Sel. 
Top. Appl. Earth Obs. Remote Sens., vol. 15, pp. 6158–6179, 
Jul. 2022, doi: 10.1109/JSTARS.2022.3194324. 
[22] D. Demchev, L. E. B. Eriksson, A. Hildeman, and W. 
Dierking, “Alignment of Multifrequency SAR Images 
Acquired Over Sea Ice Using Drift Compensation,” IEEE J. 
Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 7393–
7402, Aug. 2023, doi: 10.1109/JSTARS.2023.3302576. 
[23] R. Wang, W. Zhu, X. Zhang, Y. Zhang, and J. Zhu, 
“Comparison of Doppler-Derived Sea Ice Radial Surface 
Velocity Measurement Methods From Sentinel-1A IW Data,” 
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 
2178–2191, Feb. 2023, doi: 10.1109/JSTARS.2023.3241978. 
[24] T. Feng, X. Liu, and R. Li, “Super-Resolution-Aided Sea 
Ice Concentration Estimation From AMSR2 Images by 
Encoder–Decoder Networks With Atrous Convolution,” IEEE 
J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 962–
973, Dec. 2023, doi: 10.1109/JSTARS.2022.3232533. 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3390618

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



12 
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 
 
[25] H. J. Zwally et al., “ICESat’s laser measurements of 
polar ice, atmosphere, ocean, and land,” J. Geodyn., vol. 34, 
no. 3–4, pp. 405–445, Oct.–Nov. 2002, doi: 
10.1016/S0264-3707(02)00042-X. 
[26] S. W. Laxon et al., “CryoSat‐2 estimates of Arctic sea 
ice thickness and volume,” Geophys. Res. Lett., vol. 40, no. 4, 
pp. 732–737, Feb. 2013, doi: 10.1002/grl.50193. 
[27] S. Mecklenburg et al., “ESA’s Soil Moisture and Ocean 
Salinity Mission: Mission Performance and Operations,” IEEE 
Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1354–1366, 
May 2012, doi: 10.1109/TGRS.2012.2187666. 
[28] R. Ricker, S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. 
King, and C. Haas, “A weekly Arctic sea-ice thickness data 
record from merged CryoSat-2 and SMOS satellite data,” The 
Cryosphere, vol. 11, no. 4, pp. 1607–1623, Jul. 2017, doi: 
10.5194/tc-11-1607-2017. 
[29] T. Markus et al., “The Ice, Cloud, and land Elevation 
Satellite-2 (ICESat-2): Science requirements, concept, and 
implementation,” Remote Sens. Environ., vol. 190, pp. 260–
273, Mar. 2017, doi: 10.1016/j.rse.2016.12.029. 
[30] G. A. Maykut, “Energy exchange over young sea ice in 
the central Arctic,” J. Geophys. Res. Oceans, vol. 83, no. C7, 
pp. 3646–3658, Jul. 1978, doi: 10.1029/JC083iC07p03646. 
[31] X. Wang, J. Key, R. Kwok, and J. Zhang, “Comparison 
of Arctic Sea Ice Thickness from Satellites, Aircraft, and 
PIOMAS Data,” Remote Sens., vol. 8, no. 9, p. 713, Aug. 2016, 
doi: 10.3390/rs8090713. 
[32] H. Sallila, S. L. Farrell, J. McCurry, and E. Rinne, 
“Assessment of contemporary satellite sea ice thickness 
products for Arctic sea ice,” The Cryosphere, vol. 13, no. 4, pp. 
1187–1213, Apr. 2019, doi: 10.5194/tc-13-1187-2019. 
[33] A. A. Petty, N. T. Kurtz, R. Kwok, T. Markus, and T. A. 
Neumann, “Winter Arctic Sea Ice Thickness From ICESat‐2 
Freeboards,” J. Geophys. Res. Oceans, vol. 125, no. 5, May 
2020, doi: 10.1029/2019JC015764. 
[34] M. Li, C. Ke, H. Xie, X. Miao, X. Shen, and W. Xia, 
“Arctic sea ice thickness retrievals from CryoSat-2: seasonal 
and interannual comparisons of three different products,” Int. 
J. Remote Sens., vol. 41, no. 1, pp. 152–170, Jan. 2020, doi: 
10.1080/01431161.2019.1637961. 
[35] X. Shen, C. Ke, Q. Wang, J. Zhang, L. Shi, and X. Zhang, 
“Assessment of Arctic Sea Ice Thickness Estimates From 
ICESat-2 Using IceBird Airborne Measurements,” IEEE 
Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 3764–3775, 
May 2021, doi: 10.1109/TGRS.2020.3022945. 
[36] C. Soriot, C. Prigent, C. Jimenez, and F. Frappart, 
“Arctic Sea Ice Thickness Estimation From Passive 
Microwave Satellite Observations Between 1.4 and 36 GHz,” 
Earth Space Sci., vol. 10, no. 2, Feb. 2023, doi: 
10.1029/2022EA002542. 
[37] Y. Zhang et al., “Reconstructing Long-Term Arctic Sea 
Ice Freeboard, Thickness, and Volume Changes from Envisat, 
CryoSat-2, and ICESat-2,” J. Mar. Sci. Eng., vol. 11, no. 5, p. 
979, May 2023, doi: 10.3390/jmse11050979. 
[38] F. Chen, D. Wang, Y. Zhang, Y. Zhou, and C. Chen, 
“Intercomparisons and Evaluations of Satellite-Derived Arctic 
Sea Ice Thickness Products,” Remote Sens., vol. 16, no. 3, p. 
508, Jan. 2024, doi: 10.3390/rs16030508. 

