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Abstract—Ice surface temperature (IST) plays a fundamental 

role in the Antarctic ice sheet/shelf study. However, the 

production of spatially and temporally continuous Antarctic IST 

products remains a challenge. We proposed an instantaneous 

IST retrieval framework that can generate the spatially and 

temporally continuous Antarctic IST using Advanced 

Microwave Scanning Radiometer 2 (AMSR2) data. To generate 

a temporally continuous IST product, we developed an 

innovative scheme, which was based on the acquisition times 

difference between input and output data. We considered the 

impact of terrain and sensor observation state. The 

corresponding parameters were used as the auxiliary variables 

to improve the model accuracy. We trained and validated nine 

machine learning models using sample set. The Light Gradient 

Boosting Machine (LightGBM) model presents the best 

performance, and the root mean square error (RMSE) of the 

LightGBM model is only half of that of the typical linear models. 

The RMSE of the LightGBM model decreased with training 

sample set size and stabilized at 1.67 K. Further validation using 

muti-source data showed that the IST retrieved using the 

LightGBM model has RMSEs of 1.39–2.32 K (relative to IST 

from Landsat-8) and 3.7–5.9 K (relative to IST from Baseline 
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Surface Radiation Network data). Compared to the commonly 

used ERA5 IST data, the retrieved IST in this study has higher 

accuracy. We retrieved Antarctic IST from 2013 to 2020. Antarctic 

IST decreased continuously from 2013 to 2015. After 2015, 

Antarctic IST increased with large fluctuations.  

 

Index Terms—Antarctic ice surface temperature, LightGBM 

model, machine learning, passive microwave 

 

I. INTRODUCTION 

ce surface temperature (IST) reflects the freeze–thaw 

state and the timing and duration of the melting of an 

ice sheet. Therefore, the study of Antarctic IST is 

important for the understanding of the surface energy budget 

and the surface mass balance of the Antarctic ice sheet [1], [2], 

[3]. According to Giovinetto et al. [4], the surface mass balance 

in Antarctica is significantly correlated with IST with a 

correlation coefficient of 0.7–0.8. IST also plays a crucial role 

in the exchange of energy between the ice sheet and the 

atmosphere [5]. Antarctic IST varies seasonally and regionally. 

However, these spatiotemporal variations could change 

because of rapid climatic changes and frequent climate 

extremes [6]. Therefore, spatially and temporally continuous 

IST products that have high accuracy are needed to improve 

our understanding of the surface changes of the Antarctic ice 

sheet. 

Antarctic IST is commonly monitored using automatic 

weather stations (AWSs) and remote sensing imagery [7]. 

AWSs provide long and continuous data records with high 

temporal resolution (observations every few minutes). 

However, the majority of AWSs measure the near-surface air 

I 
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temperature (NST) rather than IST; the difference between 

IST and NST can be substantial, especially under conditions 

of low wind speed and solar radiation [8]. Additionally, each 

AWS only collects data at a specific location. AWSs are 

sparsely distributed over Antarctica; consequently, the IST of 

the entire Antarctic ice sheet cannot be monitored using only 

AWSs. It is possible to use thermal infrared and passive 

microwave (PM) remote sensing data to monitor surface 

temperature over a vast area [9]. Compared with PM remote 

sensing, thermal infrared remote sensing data have high 

spatial resolution (30–1000 m) and relatively high accuracy 

under clear skies (1.2–2.3 K) [7], [10], [11]. However, 

thermal infrared remote sensing cannot penetrate clouds, 

resulting in the spatial discontinuity of IST products from 

thermal infrared data. [12]. PM remote sensing data have low 

spatial resolution (25 km), but can penetrate through clouds 

to measure surface information of almost the entire planet in 

a single day [13]. Consequently, PM data have been used to 

generate large-scale datasets. Some researchers have made 

much effort to generate spatially or temporally continuous 

LST data by using PM data. Song and Zhang [14] combined 

AMSR-2 and the FY-3B Microwave Radiation Imager data to 

enhance coverage of daily land surface temperature (LST) 

estimates in low latitudes. Wu et al. [15] mapping gapless all-

weather land surface temperature in China using thermal 

infrared and passive microwave data. Dowlin et al., [16] 

generate the spatially continuous LST through introducing 

passive microwave data. In view of these characteristics, PM 

data can be very beneficial for the monitoring of Antarctic 

IST. 

Commonly, PM data have been used to retrieve sea surface 

temperature and LST, with root mean square errors (RMSEs) 

of 0–1 and 2–5 K, respectively [17], [18], [19], [20]. 

Generally, physical or empirical models have been used to 

retrieve LST from PM data. The physical models are based 

on the radiation transmission equation of PM; their accuracy 

highly relies on the land surface emissivity. However, 

because snow emissivity is sensitive to snow liquid water 

content, surface roughness and snow grain size in the 

microwave range, snow emissivity varies both spatially and 

temporally [21], [22], [23]. It is difficult to obtain reliable snow 

emissivity and thus retrievals can have considerable error, 

limiting the application of physical models to IST retrieval 

[24]. Empirical models, which are based on the relationship 

between LST and brightness temperatures and avoid complex 

physical parameters, have been used widely to retrieve LST 

from PM data [17], [19], [25]. Therefore, in this study, we 

retrieved Antarctic IST using empirical models. 

