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 Abstract—Quantifying the intensity and frequency of climatic 
extremes under the impacts of climate change is crucial for 
effective water resource management. In this study, we utilize the 
Soil and Water Assessment Tool (SWAT) hydrological model, 
robust indices, e.g., Standardized Precipitation Index (SPI) and 
Standardized Streamflow Index (SSI) as well as the Interquartile 
Range (IQR) method for a comprehensive analysis of the river 
flow response to future climate scenarios towards 2090. Four 
General Circulation Models (GCMs) under two Shared 
Socioeconomic Pathways (SSPs) have been used, including BCC-
CSM2-MR, CanESM5, MIROC6, and MRI-ESM2-0. We aim to 
reveal the future impacts of extreme events and their potential 
consequences for local livelihoods and human well-being in the 
Srepok River basin—a major tributary of the Mekong River basin 
in Southeast Asia. Our findings include (1) a significant 
discrepancy between extreme events found with more flood events 
projected towards 2090; (2) a shift in precipitation patterns with 
an increase in intensity is observed; and (3) a correlation between 
climatic extremes and regional characteristics has been identified. 
This work provides valuable insights into the anticipated changes 
in climatic extremes under the impacts of climate change and 
serves as the scientific basis for stakeholders and decision-makers 
to develop adaptative strategies and sustainable plans to enhance 
the region’s resilience. 
 
Index Terms—Climate change, Drought, Flood, Resilience, Srepok 
River basin, Mekong River basin, Southeast Asia.    

I. INTRODUCTION  
limate change can considerably impact socioeconomic 
development, human well-being, and social services 
worldwide [1], [2], [3], [4], [5]. To address these 

impacts, the Intergovernmental Panel for Climate Change 
(IPCC) was established through the joint efforts between the 
World Meteorological Organization (WMO) and the United 
Nations (UN). The release of the Sixth Assessment Report 
(AR6) in 2022 by the IPCC indicates that global mean 
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temperature in the 21st century is anticipated to increase by 1.5 
to 2°C compared to the 2020s. Furthermore, it highlights that 
extreme rainfall events will occur with greater severity and 
frequency [6]. These changes are predicted to result in the 
inevitable increases of global extremes (e.g., record-breaking 
heat waves, widespread floods, year-long droughts, and severe 
wildfires) [7], anticipating to mark high records [8].  

General Circulation Models, also known as Global Climate 
Models (GCMs), are widely used to quantify projected impacts 
of future global climate extremes [9], [10], [11]. Version 6 of 
the Coupled Model Intercomparison Project (CMIP6) 
introduces the new concept of the Scenario Model 
Intercomparison Project (ScenarioMIP), which is now based on 
the Shared Socioeconomic Pathways (SSPs) [12]. This marks a 
new milestone in the IPCC’s effort to incorporate 
socioeconomic factors [13]. Specifically, SSPs outline potential 
scenarios for global societal evolution in the future, excluding 
considerations of climate change and any mitigation or 
adaptation measures [14]. Each SSP drives a corresponding 
future projection of greenhouse gas emissions and land cover 
changes based on its baseline storyline. In addition, 
ScenarioMIP provides a database essential for water resource 
inquiries [11], incorporating projected scenarios into 
hydrological models to enhance our understanding of the 
physical impact of climate and societal factors on water 
regimes. However, selecting appropriate CMIP6 GCMs is 
critical due to various factors such as resolution [15] and 
geographical characteristics of the region [16].  