[39] S. Hendricks and S. Paul, Oct. 2023, “Product User 
Guide & Algorithm Specification - AWI CryoSat-2 Sea Ice 
Thickness (version 2.6),” Zenodo, doi: 
https://doi.org/10.5281/zenodo.10044554. 
[40] X. Tian-Kunze et al., “SMOS-derived thin sea ice 
thickness: algorithm baseline, product specifications and 
initial verification,” The Cryosphere, vol. 8, no. 3, pp. 997–
1018, May 2014, doi: 10.5194/tc-8-997-2014. 
[41] A. A. Petty, N. Kurtz, R. Kwok, T. Markus, T. A. 
Neumann, and N. Keeney, 2023, “ICESat-2 L4 Monthly 
Gridded Sea Ice Thickness, Version 3.” Boulder, CO, USA: 
NASA National Snow and Ice Data Center Distributed Active 
Archive Center, doi: 10.5067/ZCSU8Y5U1BQW. 
[42] N. Kurtz, M. Studinger, J. Harbeck, V. Onana, and D. Yi, 
2015, “IceBridge L4 Sea Ice Freeboard, Snow Depth, and 
Thickness, Version 1,” Boulder, CO, USA: NASA National 
Snow and Ice Data Center Distributed Active Archive Center, 
doi: https://doi.org/10.5067/G519SHCKWQV6. 
[43] N. Kurtz, M. Studinger, J. Harbeck, V. Onana, and D. Yi, 
2016, “IceBridge Sea Ice Freeboard, Snow Depth, and 
Thickness Quick Look, Version 1,” Boulder, CO, USA: 
NASA National Snow and Ice Data Center Distributed Active 
Archive Center, doi: https://doi.org/10.5067/GRIXZ91DE0L9. 
[44] A. Jutila, S. Hendricks, R. Ricker, L. von Albedyll, and 
C. Haas, 2021, “Airborne sea ice parameters during the 
PAMARCMIP2017 campaign in the Arctic Ocean, version 1,” 
PANGAEA, doi: https://doi.org/10.1594/PANGAEA.933883. 
[45] A. Jutila, S. Hendricks, R. Ricker, L. von Albedyll, and 
C. Haas, 2021, “Airborne sea ice parameters during the 
IceBird Winter 2019 campaign in the Arctic Ocean, version 1,” 
PANGAEA, doi: https://doi.org/10.1594/PANGAEA.933912. 
[46] S. Hendricks, R. Ricker, and A. Jutila, “ICESat-2 
Validation Data Acquisition Report,” AWI, Bremerhaven, 
Bremen, Germany, Initial Rep., Aug. 2019. 
[47] C. Haas and J. Beckers, “Deliverable 6: CryoVEx 2014 
Final Report,” York Univ., Toronto, Canada, Final Rep., Apr. 
2015. 
[48] L. Li, H. Chen, and L. Guan, “Retrieval of Snow Depth 
on Arctic Sea Ice from the FY3B/MWRI,” Remote Sens., vol. 
13, no. 8, p. 1457, Apr. 2021, doi: 10.3390/rs13081457. 
[49] R. Kwok and G. F. Cunningham, “Variability of Arctic 
sea ice thickness and volume from CryoSat-2,” Philos. Trans. 
R. Soc. Math. Phys. Eng. Sci., vol. 373, no. 2045, Jul. 2015, 
doi: 10.1098/rsta.2014.0157. 
[50] R. Kwok, S. Kacimi, M. A. Webster, N. T. Kurtz, and A. 
A. Petty, “Arctic Snow Depth and Sea Ice Thickness From 
ICESat‐2 and CryoSat‐2 Freeboards: A First Examination,” J. 
Geophys. Res. Oceans, vol. 125, no. 3, Mar. 2020, doi: 
10.1029/2019JC016008. 
[51] Z. Hu et al., “CCHZ‐DISO: A Timely New Assessment 
System for Data Quality or Model Performance From Da Dao 
Zhi Jian,” Geophys. Res. Lett., vol. 49, no. 23, Dec. 2022, doi: 
10.1029/2022GL100681. 
 