In 2017, Microsoft developed the Light Gradient Boosting 

Machine (LightGBM) algorithm on the basis of the eXtreme 

Gradient Boosting (XGBoost). In this study, we used 

LightGBM to develop a framework to retrieve IST from PM 

data with the goal of generating spatially continuous Antarctic 

IST maps with high temporal resolution. The sample set also 

plays a fundamental role in model construction. Its size, 

representativeness, and accuracy can affect the robustness and 

accuracy of the trained model [26]. The Moderate-resolution 

Imaging Spectroradiometer (MODIS) IST product has high 

accuracy and large spatial and temporal coverages [27], [28]; 

therefore, we used it as ground truth for model training and 

testing. The IST retrieval model uses PM brightness 

temperature from the Advanced Microwave Scanning 

Radiometer 2 (AMSR2) as the primary input [17], [19].  

We used multi-source data to test our IST retrieval 

framework. The accuracy of different typical linear and 

nonlinear models was evaluated by using the testing sample 

set. IST retrievals from Landsat-8 thermal infrared band data 

have a high accuracy and spatial resolution [7]. We used IST 

retrieved from Landsat-8 satellite data and near-surface thermal 

infrared radiation data to assess the accuracy of the LightGBM 

model. We used the LightGBM model to retrieve IST from 

AMSR2 data and examined the variations of the Antarctic IST 

between 2013 and 2020. 

This article is divided into six sections. Section I introduces 

the background and significance of the study. The datasets that 

were used in the study are introduced in Section II. Section III 

presents the LightGBM algorithm and the details of sample set 

construction and model training. In Section IV, we compare the 

performance of different models, and evaluate the accuracy of 

the LightGBM model using multi-source data. In Section V, we 
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discuss the error distributions of LightGBM model on month, 

IST, and STG. We examine the role of the near-surface 

temperature inversion in the Antarctic and discuss the 

variations of Antarctic IST between 2013 and 2020. Our 

conclusions are presented in the final Section. 

II. DATA 

We used multi-source data to establish a sample set, train 

models, and evaluate model accuracy. Details of the data that 

were used in this study are presented in this section. 

 

A. AMSR2 Data 

Global Change Observation Mission 1st - Water (GCOM-

W1) satellite was launched by the Japan Aerospace 

Exploration Agency in 2012. It is in a sun-synchronous orbit 

with a satellite inclination angle of 98°. It carries AMSR2, 

which is the successor of the Advanced Microwave Scanning 

Radiometer-Earth Observing System (AMSR-E). The 

AMSR2 is a multi-frequency PM radiometer. It is enabled to 

capture approximately 29 swath granules from the polar 

regions because of the short revisit period of GCOM-W1 

(approximately 15 times per day in Antarctica) [29]. Each 

granule is defined as a half orbit between the North Pole and 

the South Pole. 

The AMSR2 has a conical scan mechanism. It measures 

microwave radiation from the Earth at 6.9, 7.3, 10.7, 18.7, 

23.8, 36.5, and 89 GHz. Each frequency has two passive 

microwave polarization modes (H and V). AMSR2 products 

are categorized according to processing level. To capture 

instantaneous ice surface information, we used Level 1R 

swath brightness temperature data from all channels. We also 

used associated sensor observation information such as 

latitude, longitude, earth azimuth, earth incidence, sun 

azimuth, sun elevation, area mean height, and scan time. We 

obtained the AMSR2 data from the official website of the 

Globe Portal System (https://gportal.jaxa.jp). 

We used AMSR2 data covering Antarctica from July 2012 

to June 2020 to generate a sample set. For the 89 GHz 

channel, the original sampling interval is 5 km. We 

aggregated the pixels to 10-km intervals to match the 

sampling intervals of the other channels (6.9, 7.3, 10.7, 18.7, 

23.8, and 36.5 GHz). 

 

B. MODIS IST Product 

The MODIS instrument is carried by both the Terra and the 

Aqua satellites. It views the entire surface of the Earth every 1–

2 days [30]. Its detectors collect data in 36 bands in the 

wavelength range of 0.4–14.4 μm; these bands include 16 

thermal infrared bands and the atmospheric water vapor 

retrieval bands. The main inputs (i.e., atmospheric water vapor 

content) for IST retrieval can be estimated using these data. 

Retrievals of IST from MODIS data have high accuracy and 

are not influenced by inter-satellite differences in algorithm 

inputs. 

The National Aeronautics and Space Administration 

(NASA) provides swath IST products (MOD/MYD11_L2) 

with 1-km resolution, which are generated using the split-

windows method [31]. We obtained the data from 

https://ladsweb.modaps.eosdis.nasa.gov/search/. Because 

remote sensing data from the thermal infrared band are easily 

impacted by weather (e.g., clouds and aerosols), over 60% of 

the areas covered by the MOD/MYD11_L2 products are 

invalid [32]. Fig. 1 shows two randomly mosaicked Antarctic 

IST maps based on MOD/MYD11_L2 products for July 3, 

2016 (in austral winter) and Jan 5, 2020 (in austral summer). 

Although each map was mosaicked by using all the swath IST 

products of the day (30–40 scenes of MOD/MYD11_L2), 

Antarctic coverage remains incomplete in both winter and 

summer. 

We used cloud-free MOD/MYD11_L2 products as ground 

truth to train and evaluate the models because they have high 

accuracy and large spatial and temporal coverages. According 

to Wan [28], there is close agreement between in situ 

measurements of LST and LST from MOD/MYD11_L2 under 

clear-sky conditions, with an RMSE of less than 2K at most 

sites and an RMSE of less than 1K at two sites in Antarctica. 