In this study, we recommend using the NASA Earth 
Exchange Global Daily Downscaled Projections – NASA 
NEX-GDDP-CMIP6 (https://registry.opendata.aws/nex-gddp-
cmip6/), which has been proven as reliable in previous works 
[17], [18], [19]. Four CMIP6 GCMs, including BCC-CSM2-
MR from the Beijing Climate Center China Meteorological 
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Administration (China), CanESM5 from the Canadian Centre 
for Climate Modelling and Analysis (Canada), MIROC6 from 
the Japan Agency for Marine-Earth Science and Technology 
and Atmosphere and Ocean Research Institute, The University 
of Tokyo (Japan), and MRI-ESM2-0 from the Meteorological 
Research Institute (Japan), have been selected to use in this 
study. These choices were based on the findings of [20], [21], 
[22], [23] conducted in global and Southeast Asia case studies. 
Specifically, [20] and [23] highlighted the usefulness of these 
GCMs in evaluating future projected streamflow over a river 
basin in China. [22] demonstrated that CanESM5 and BCC-
CSM2-MR have advantages in projecting future precipitation, 
evapotranspiration, and soil water, compared to the other 11 
GCMs. Additionally, [21] identified the highest adaptability in 
temperature and precipitation of MIROC6 and MRI-ESM2-0, 
surpassing the other GCMs in a case study in Japan. Besides, 
IPCC recommended the use of SSP2-45 (intermediate) and 
SSP5-85 (high-end/extreme) scenarios to quantify different 
levels of greenhouse gas emissions [6], [21], and 
socioeconomic characteristics [13], thereby would be used in 
this work. Specifically, SSP2-45 is an update from the 
Representative Concentration Pathways (RCP) 4.5 with an 
additional radiative forcing of 4.5 W/m² by 2100 [13]. This 
scenario represents the medium pathway of future greenhouse 
gas emissions, assuming climate protection measures would be 
applied in the future. Besides, SSP5-85 is constructed as the 
upper boundary of the highest greenhouse gas emissions, 
assuming a feasible additional radiative forcing of 8.5 W/m² by 
the year 2100. This is an update from the previous CMIP5 RCP 
8.5 scenario but now incorporates socioeconomic factors.  

The Standardized Precipitation Index (SPI) and Standardized 
Streamflow Index (SSI), which are robust and reliable indices 
[24], [25], [26], would be used to quantify the projected impacts 
of climate change on future drought and flood events. While 
numerical models are commonly used to solve current 
environmental-related issues [27], [28], [29], [30], [31], [32], 
[33], [34], it can also be utilized for estimating future impacts 
of climate [21], [22]. In addition, the Interquartile Range (IQR) 
method and the Soil & Water Assessment Tool (SWAT) model 
would be utilized in this work for climate change assessments 
due to their effectiveness [9], [20], [35]. 

The Srepok River basin (SRB) is a major tributary of the 
Mekong River basin (MRB) and contributes a significant 
volume of water to the Mekong River annually [36], [37], [38]. 
Changes in the water supply, resulting from climate change, can 
significantly impact water resource management [39], [40]. 
This could lead to serious consequences for approximately 
11,000 Cambodians living at the SRB’s outlet [41].  

In summary, this study quantifies the projected changes in 
future extreme events (2023-2090) using four CMIP6 GCMs 
with two scenarios each (SSP2-45 and 5-85). We aim to (1) 
reveal the intensity and frequency changes of extreme events 
while also (2) quantify the relative contribution of different 
GCMs to project the trend of these extremes between 2023 and 
2090. This work is important for water resource management in 
local communities in Vietnam and Cambodia. It provides a 

valuable scientific foundation for disaster prediction and 
prevention in the lower MRB, thereby supporting stakeholders, 
regional authorities, and officials. 

II. STUDY AREA 
The Srepok River is a principal tributary of the MRB, 

originating from the Dak Lak province in the Central Highlands 
of Vietnam (Fig. 1a). It flows through Ratanakiri and Stung 
Treng regions before joining the Mekong River (Figs. 1a and 
1b). The river’s length varies from 406 to 450 kilometers, with 
the initial course running through the Vietnamese territory for 
125 to 169 kilometers, followed by a 281-kilometer stretch 
through Cambodian territory [45]. The SRB covers an area of 
approximately 18,200 km² in Vietnam, with over 65% (12,000 
km²) constituting the upper SRB [46].  

 
Fig. 1. (a) Location of SRB in the MRB, (b) SRB, (c) DEM (m), 
(d) Slope (%), (e) LULC map, and (f) Soil type map. 