 
 
 
 
 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3390618

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



13 
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 
 

Yu Zhang (Member, IEEE) received the 
B.S. degree in physics from East China 
Normal University, Shanghai, China, in 
2009, and the Ph.D. degree in marine 
science and technology from University 
of Massachusetts-Dartmouth, MA, USA, 
in 2016.  

From November 2016 to August 2019, 
he was an Assistant Professor with the 

College of Oceanography and Ecological Science, Shanghai 
Ocean University, Shanghai, China. Since September 2019, he 
works as an Associate Professor with the College of Marine 
Sciences, Shanghai Ocean University, Shanghai, China. His 
research interests include physical oceanography, air–sea–ice 
interactions, climate change, remote sensing, and numerical 
models. 
 
 

 
Guohao Li received the B.E. degree in 
marine resource development technology 
from Lingnan Normal University, 
Zhanjiang, Guangdong Province, China, in 
2022. 

He is currently working toward the M.S. 
degree in marine science with the College 
of Oceanography and Ecological Science, 

Shanghai Ocean University, Shanghai, China. His research 
interests include remote sensing, numerical models, sea ice 
variation, and polar oceanography. 
 
 

Huan Li received the B.S. degree in 
geographic information science from 
Suzhou University of Science and 
Technology, Suzhou, Jiangsu Province, 
China, in 2023. 

She is currently working toward the M.S. 
degree in marine science with the College 
of Oceanography and Ecological Science, 
Shanghai Ocean University, Shanghai, 

China. Her research interests include remote sensing, machine 
learning, numerical models, polar oceanography, and climate 
change. 
 
 

Changsheng Chen received the M.S. 
degree in marine meteorology from 
Ocean University of China, Qingdao, 
Shandong Province, China, in 1983, and 
M.S. and Ph.D. degree in physical 
oceanography from Massachusetts 
Institute of Technology, MA, USA, in 
1989 and 1992, respectively.  

In 1992, he was a Postdoctoral 
Researcher with Woods Hole Oceanographic Institution, MA, 
USA. From 1992 to 1994, he was a Research Scientist with 
Texas A&M University, TX, USA. From 1994 to 2001, he 
was an Assistant Professor and Associate Professor with 

University of Georgia, GA, USA. Since 2001, he joined 
School for Marine Science and Technology, University of 
Massachusetts-Dartmouth, MA, USA as a Full Professor. He 
is currently Montgomery Charter Chair Professor and 
Commonwealth Professor with University of 
Massachusetts-Dartmouth. His research interests include polar 
oceanography, multi-scaling ocean model developments, 
climate change, modeling and observational exploration of 
coastal ocean circulation, oceanic frontal processes, and 
biological and physical interactions. 
 
 

Weizeng Shao (Member, IEEE) received the 
B.S. degree in engineering from JiangSu 
University of Science and Technology, 
Zhenjiang, Jiangsu Province, China, in 2007, 
and a Ph.D. degree in physical oceanography 
from Ocean University of China, Qingdao, 
Shandong Province, China, in 2013. During 
his Ph.D. program in 2010–2012, he was a 

visiting research scientist with the SAR oceanography group 
at the German Aerospace Center in Munich, Germany. 

During 20152020, he was an associate professor with 
Zhejiang Ocean University, Zhoushan, Zhejiang Province, 
China. Since 2019, he has been an assistant researcher with 
the National Satellite Ocean Application Service, Beijing, 
China. Since 2021, he has been a full professor with Shanghai 
Ocean University, Shanghai, China. His research interests 
include marine applications of synthetic aperture radar, 
especially from Chinese Gaofen-3 (GF-3), HY-2, and 
CFOSAT, and ocean modeling of typhoons and hurricanes. 
 
 

Yi Zhou received the B.S. degree in 
marine science from Shanghai Ocean 
University, Shanghai, China, in 2023.  

He is currently working toward the 
Ph.D. degree in physical oceanography 
with the School of Oceanography, 
Shanghai Jiao Tong University, Shanghai, 
China. His research interests include polar 

remote sensing, Arctic sea ice, snow depth, and physical 
process of sea ice. 
 

Deshuai Wang received the B.S. degree 
in marine science from Ocean University 
of China, Qingdao, Shandong Province, 
China, in 2011, M.S. degree in marine 
science from National Marine 
Environmental Forecasting Center, 
Beijing, China, in 2014, and the Ph.D. 
degree in marine science and technology 
from University of Massachusetts 

-Dartmouth, MA, USA, in 2022.  
  Since 2022, he works a Research Scientist with the 

University of Maryland Center for Environmental Science, 
Cambridge, MD, USA. His research interests include 
numerical models, remote sensing, polar oceanography, sea 
ice, and climate change. 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3390618

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