To allow data from different sources to be co-located in space, 

we projected the MOD/MYD11_L2 data to the Antarctic 

stereographic projection and resized the pixel size to 10 km. 
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C. Terrain Data 

Because IST varies closely with terrain [2], we used terrain 

data as sample inputs for model construction. The Bedrock 

Mapping Project (Bedmap) has produced a suite of gridded 

products that describe surface elevation and other 

characteristics of the Antarctic [33]. We used Bedmap2, 

which includes more measurements from a variety of sources 

and has a higher quality than Bedmap1. We downloaded 

Bedmap2 data from 

https://secure.antarctica.ac.uk/data/bedmap2/.  

To obtain a fuller description of the terrain, we generated 

slope and aspect data from the Bedmap2 digital elevation 

model data, which have a resolution of 1 km. All the other 

inputs used in this study are on 10-km grids. Therefore, we 

resized the Bedmap2 elevation, slope, and aspect data on to a 

10-km grid to ensure consistency between all inputs. 

 

D. Landsat-8 Data 

Landsat-8 was launched by NASA in 2013. It carries two 

payloads, which are the Operational Land Imager and the 

Thermal Infrared Sensor. Both instruments have a swath 

width of 190 km. The two instruments together cover a total 

of 11 bands. The spatial resolutions of the Operational Land 

Imager and the Thermal Infrared Sensor data are 15/30 and 

100 m, respectively [34]. The pixel sizes of the Landsat-8 

data were downsampled to match AMSR2 data (10 km) by 

calculating the average pixel value in a 10-km window. We 

obtained Landsat-8 data from https://earthexplorer.usgs.gov/.  

We used an improved single-channel algorithm proposed 

by Li et al. [7] to retrieve IST from Landsat-8 data for model 

validation. The single-channel algorithm was built 

specifically for polar regions; accuracy is relatively high and 

RMSE is ~1.2 K for clear conditions. In austral winter, 

Antarctic data are not available from Landsat-8. Therefore, 

we used three Landsat-8 images taken on different days in 

austral summer (blue rectangles in Fig. 2).  

 

E. AWS Data 

Two types of AWS data are used in this study. We used air 

temperature data from the Antarctic Meteorological Research 

Center (AMRC) of the United States Antarctic Program to 

compare with retrieved IST and analyze near-surface 

temperature inversion. The AMRC provides real-time and 

archived meteorological data and observations, and supports a 

network of AWSs in Antarctica. The AWSs measure 2-m air 

temperature with an accuracy of approximately 0.1 K [35]. 

There were approximately 60 AMRC AWSs operational 

between 2012 and 2022; exact numbers vary because of AWS 

installation and retirement. AMRC air temperature data in this 

study are used to compare with IST rather than to validate the 

accuracy of the IST retrieval models. Fig. 2 shows the 

locations of the AMRC AWSs (yellow circles). We obtained 

AMRC data from https://amrc.ssec.wisc.edu/.  

We also used surface thermal infrared radiation data from 

the Baseline Surface Radiation Network (BSRN) to validate 

the accuracy of the proposed model. The BSRN is a project of 

the Data and Assessments Panel from the Global Energy and 

Water Cycle Experiment, which focuses on detecting Earth 

surface radiation and its effects on climate change. We 

obtained the BSRN data from https://www.pangaea.de/. The 

BSRN stations measure broadband thermal infrared radiation 

from the surface and the air rather than IST or air temperature. 

Following the theory of radiative transfer, IST can be retrieved 

from thermal infrared radiation as follows [36]: 

𝐼𝑆𝑇 = √(𝐿𝑢𝑝−𝐿𝑑𝑜𝑤𝑛(1 − 𝜀))/(𝜎𝜀)4               (1) 

 

where 𝐿𝑢𝑝 and 𝐿𝑑𝑜𝑤𝑛 are upwelling and downwelling radiance, 

respectively; 𝜎 is the Stefan–Boltzmann constant (σ = 5.67 × 

10−8 W∙m−2∙K−4); ε is snow emissivity of broadband thermal 

infrared radiation, which was set to 0.985 according to Fréville 

et al. [37]. We used BSRN IST to evaluate model accuracy. 

There are four BSRN stations in the Antarctic (stars in Fig. 2). 

Only the DOM station (the red star in Fig. 2) lies inside our 

IST map. One of them is located at the South Pole, the GCOM-

W1 satellite has an orbital inclination of 98 degrees and 

AMSR2 data cannot cover that place. Therefore, we used the 

data from DOM station for model accuracy validation. Because 

measurements of radiation can be affected by atmospheric 

emissions between the sensor and the snow surface [38], IST 
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retrieved from BSRN data might deviate from true IST. 

 

F. Reanalysis Data 

ERA5 is the fifth generation atmospheric reanalysis of the 

global climate that is provided by the European Centre for 

Medium-Range Weather Forecasts (ECMWF). It has been 

proven to be reliable and has been used widely in climate and 

environmental research [39], [40], [41]. We used ERA5-

Land, which is an enhanced dataset; it is forced by the 

atmospheric analysis of ERA5 and has a higher spatial 

resolution (0.1° × 0.1°) [42]. Although ERA5 assimilates 

AWS measurements and remote sensing data, we took the 

skin temperature from ERA5-Land as IST and compared it 

with the IST from AMSR2. In addition, we used the skin 

temperature from ERA5-Land to construct the standard 

Antarctic IST distribution to address the data imbalance in the 

sample set. The ERA5-land was reprojected to the Antarctic 

stereographic projection and resized to 10 km. 

III. METHODS 

This study aims to generate spatial and temporal 

continuous IST data in the Antarctic. The PM data are used as 

the main input because it covers the Antarctic and is not 

affected by the cloud. The STG is used as a model input to 

make the temporal continuity of the retrieved IST data. The 

flowchart of this study is shown in Fig. 3. The flowchart 

includes three parts: model construction, model accuracy 

validation, and model application. Firstly, we constructed the 

sample set before training the machine learning model. The 

AMSR2 swath data, auxiliary variables, and STG are model 

inputs, and the MODIS IST product is model output. 