The study region features a complex terrain profile with 
elevations ranging from 250 to around 2,240 meters (Fig. 1c). 
While the average altitude of SRB ranges from 350 meters in 
the Northwest to roughly 1,000 meters in the Southeast [46], 
[47], the average annual rainfall is found to be approximately 
1,920, 1,937, 1,704, and 1,601 millimeters (mm), measured at 
the Giang Son, Duc Xuyen, Cau 14, and Ban Don stations, 
respectively. The wet season of the SRB with over 70% of the 
annual precipitation occurs between June and November, in 
which approximately 41% of it is converted to direct runoff 
[46]. In this study, four commissioned reservoirs would also be 
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included due to their notable impacts on the natural runoff [48], 
[49], including Buon Tua Srah, Buon Kuop, Srepok 3, Srepok 
4, and Srepok 4A [50] (Fig. 1b and Table II).  

III. DATA AND METHODS 

A. GCMs and Climate Change Scenarios 
In this study, we utilized the NASA NEX-GDDP-CMIP6 

dataset, which comprises downscaled and bias-corrected GCMs 
to the resolution of 0.25o x 0.25o (25 x 25 km) [14]. These 
datasets were downscaled using the Bias-Correction Spatial 
Disaggregation (BCSD) method, a statistical downscaling 
algorithm specifically developed to address common 
limitations of global GCM outputs [51], [52], [53]. The NEX-
GDDP-CMIP6 scenarios were produced through the CMIP6 
project, focusing on two of the four “Tier 1” greenhouse gas 
emissions scenarios.  

Previous findings have indicated a high uncertainty 
associated with the individual use of GCMs (e.g., model 
structure, historical data, projected scenarios, and initial 
conditions) [54], [55], [56], highlighting the need to use an 
ensemble of multiple models. Thus, an ensemble model, 
resulting from the chosen four GCMs, would be utilized for 
assessments. Moreover, the two greenhouse gas emission 
scenarios (SSP2-45 and SSP5-85) that represent the 
intermediate and high-end/extreme levels, respectively, from 
each GCM were used. The details of GCMs used in this study 
are presented in Table I. 

TABLE I 
DETAILS OF THE CMIP6 GCMS USED IN THIS STUDY 

 
No GCMs Country Institution 
1 BCC-

CSM2-MR 
China Beijing Climate Center China 

Meteorological Administration 
2 CanESM5 Canada Canadian Centre for Climate 

Modelling and Analysis, 
Environment and Climate 
Change Canada, Canada  

3 MIROC6 Japan Japan Agency for Marine-Earth 
Science and Technology, Japan 

& Atmosphere and Ocean 
Research Institute, The 

University of Tokyo, Japan & 
National Institute for 

Environmental Studies, Japan 
& RIKEN Center for 

Computational Science, Japan  
4 MRI-

ESM2-0 
Japan Meteorological Research 

Institute, Japan 

B. Hydrological model SWAT 
SWAT is a semi-distributed hydrological model developed 

by the U.S. Department of Agriculture (USDA) and Agriculture 
Research Service (ARS) [57]. In recent years, SWAT has 
gained popularity in the United States and Europe, mainly due 
to its effectiveness in addressing hydrological issues [58], [59], 
[60]. Numerous studies have used the SWAT model to examine 
the impacts of various factors on streamflow and sediment loads 

[61], [62]. These factors include changes in land use land cover 
(LULC) [63], [64], [65], impacts of climate change [9], [66], 
[67], [68], improvements in ecosystem services [69], [70], [71], 
validation of satellite-based products [29], [59], [72], [73], [74], 
[75], [76], and pollution from agricultural chemicals [77].  

C. Model inputs 
In this study, we used the SWAT hydrological model with 

the inputs shown in Table II. 
TABLE II 

DESCRIPTION OF REQUIRED INPUTS FOR SWAT MODEL 
 

No Name Description 
1 DEM The DEM (90 m) was retrieved from the 

HydroSHEDS (V1.0) 
(https://www.hydrosheds.org/products/hydr
osheds) database with an average error of 

less than 3%. 
2 LULC The 30-m LULC map was retrieved from 

SERVIR-Mekong program 
(https://www.landcovermapping.org/en/ho

me/) 
3 Soil The 30-m resampled soil map with from the 

original scale of 1:1,000,000, extracted 
from the Food and Agriculture Organization 