Secondly, the testing data were used to validate the nine 

machine learning models. The LightGBM model was chosen 

from the nine models because of its best performance. The 

accuracy of the LightGBM model was also validated by using 

multisource data. ERA5 IST was used to compare with IST 

from the LightGBM model. In the last part, we have analyzed 

the error distribution of the LightGBM model. We have 

compared IST data from the LightGBM model with AWS air 

temperature, and analyzed Antarctic IST spatial-temporal 

variation.  

 

A. Machine Learning Algorithms  

There are linear and nonlinear empirical models. Nonlinear 

models are superior in reproducing the relationship between 

IST and brightness temperature owing to their more complex 

construction. According to the PM radiation equation and 

assuming constant surface emissivity, the relationship between 

brightness temperature and surface temperature is 

approximately linear [17]. However, linear models cannot fully 

express the relationship between IST and brightness 

temperature because of the considerable spatiotemporal 

variability of snow emissivity. Among the nonlinear models, 

ensemble learning exhibits superior performance because this 

learning model improves the performance of a single model by 

training multiple models and combining their results [43]. RF 

and XGBoost [44] algorithms are two types of typical 

ensemble learning methods that improve the model accuracy 

by combining several base estimators. According to Sayed et 

al. [45], the performance of LightGBM is superior to that of RF 

or XGBoost in predicting the need for mechanical ventilation 

among patients with acute respiratory distress syndrome. 

Moreover, LightGBM requires less computer memory and has 

lower time complexity and higher accuracy than XGBoost 

[46]. In this study, we used LightGBM to develop a framework 

to retrieve IST from PM data with to generate spatially 

continuous Antarctic IST maps with high temporal resolution. 

Fig. 4 presents the scheme of LightGBM algorithm. 

LightGBM algorithm produces the final prediction model by 

using ensemble weak prediction models (Decision Trees). 

LightGBM algorithm adopts a boosting strategy. The residual 

from the previous tree is used as the input of the following tree. 

The final output is the sum of the outputs from all the trees. In 

addition, the LightGBM algorithm adopts two novel 

techniques—Gradient-based One-Side Sampling (GOSS) and 

Exclusive Feature Bundling (EFB)—to improve efficiency for 

cases of large data size and high feature dimensions [46]. The 

data instances with larger gradients play a more important role 

in the computation of information gain. Therefore, to maintain 

the accuracy of information gain and reduce computational 
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cost, the data instances downsampling strategy of GOSS 

keeps the data instances with larger gradients. The EFB is 

used to bundle mutually exclusive features. In this sparse 

feature space, features rarely take non-zero values 

simultaneously. As a result, the number of dimensions is 

reduced and efficiency is improved while a high level of 

accuracy is maintained. 

 

B. Sample Set Construction 

The sample instance generally consists of inputs and an 

output, which is IST in this study. To avoid errors resulting 

from intraday variations of IST, we used swath rather than 

daily data for model training. We also added auxiliary inputs 

to the IST retrieval model to enhance model accuracy and 

robustness [47], [48]. These auxiliary inputs are closely 

related to the output and include geographical location 

(longitude and latitude), terrain (elevation, slope, and aspect), 

and sensor observation parameters (earth azimuth, earth 

incidence, sun azimuth, sun elevation, area mean height, and 

scan time). We defined the difference between the acquisition 

time of AMSR2 swath data and that of MODIS data as the 

scan time gap (STG) and used it as a model input. Ideally, the 

two acquisition times are the same and STG is zero. 

However, MODIS IST products are available only for clear-

sky conditions. Near-zero STG would limit the 

representativeness of the sample set, which will contain no 

data for cloudy conditions. To provide complete coverage of 

Antarctica, several swath images are required and these 

images have different acquisition times. Near-zero STG 

would generate a spatially continuous product of Antarctic 

IST but without temporal continuity. Therefore, we extended 

the STG to ±12 h to enhance model robustness and to obtain 

a spatially and temporally continuous IST product. For time t, 

IST can be generated by adjusting the difference between t 

and the acquisition time of AMSR2 swath data. 

An instance consists of a group of brightness temperatures 

from AMSR2 swath data, auxiliary variables from Bedmap2 

and AMSR2, and the IST from MOD/MYD11_L2 products. 

All these data have been projected to the Antarctic 

stereographic projection and co-located in space. We checked 

the consistency of the acquisition time of the data from the 

different sources. The STG was set to ±12 h. There are 

approximately 70 scenes of MOD/MYD11_L2 data every day 

and approximately 59 corresponding AMSR2 swath granules 

every 48 h (Fig. 5). We selected a day’s MODIS data every 10 

days from 2012 to 2020. AMSR2 data are selected according to 

the MODIS data and STG. In total, we generated an initial 

sample set that contained data from 289 days; these included 

approximately 20,000 scenes from MOD/MYD11_L2 and 

17,000 swath granules of AMSR2. 

The distribution of the sample set is generally uneven. This 

data imbalance might reduce the accuracy and reliability of the 

trained model [49]. Therefore, we compared IST distribution of 

the generated sample set in this study with a standard IST 

distribution. The generated sample set without being adjusted 

was called the original sample set and the generated sample set 

after adjusting was called the new sample set. We used hourly 

ERA5-Land Antarctic IST from 2018 as the standard IST 

distribution because it had complete coverage of Antarctica. 