(FAO) (https://www.fao.org/soils-
portal/data-hub/soil-maps-and-

databases/en/)  
4 Weather data Daily precipitation data were obtained 

(2001-2018) at eleven meteorological 
stations, including Giang Son, Buon Me 

Thuot, Buon Ho, M’DRak, Dak Lak, Krong 
Buk, Duc Xuyen, Dak Nong, Cau 14, Ban 
Don, and Ea So (Fig. 1b). Daily maximum 

temperature (𝑇!"#) and minimum 
temperature (𝑇!$%) data were obtained from 

the Vietnam meteorological and 
Hydrological Administration (VMHA) 

(http://kttvqg.gov.vn/) 
 at two meteorological stations: Buon Me 

Thuot, and Dak Lak (Fig. 1b). 
5 Observation Observed daily streamflow were collected 

at five stations: Ban Don, Cau 14, Giang 
Son, Duc Xuyen, and Krong Buk (Fig. 1b) 
for the model calibration and validation. 

6 Reservoirs Five dams and reservoirs have been chosen 
within this study, including Buon Tua Srah 

with a capacity of 86 Megawatts (MW); 
Buon Kuop (280 MW), Srepok 3 (220 

MW), Srepok 4 (80 MW), and Srepok 4A 
(63 MW) (Fig. 1b). 

D. Model set up 
In this study, 2 years (2001 and 2002) were selected as the 

warm-up period over 18 years of simulation (2001-2018). Nine 
years (2003-2011) were chosen for model calibration, with 
validation performed between 2012 and 2018, based on 
findings from [57]. The calibration and validation of the model 
were conducted on a daily scale, with the number of iterations 
set to 500. The Sequential Uncertainty Fitting procedure (SUFI-
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2) was chosen as an objective function while the SWAT-CUP 
program (v5.2.1) was used for the model calibration [78], [79]. 
The metrics for evaluating the model’s performance were 
presented in Table III, in which we used the Kling-Gupta 
Efficiency (KGE) [80] and Nash-Sutcliffe Efficiency (NSE) 
[81]. 

TABLE III 
METRICS USED FOR MODEL PERFORMANCE 

 
[80] Criteria 

KGE

= 1 −((CC − 1)& + -
Q'(

Q)(
− 1/

&

+ -
Q'000
Q)0000

− 1/
&

 

VG: KGE ≥ 
1; G: 0.50 ≤ 
KGE ≤ 1; 

S: 0 ≤ KGE 
≤ 0.50; NS: 

KGE < 0 
 
 

NSE = 1 −	
∑ (Q) −Q')&*
+,-

∑ (Q) −Q'000)&*
+,-

 

VG: NSE ≥
0.8; G: 0.8 ≤ 
NSE ≤ 0.7; 

S: 0.5 ≤ 
NSE ≤ 0.7; 
NS: NSE 

≤	0.5 

Q is the streamflow (m3/s), m and s stand for measured and 
simulated, respectively, and d stands for deviation, i is the 𝑖!" 
measured and simulated, 𝑄# is the mean value, and number of 
values is n. VG is Very Good, G is Good, S is Satisfactory, and 
NS is Not Satisfactory.  

In this study, a total of twenty-three parameters were chosen 
for the calibration and validation of the SWAT model. The 
sensitivity analysis was conducted using the statistical p-value 
and t-Stat methods [57]. We included the current reservoirs 
which were neglected in previous works [40], [45], [83], in 
which two specific parameters were utilized to calibrate these 
reservoirs, including the hydraulic conductivity of the reservoir 
bottoms (RES_K; mm/h) and the number of days needed to 
reach target storage from the current reservoir storage 
(NDTARGR; days). The SWAT parameters and sensitivity 
analysis along with their fitted values, descriptions, and ranges 
can be found in Supplementary section A1.  

E. Evaluation indices 
Meteorological drought is evaluated through rainfall 

measurements, while hydrological drought is quantified using 
streamflow data. This approach provides insights into potential 
drought-affected areas, based on precipitation levels. However, 
the drawback of using rainfall anomalies as an indicator is their 
lack of normalization, making them incomparable across 
different regions. To address this issue, indices derived from 
meteorological variables have been developed to monitor and 
systematically identify dry and wet conditions [84]. In recent 
decades, a multitude of indices have been introduced, with SPI 
and SSI standing out as the most prominent [85]. These indices 
have been widely used in numerous studies, including those by 
[86], [87], [88]. The severity of drought is assessed based on the 
selected meteorological variables (e.g., precipitation) and the 