The standard IST distribution (Fig. 6b) has a single peak (at 

245 K) and differs from that of the initial sample set, which has 

one peak at 210 and another peak at 240 K (Fig. 6a). Following 

this comparison, we abandoned a portion of the initial sample 

to generate a new sample set (Fig. 6c). The biggest density 

difference between the standard IST distribution and IST 

distribution of the original sample set occurs at 247 K. We used 

the number of sample instances at 247 K as the new sample set 

number at 247 K. Then, we can calculate the sample instances 

number of the new sample set and abandon some sample 

instances based on the standard IST distribution to generate a 

new sample set. The new sample set (Fig. 6c), with an IST 

distribution close to that of the new sample set (Fig. 6b), was 

used for model training. 

 

C. Model Training 

Approximately 80% of 1.3 million randomly selected 

samples were used for model construction and the remaining 

20% were used for model testing. In addition to the LightGBM 

algorithm, some typical algorithms (including Multiple linear 

regression—MLR, Ridge regression, Lasso regression, Elastic 
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Net regression, Decision Tree regression, RF, k-nearest 

neighbor—KNN, and Multilayer perceptron—MLP) were 

also used to produce results for comparison. These algorithms 

differ in complexity but were applied to the same training and 

testing sets.  

The 80% sample set was split into training and validation 

sets using a 5-fold cross validation. The training and 

validation sets were used for model parameter determination 

and hyperparameter optimization, respectively. We used the 

k-fold cross validation to optimize model hyperparameters. It 

is a typical method that is used to effectively avoid 

overfitting. Generally, k exceeds 2 [50] and a high k value 

(e.g., 10) is used for small sample sets. We took into 

consideration the size of the sample set and computation 

time, and set k to 5. In a 5-fold cross validation, 80% of the 

sample instances for model construction are used for model 

training, and 20% are used for model validation. For the 

model with multiple hyperparameters, we adopted the greedy 

strategy to determine the hyperparameters [51]. We used the 

testing set to evaluate model accuracy. Because 

hyperparameters are absent in the MLR model, validation 

data were not used for MLR model training. 

IV. RESULTS 

We used the testing sample set to evaluate the performance 

of the nine machine learning models and compare their 

performances. In addition, we used the LightGBM model to 

retrieve hourly IST for the 15th day of every month between 

2013 and 2020 and used multi-source data to evaluate model 

accuracy. This section focuses on the model accuracy 

evaluation and the spatial and temporal IST results will be 

shown in the discussion section. 

 

A. Validation Using Testing Data 

We evaluated the accuracy of the nine models by using the 

same testing sample set (Table I). The biases of all the models 

are close to zero, which indicates the absence of system bias. 

Among the linear models, the performance of MLR exceeds 

the performance of the Ridge, Lasso, or Elastic Net 

regression model. In the Ridge, Lasso, and Elastic Net 

regression models, overfitting is avoided by the addition of 

regularization terms. However, the addition of regularization 

terms reduces model accuracy in the case of underfitting [52]. 

This indicates that the expressiveness of the linear models is 

insufficient to fit the training set. The performance of the 

nonlinear models exceeds that of the linear models. Among the 

nonlinear models, the Decision Tree model has the lowest 

accuracy because it has a relatively simple structure. The KNN, 

MLP, and RF models have similar levels of accuracy; RMSE is 

approximately 3.8 K. The performance of LightGBM is 

superior with an RMSE of 2.96 K and mean absolute error 

(MAE) of 2.13 K. The KNN model is easy to use, but its 

sensitivity to noise in the training set might limit its 

performance [53]. MLP is a typical feed forward neural 

network trained by back-propagation methods; it is prone to 

falling into the local optimum rather than the global optimum 

[54]. Both RF and LightGBM are ensemble learning 

algorithms that use Decision Tree as the base regressor. The 

ensemble strategy of RF is bagging and that of LightGBM is 

boosting. In addition, LightGBM adopts two novel techniques 

(GOSS and EFB), which address the problems of efficiency 

and scalability for large data size and high feature dimension 

[46]. Our results show that the performance of LightGBM is 

superior to that of RF; this is in agreement with previous 

studies [28], [55]. Because the LightGBM model has the best 

performance, we only used the LightGBM model for the 

remaining analyses. 

 

TABLE Ⅰ 

ACCURACY OF THE DIFFERENT MODELS 

 

 Models RMSE(K) MAE(K) Bias(K) 

 MLR 5.81 4.47 -0.05 

 Ridge 5.82 4.49 0.02 

Linear Lasso 6.09 4.74 -0.04 

 Elastic Net 6.09 4.75 0.03 

 KNN 3.88 2.75 -0.27 

 MLP 3.83 2.82 0.15 

Nonlinear Decision Tree 4.62 3.45 -0.01 
 RF 3.71 2.76 -0.02 

 LightGBM 2.96 2.13 -0.01 

 

Training set size is an essential quantitative factor that 

affects model accuracy [56]. When the sample set size is small, 

the model accuracy increases with the increase of sample set 
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size. When there are sufficient sample instances, sample set 

size hardly changes the model accuracy and the sample set 

quality dominates the model accuracy. To figure out the 

appropriate sample set size for this study, we trained the 

LightGBM model using five different training sets and 

calculated the RMSEs. The numbers of sample instances for 

the five sample sets are 2, 4, 6, 8 and 10 million, respectively. 

The sample instances in each set were chosen randomly. The 

corresponding model accuracies of the five sample sets are 

2.17, 1.97, 1.78, 1.67 and 1.65 K, respectively. Therefore, the 

number of sample set instances exceeding 8 million is 

appropriate and adopted for the following study. 