calculation timescales [89]. The most important feature of the 
SPI and SSI is their capacity to accurately reflect the timescale-
dependent nature of drought phenomena. Specifically, they can 
be mathematically computed for any timescale, starting from a 
one-month period. In practical applications, the timescales of 1, 
3, 6, 12, and 24 months have proven to be particularly insightful 
[86]. While a one-month timescale provides a snapshot of the 
short-term conditions (e.g., short-term soil moisture and crop 
stress), a three-month timescale offers a seasonal perspective, 
and a 12-month timescale captures the annual hydrological 
patterns of rainfall (e.g., changes in reduced streamflow and 
reservoir storage). The 24-month timescale, on the other hand, 
is often used in socio-economic studies [22], [90]. In this study, 
we utilize the 3- and 12-month timescales for SPI (SPI-3 and 
SPI-12, respectively) to estimate the potential impacts of the 
seasonal and annual meteorological extreme events.  

In this study, SSI was calculated by fitting a specified 
cumulative probability density function to the extensive daily 
streamflow data of river channels derived from the SWAT 
model. Subsequently, this daily streamflow data was 
transformed into a standard normal distribution to generate the 
actual SSI series. A prominent advantage of the SSI is its 
capability to monitor and trace various timescales of 
hydrological extreme events. Similar to SPI, the short 
timescales of the SSI, such as the 1- and 3-month scales (SSI-1 
and SSI-3, respectively), show a higher sensitivity to short-term 
hydrological extreme conditions while the longer timescales of 
the SSI, noted by the 12- and 24-month scales (SSI-12 and SSI-
24, respectively), proficiently characterize prolonged 
hydrological and socioeconomic scenarios. Thus, the 12-month 
SSI (SSI-12) would be used for our analysis to highlight the 
inter-annual hydrological conditions using projected 
streamflow from the SWAT model. The computation of SPI 
and SSI involved the utilization of daily rainfall and daily 
simulated streamflow data, from GCMs and the SWAT model, 
respectively, which were then aggregated to a monthly scale in 
our analysis. 

F. Severity classifications of Climatic Extremes   
To accurately evaluate drought and flood conditions, it is 

important to establish clear criteria for determining the duration 
and intensity of these events. In this study, we analyzed varying 
levels of drought and flood severity using the classifications 
provided by the U.S. Drought Monitor [91]. Specifically, 
drought conditions are identified when the SPI values fall below 
zero and continue to decrease to less than negative one (–1). 
Conversely, a drought event is considered to have ended when 
the SPI values return to positive while flooding conditions are 
identified when the SPI values reach positive two (+2) and 
beyond (Table IV). Based on these criteria, we defined two 
evaluation indices: Severity (S) and Intensity (𝐼𝐷#). 
Specifically, S is calculated as the absolute sum of all SPI 
values during the event, with the duration defined as the number 
of months from the onset of the event to its conclusion, 
excluding the final month when the SPI returns to positive (1). 
𝐼𝐷# is calculated as the average SPI value throughout the event 
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(2). The value of 𝐼𝐷#	serves as an indicator of the severity, 
where higher values indicate more severe conditions. The 
calculations using SPI and SSI indices would be performed in 
future periods, including the near future (2023-2044), mid 
future (2045-2069), and far future (2070-2090).  

𝑆 = 	 |∑ 𝐼𝑛𝑑𝑒𝑥$%
$&' | (1) 

𝐼𝐷# =	
(!
%

   (2) 

where 𝑎 is the duration of the event (months), 𝐼𝐷# is the drought 
intensity, and 𝑆$ represents the SPI or SSI value during the 𝑖-
month of the event. The frequency (𝐹) of events is calculated 
as the average number of events during a specified time range. 

TABLE IV 
SUMMARY OF SPI- AND SSI-BASED SEVERITY CLASSIFICATION 

 
Category SPI/SSI values 

Extreme wet Index ≥ + 2.0 
Severe wet + 1.5 ≤ Index < + 2.0 

Moderate wet + 1.0 ≤ Index < + 1.5 
Near normal/mild wet 0 ≤ Index < + 1.0 

Near normal/mild drought - 1.0 ≤ Index < 0 
Moderate drought - 1.5 ≤ Index < - 1.0 

Severe drought - 2.0 ≤ Index < - 1.5 
Extreme drought Index ≤ - 2.0 

G. Flood peak assessment using IQR method  
IQR serves as a robust measure in statistics, quantifying the 

dispersion of data within a dataset and aiding in the 
identification of outliers. By dividing the dataset into quartiles, 
the IQR offers a general view of data distribution: 
- First quartile (Q1): represents the 25th percentile, the median 

of the dataset’s lower half. 
- Second quartile (Q2): represents the 50th percentile or the 

median of the entire dataset. 
- Third quartile (Q3): represents the 75th percentile, the median 

of the dataset’s upper half. 
In this study, we utilized long-term, daily simulated flood 

peak simulated from the SWAT model for analysis. We applied 
the IQR method to perform anomaly detection and find 
abnormal flood peaks (2023-2090), in which three future 
periods are defined (see section F). The calculations for IQR 
and the subsequent identification of outliers will adhere to the 
equations provided in (3), (4), and (5). This method ensures a 
systematic and reliable approach to detecting anomalies in 
flood peak data, ultimately contributing to a comprehensive 
understanding of potential flood risks in future scenarios. 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1   (3) 

𝐿𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑:𝑄1 − 1.5	𝑥	𝐼𝑄𝑅 (4) 

𝑈𝑝𝑝𝑒𝑟	𝑏𝑜𝑢𝑛𝑑:𝑄3 − 1.5	𝑥	𝐼𝑄𝑅 (5) 

Data points outside these bounds are considered anomalies, 
signifying departures from typical flood peak ranges. 
Specifically, by calculating the IQR across different years and 
GCMs, we highlight years with exceptionally high and low 

values, indicating potential risks.  

IV. RESULTS AND DISCUSSIONS 

A. Model calibration and validation 
The most sensitive parameters were found to be SCS runoff 

curve number (CN2), followed by the base flow alpha factor for 
bank storage (ALPHA_BNK), the effective hydraulic 
conductivity in main channel alluvium (CH_K2), manning’s 
“n” value for overland flow (OV_N), plant uptake 
compensation factor (EPCO), calibration coefficient used to 
control the impact of the storage time constant from low flow 
(MSK_CO2), and deep aquifer percolation fraction 
(RCHRG_DP) [57]. We found that SRB was very sensitive to 
surface runoff parameters (represented by CN2, CH_K2, and 
OV_N) and water uptake by plants (EPCO). This could be 
explained due to the large amount of dense plant cover in the 
area (e.g., forest and grassland, see Fig. 1e). This finding is 
consistent with the results from previous studies by [10], [92], 
[93]. However, groundwater parameters (e.g., RCHRG_DP and 
GW_DELAY) were found not sensitive in this case, which 
could be explained by the significant abstraction of 
groundwater for farming, which reduces the interaction 
between surface water and subsurface water.  

 
Fig. 2. Comparisons between observed and simulated 
streamflow on the daily scale at (a) Krongbuk, (b) Giangson, 
(c) Cau 14, and (d) Bandon, in which calibration (2003-2011) 
and validation (2012-2018). 

The calibration of the model at four stations (2009-2018) 
yielded good skill scores (Fig. 2). However, due to the operation 
of new dams and reservoirs, they fell significantly after 2009 
which is neglected in [40], [45], [94]. In general, our model 
performance was categorized as “Satisfactory” (see Table III), 
particularly when these results were examined under the 
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cascade impact of these reservoirs. This suggests that the model 
is reliable for evaluating the climate change impacts in this 
region.  

B. Projected Precipitation and Temperature 
First, we analyzed the changes in monthly average temperature 

and precipitation using GCMs and SSPs (Table V). For future 
precipitation, there is a noticeable shift in the average monthly 
precipitation patterns compared to historical data under GCMs and 
SSP scenarios. Historically, the average monthly precipitation is 
approximately 127.38 mm. However, this figure is projected at 
156.99 mm under the ensemble model SSP2-45, increasing to 
160.74 mm (an additional 3.75 mm) in the SSP5-85 scenario 
(Table V). Besides, other GCMs such as CanESM5 (SSP2-45) and 
MIROC6 (SSP2-45) show the highest increases of 46.28 mm and 
43.20 mm, respectively. Under the SSP5-85 scenario, CanESM5 
and MIROC6 indicate potential drought trends, showing decreases 
of 3.78 mm and 1.26 mm, respectively.  