 

B. Cross-validation Using Multi-source Data 

We evaluated the accuracy of the LightGBM model using 

IST from Landsat-8 thermal infrared data and IST from 

BSRN broadband thermal infrared radiation data. Skin 

temperature from ERA5-Land was also used for comparison.  

Fig. 7 shows maps of IST from Landsat-8, AMSR2, and 

ERA5-Land for three different days. The pixel sizes of the 

Landsat-8 and ERA5-Land maps were resized to match those 

of the AMSR2 data (10 km). ERA5-Land is forced by the 

atmospheric analysis of ERA5, which adopts interpolation 

methods during data assimilation [57]. The AMSR2 and 

Landsat-8 maps were generated pixel by pixel and therefore 

have more random noise. As a result, the appearance of the 

ERA5-Land maps is smoother than that of the other maps. 

Visual inspection of the three maps reveals clear agreement 

between the Landsat-8, AMSR2, and ERA5-Land maps for 

December 13, 2017 and January 5, 2020. However, for 

September 17, 2014, ERA5-Land IST is considerably lower 

than AMSR2 IST and Landsat-8 IST. We calculated the 

accuracy of both AMSR2 IST and ERA5-Land IST in 

comparison with Landsat-8 IST, which we took as ground 

truth (Table 2). The accuracy of AMSR2 IST is higher than 

that of ERA5-Land; RMSEs are 1.39–2.32 K.  

 

TABLE II 

COMPARISON OF ISTS FROM AMSR2, ERA5-LAND, AND 

LANDSAT-8 

 

Date 
AMSR2 - Landsat-8 ERA5-Land - Landsat-8 

RMSE(K) Bias(K) RMSE(K) Bias(K) 

20141217 2.32 2.07 3.80 -3.73 

20171213 1.39 0.43 2.18 -1.36 

20200105 1.99 1.44 1.92 1.30 

 

We evaluated the accuracy of AMSR2 IST and ERA5-Land 

IST using data from a BSRN station that is in the inland area of 

East Antarctica (DOM in Fig. 2). To match the temporal 

resolution of ERA5-Land (1 h), we used the LightGBM model 

to retrieve hourly IST for the 15th day of every month between 

2013 and 2020 from the AMSR2 swath data. This sampling 

provides 2,304 instances. However, because of missing BSRN 

data, we only had 1,542 data pairs.  

Fig. 8 shows ISTs from BSRN, AMSR2, and ERA5-Land 

and the number of data samples (N), Pearson’s correlation 

coefficient (R2), mean bias, and RMSE. The ISTs range from 

200 to 255 K; ASMR2 IST has a larger R2 and smaller RMSE 

than ERA5-Land IST. This indicates that the correlation 

between ASMR2 IST and BSRN IST is higher than that 

between ERA5-Land IST and BSRN IST. The mean bias 

shows that AMSR2 IST is lower than BSRN IST and that 

ERA5-Land IST is higher than BSRN IST. This indicates that 

the mean AMSR2 IST is lower than the mean ERA5-Land IST. 

We infer that the performance of AMSR2 IST is higher in cold 

inland areas. 

Fig. 9 shows the accuracy of retrievals of seasonal IST. The 

accuracy of AMSR2 IST is the highest in austral autumn 

(RMSE of 3.732 K). The accuracy of ERA5-Land IST is the 

highest in spring (RMSE of 4.655 K). In spring (Sep, Oct and 

Nov), summer (Dec, Jan and Feb), and winter (Jun, Jul and 

Aug), BSRN IST is higher than AMSR2 IST. In summer, 

autumn (Mar, Apr and May), and winter, BSRN IST is lower 

than ERA5-Land IST. The accuracy of AMSR2 IST is higher 

than that of ERA5-Land IST in summer, autumn, and winter. In 

spring, the accuracy of ERA5-Land IST is higher than that of 

AMSR2 IST. There is little consistency in the seasonal 

variations of the IST accuracy of ERA5 and AMSR2. 
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Ⅴ. DISCUSSION 

A. Error Distributions of the LightGBM Model 

 

We analyzed the error distributions of LightGBM model 

based on STG, month, and IST. First, the STG is a novel 

parameter for the LightGBM model, and our concern focuses 

on the magnitude of the error that might be caused by the 

STG. Second, the ice surface features of the Antarctic vary 

substantially according to month, which might induce 

changes in PM radiance intensity. This could further impact 

the accuracy of the model; therefore, the month is also 

considered in the discussion. Additionally, IST is also adopted 

because it is the output of the model. We calculated the 

RMSE and mean bias using the testing sample set. Fig. 10 

shows the error distributions of the LightGBM model based 

on month, IST, and STG.  

The performance of the LightGBM model is lower in 

austral winter and higher in austral summer (Fig. 10a). This is 

because PM penetration depends on snow characteristics, 

which vary with season. In winter, low temperature and 

relatively dry snow result in large PM penetration depth [22]. 

In contrast, the snow becomes wet and even melts during the 

summer; as a result, PM radiation signals from below the 

surface are weak, and satellite data contain mostly 

information from the surface. In addition, the LightGBM 

model presents slightly cold biases in austral summer and 

autumn, and warm biases in austral winter and spring. 

Fig. 10b shows the error distribution of the LightGBM 

model based on IST. Performance of the model is higher at 

higher ISTs and lower at lower ISTs; this is consistent with 

the variation of model accuracy with month (Fig. 10a) 

because there is a strong correlation between IST and month. 