For the maximum temperature, our analysis reveals that while 
the historical average is around 27.62°C, there are notable 
variations among GCMs and SSPs. The ensemble model under 
SSP2-45 projects a significant increase to an average of 32.77°C, 
a difference of 5.15°C. The SSP5-85 scenario forecasts an 
additional rise of 0.61°C compared to SSP2-45 (Table V). Besides, 
individual GCMs predict even higher temperatures; MRI-ESM2-0 
in the SSP2-45 scenario shows the highest average maximum at 
33.63°C whereas it is 33.99°C for MIROC6 under the SSP5-85 
scenario (Table V).  

TABLE V 
FUTURE PROJECTED CHANGES OF AVERAGE MONTHLY 

PRECIPITATION AND TEMPERATURE (2023-2090) COMPARED TO 
HISTORICAL DATA (2003-2018).  

 
MODEL TEMPERATURE (OC)  

MAXIMUM TREND MINIMUM 
SSP2-

45 
SSP5-

85 
SSP2-

45 
SSP5-

85 
Ensemble + 5.15 + 5.75 I + 5.07 + 5.67 

BCC-CSM2-MR + 4.53 + 5.34 I + 5.02 + 5.59 
CanESM5 + 5.37 + 6.36 I + 5.34 + 6.33 
MIROC6 + 4.69 + 5.25 I + 4.60 + 5.24 

MRI-ESM2-0 + 6.00 + 6.06 I + 5.32 + 5.54 
 PRECIPITATION (MM) 

SSP2-45 SSP5-85 TREND 
Ensemble + 29.61 + 33.36 I 

BCC-CSM2-MR + 32.17 + 36.52 I 
CanESM5 + 46.28 + 42.50 D 
MIROC6 + 43.20 + 41.95 D 

MRI-ESM2-0 – 3.21 + 12.47 I 

The positive (+) value represents an increase while the negative 
(–) value shows a decrease. Trend of models and scenarios are 
denoted with Increase (I) and Decrease (D). 

 

 
Fig. 3. The average annual precipitation and temperature across 
GCMs (2023-2100) under (a) SSP2-45 and (b) SSP5-85 
scenarios. The red lines represent the ensemble model, which 
combines the outputs from all GCMs, while other colors show 
the projections from individual GCMs. 

It is noticed that there are projected increases in the average 
monthly temperature compared to the historical record across 
various future climate scenarios. Historically, the average 
minimum monthly temperature is approximately 18.85°C. Under 
future scenarios, we found an average of 23.92°C (SSP2-45), 
which then rises slightly to 24.52°C (an additional 0.6°C) under the 
SSP5-85 scenario (Table V). Among GCMs, MIROC6 shows the 
lowest increase for both SSP2-45 and SSP5-85 scenarios. In 
contrast, the CanESM5 model forecasts the highest increases, as 
24.19°C and 25.18°C for SSP2-45 and 5-85, respectively. These 
results indicate a consistent trend of rising temperatures across all 
models and scenarios (Fig. 3), highlighting the potential for 
increased drought and flood events, which will be further discussed 
in the following sections. 

C. Evaluation of Future Extremes  
We performed our evaluation of extreme events over three 

different future periods, including the near future (2023-2044), mid 
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future (2045-2069), and far future (2070-2090) using SPI and SSI 
indices (see sections E and F). The calculation was performed in 
seasonal and annual scales (SPI-3 and SPI-12, respectively) under 
SSP2-45 and 5-85 scenarios.  

 

 

 
Fig. 4. Evaluation of extreme events using SPI-3 for (a) near 
future (2023-2044), (b) mid future (2045-2069), and (c) far 
future (2070-2090). The red color indicates dry periods, while 
the blue color signifies wet periods. The severity classification 
is presented in Table IV. The black dotted line represents the 
SPI-3 range across different GCMs, whereas the red and blue 
colors denote the values of the ensemble model. 