Moreover, the mean bias and RMSE of LightGBM model are 

especially high for ISTs of 0–200 and 200–210 K. The warm 

bias might be caused by a small number of sample instances 

with cloudy conditions in the sample set. For cloudy 

conditions, IST in the MOD/MYD11_L2 products is 

extremely low. The low accuracy of LightGBM IST for ISTs 

of 0–200 and 200–210 K could also be caused by high PM 

penetration at low IST. However, the impact of these sample 

instances at 0–210 K on the overall LightGBM model accuracy 

is not obvious because the number of these sample instances is 

small (Fig. 6c). Variations of RMSE with IST (Fig. 10b) are 

larger than the variations of RMSE with month (Fig. 10a); this 

indicates that model accuracy is more sensitive to IST than to 

month. We infer that low temperature areas in inland areas in 

summer and high temperature areas in coastal areas in winter 

reduce the inter-month variation in model accuracy and 

decrease model sensitivity to month. We suggest that 

LightGBM model accuracy may be improved by using sample 

sets with different IST ranges for model training. However, this 

might be difficult to achieve because of the need to match input 

data with the correct IST retrieval model. 

Fig. 10c shows the error distribution of the LightGBM 

model based on STG. On the x-axis, negative values indicate 

that the scan time of AMSR2 is before that of MODIS, and 

positive values indicate the reverse. Model accuracy is slightly 

higher for STG values in the middle range and slightly lower 

for low and high STGs. This indicates that the LightGBM 

model is insensitive to STG and that the introduction of STG 

hardly affects model accuracy. Mean bias varies little with STG 

and is near-zero for all STGs. 

Overall, model accuracy is the most sensitive to IST and the 

least sensitive to STG. The performance of the LightGBM 

model is superior for specific IST ranges. Therefore, the 

accuracy of retrieved IST may be improved if the models are 

trained by sample sets with different IST ranges and the input 

data are assigned to the correct retrieval models. 

 

B. The Bias between the IST and the NST 

AWSs have been collecting NST in Antarctica for many 

years. We used this long-term data to examine the bias between 

the IST and the NST. According to Adolph et al. [8], it is not 

recommended to validate IST retrievals using AWS air 

temperatures because of the uncertainty induced by near-

surface temperature inversion, which is controlled mainly by 

wind speed, solar radiation, and other factors [58]. In addition, 

the near-surface temperature inversion might not fully account 

for the bias between the NST and IST because of errors in the 

retrieved IST, which are difficult to eliminate. We analyzed the 
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bias between AMSR2 IST and AWS NST. Hourly AMSR IST 

on the 15th of each month from 2013 to 2020 are used.  

Fig. 11 shows the spatial distribution of the biases between 

NST and AMSR2 IST through the seasons. In austral autumn 

and winter, there is a distinct spatial heterogeneity with larger 

biases in West Antarctica and smaller biases in East 

Antarctica. Spatial heterogeneity is smaller in austral spring 

and summer and larger in austral autumn and winter. As 

mentioned above, the bias between NST and ASMR2 IST is 

dominated by the near-surface inversion and IST error. The 

LightGBM model has a warm bias in austral winter and a 

near-zero bias in austral summer (Fig. 10a). The warm bias in 

ASMR2 IST reduces the bias between the ASMR2 IST and 

NST because the IST is generally lower than NST; a cold bias 

in ASMR2 IST causes the bias between the ASMR2 IST and 

NST to increase. The biases between IST and NST in austral 

summer (Fig. 11b) are clearly lower than those in austral 

winter (Fig. 11d). Therefore, we infer that the near-surface 

temperature inversion in austral summer is weaker than that 

in austral winter. Our results are in agreement with those from 

Summit station in Greenland. According to Miller et al. [59], 

near-surface temperature inversions at Summit station are 

prevalent in the winter with decreasing values in the summer 

months. Similarly, the LightGBM model has a warm bias in 

austral spring and a cold bias in austral autumn (Fig. 10a). 

Therefore, the bias between the IST and NST in austral 

autumn (Fig. 11c) and spring (Fig. 11a) is larger and smaller 

than the near-surface temperature inversion, respectively.  

 

C. Antarctic IST from 2013 to 2020  

We analyzed the variation of hourly AMSR2 IST and 

ERA5-Land IST from the 15th day of each month for 2013–

2020. Fig. 12 shows the variations of annual and monthly 

AMSR2 IST and ERA-5 Land IST. Variations of annual 

AMSR2 IST were similar to those of annual ERA5-Land IST. 

Annual IST decreased continuously between 2013 and 2015. 

Between 2015 and 2020, annual IST increased with large 

fluctuations. Both ERA5-Land IST and AMSR2 IST were at 

their minima in 2015. AMSR2 IST was at its maximum in 

2018 and ERA5-Land IST was at its maximum in 2020. 

Annual ERA5-Land IST exceeded annual AMSR2 IST by 

approximately 3–4 K (Fig. 12a). Furthermore, variations of 

mean monthly AMSR2 IST were similar to those of mean 

monthly ERA5-Land IST (Fig. 12b). Both ERA5-Land IST and 

AMSR2 IST were at their minima in the same month; both 

datasets were also at their maxima in the same month. There 

are considerable monthly variations in the difference between 

AMSR2 IST and ERA5-Land IST (Tsource). In January, 

Tsource was negligible. It increased after January and peaked in 

May. We think two reasons led to the difference between 

AMSR2 IST and ERA5-Land IST. According to Fréville et al. 

[37], there is a warm bias in the IST from ERA-Interim 

reanalysis in Antarctica, which is mainly caused by 

overestimation of the surface turbulent fluxes under very stable 

conditions. Cao et al. [57] also report a warm bias in ERA5-

Land soil temperature in permafrost regions, especially in 

winter. Therefore, we infer that there is a warm bias in ERA5-

Land skin temperature, especially in austral winter. In addition, 

the cold bias in MODIS IST products may cause the cold bias 

in AMSR2 IST. Our results indicate consistent annual and 

monthly IST variations, which prove the reliability of the 

LightGBM model for IST retrieval. 

Fig. 13 shows the spatial distribution of IST in austral 

summer and winter for 2015 (year of annual AMSR2 IST 

maximum) and 2020 (year of annual AMSR2 IST minimum). 

Clearly, the IST in West Antarctica exceeded that in East 

Antarctica. The IST in coastal areas was higher than that in 

inland areas; Tsource was small in austral summer and obvious 

in austral winter. This is consistent with variations of monthly 

IST (Fig. 12b). We examined the difference between IST in 

2020 and IST in 2015 (Tyear). In summer, Tyear was positive 

over almost all of Antarctica. In winter, clearly positive Tyear 

was found along the coast and in West Antarctica. According to 

many studies, the West Antarctic Ice Sheet is involved in more 

processes of change than the East Antarctic Ice Sheet, 

including ice shelf calving, elevation reduction, and surface 

melting [60], [61], [62]. There is a step of approximately 2 K in 

IST across longitude ±180° in the area of the Ross Ice Shelf. 

This is an artifact of longitude ±180° and a result of missing 

MOD/MYD11_L2 data in the training set in this area. 
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Fig. 14 shows variations of the Southern Oscillation Index 

(SOI) (from https://www.cpc.ncep.noaa.gov/data/indices/) 

and Antarctic IST between 2013 and 2020. The IST minimum 

in 2015 and maximum in 2020 could be explained by the El 

Niño–Southern Oscillation, which has considerable influence 

on the Antarctic environment and climate [63], [64]. In 2015, 

SOI and IST are extremely low and Antarctic sea ice extent is 

at its maximum since 1974 (data from Bremen University 

https://seaice.uni-bremen.de/sea-ice-concentration/amsre-

amsr2/time-series/). There is a positive correlation between 

SOI and Antarctic IST (Pearson’s correlation coefficient = 

0.664, significance level p=0.05). However, the SOI and 

Antarctic IST variations from 2016 to 2018 are opposite. We 

infer that the Antarctic IST is impacted only when the SOI is 

extremely low or high (El Niño–Southern Oscillation event). 

VI. CONCLUSIONS 

We used AMSR2 swath data and a robust ensemble 

machine learning algorithm to develop an instantaneous IST 

retrieval framework. We used the MODIS IST product as 

ground truth for model training. Auxiliary model inputs 

include terrain parameters and satellite observation 

information. To generate a temporally continuous IST 

product, we developed an innovative scheme based on the 

difference between the acquisition time of AMSR2 swath 

data and that of MODIS data (i.e., STG). We used a testing 

sample set to evaluate the accuracy of ISTs retrieved using 

typical machine learning models. The performance of 

nonlinear models is superior to that of linear models. The 

LightGBM model has the best performance in IST retrieval 

and the RMSE of the lightGBM model is half that of the 

linear model. For sets with more than 8 million samples, set 

size has a negligible effect on model accuracy; RMSE 

stabilizes at 1.67 K. We compared LightGBM IST with the 

IST from Landsat-8, which we considered as ground truth. 

LightGBM IST is consistent with Landsat-8 IST; RMSE is in 

the range of 1.39–2.32 K. The RMSE of IST from ERA5-

Land reanalysis ranges from 1.92 to 3.80 K. We compared 

LightGBM IST and ERA5-Land IST with IST from a BSRN 

station. The difference between LightGBM IST and BSRN 

IST is smaller than that between ERA5-Land IST and BSRN 

IST.  

We examined the variations of LightGBM IST RMSE and 

mean bias with month, IST, and STG. Model accuracy is 

sensitive to both month and IST and insensitive to STG. This 

indicates that the introduction of STG hardly affects model 

accuracy. We suggest that the accuracy of retrieved IST may be 

improved if the models are trained using sample sets with 

different IST ranges and the input data are assigned to the 

correct retrieval models. We analyzed the bias between 

retrieved IST and NST. The mean bias between IST and NST is 

larger in West Antarctica and smaller in East Antarctica. 

Additionally, the near-surface temperature inversion in austral 

summer is weaker than that in austral winter. Between 2013 

and 2020, annual ASMR2 IST and annual ERA5-Land IST 

exhibited similar variations. Annual ASMR2 and ERA5-Land 

ISTs both decreased continuously between 2013 and 2015. 

Between 2015 and 2020, Annual IST increased with large 

fluctuations. In austral winter, AMSR IST was lower than 

ERA5-Land IST. This might be a result of the warm bias in 

ERA5-Land data. Pearson’s correlation coefficient between 

SOI and IST is 0.664; SOI and IST minima both occurred in 

2015.  

The focus of this study is to establish an empirical IST 

retrieval model which has the ability to generate spatially and 

temporally continuous Antarctic IST data. On the contrary, this 

study lacks research on the physical process of PM radiation 

transfer, especially the interaction among passive microwave, 

snow and atmosphere. Because model accuracy is influenced 

by PM radiation transfer, we will focus on deriving snow 

surface information by combining physical clues with the 

empirical model in our future study. In addition, 

MOD/MYD11_L2 is more uncertain during polar nighttime 

than during polar daytime due to the lack of visible channels 

during polar nighttime for cloud detection. Therefore, more 

reliable thermal infrared IST products can improve the 

empirical model accuracy.  
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