The 3-month SPI (SPI-3) reflects short- and medium-term 
changes in moisture conditions and the seasonal variations in 
precipitation anomalies [86]. For SRB, SPI-3 shows significant 
variability throughout the study period and across different GCMs, 
as shown in Fig. 4. The dotted lines in the figure represent the range 
of SPI-3 scores across GCMs and SSPs. For the near future, the 
SSP2-45 scenario shows a wet condition (𝑆𝑃𝐼3)#%*+,-.############ = +0.06),  
characterized by both significant wet and dry periods in terms of 
intensity and frequency. Conversely, the scenario SSP5-85 projects 
a drier condition (𝑆𝑃𝐼3)#%*.,/.############ = -0.09). During the mid future (2045-
2069), while SSP2-45 shows a slightly drier projection (𝑆𝑃𝐼3012+,-.############ 
= -0.08), SSP5-85 scenario anticipates more severe and frequent 
wet trend (𝑆𝑃𝐼3012.,/.############ = +0.07) (Fig. 4b). Lastly, in the far future 

(2070-2090), neutral to slightly wet conditions are projected in the 
SRB under both the SSP2-45 and SSP5-85 scenarios (𝑆𝑃𝐼33%*+,-.############ = 
-0.001; 𝑆𝑃𝐼33%*.,/.############ = +0.05) (Fig. 5b).  

In general, more frequent and pronounced fluctuations between 
flood and drought conditions are observed in the near and mid 
future compared to the far future under SSPs, in which SPI values 
range from +0.06 to -0.09 in the near future and -0.08 to +0.07 in 
the mid future. However, a contrasting trend is found under the 
SSP2-45 scenario, in which a shift from a wet to a dry trend is 
noted, starting with a wet projection in the near future, transitioning 
to a dry condition in the mid future, and becoming neutral in the 
far future. In contrast, the SSP5-85 scenario consistently projects a 
wetter trend, beginning with dry conditions in the near future and 
progressively becoming wetter in both the mid future and far future 
(Fig. 4). Additionally, while positive precipitation anomalies 
(positive SPI-3) are primarily observed in the far future, negative 
anomalies, indicating short- to medium-term drought periods, 
become more significant in the near and mid future for both SSP2-
45 and SSP5-85 scenarios. 

On the other hand, we utilized the SPI and SSI 12-month scale 
values to better characterize the long-term intensities and durations 
of droughts and floods for future periods between 2023 and 2090 
(Fig. 5). While the SPI-3 is useful for indicating short- to medium-
term changes, the SPI-12 and SSI-12 serve as indicators for longer-
term meteorological changes, such as the reduction in reservoir 
levels and groundwater recharge rates [88].  
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Fig. 5. Evaluation of extreme events using SPI-12 and SSI-12 
for (a) near future (2023-2044), (b) mid future (2045-2069), and 
(c) far future (2070-2090) under the SSP2-45 and 5-85 
scenarios. The red color indicates a dry trend, while the blue 
color signifies a wet trend. The severity classification is 
presented in Table IV. The black dotted line represents the SPI-
12 and SSI-12 range across different GCMs, whereas the red 
and blue colors denote the values of the ensemble model. 

In the near future, SPI-12 (SSP2-45 scenario) suggests a wet 
trend (𝑆𝑃𝐼12)#%*+,-.############# = +0.07), particularly during 2030-2036 and 
2040-2042. On the other hand, a predominantly dry trend is 
found under the SSP5-85 scenario (𝑆𝑃𝐼12)#%*.,/.############# = -0.318), with 
the majority of drought events occurring from 2029 to 2038 (Fig. 
5a). For the mid future (2045-2069), the SSP2-45 scenario projects 
a dry trend (𝑆𝑃𝐼12012+,-.############# = -0.17), with severe droughts spread 
evenly throughout the period, particularly between 2045-2050 and 
2055-2062 (Fig. 5b). In contrast, the SSP5-85 scenario forecasts a 
significantly wetter trend in the mid future (𝑆𝑃𝐼12012.,/.############# = +0.134), 
characterized by numerous and prolonged flood events, especially 
between 2050-2056 and 2060-2067. In the far future (2070-2090), 
SPI-12 under both SSP scenarios generally shows a mild wet trend 
(𝑆𝑃𝐼123%*+,-.############# = +0.04) to a more severe wet condition (𝑆𝑃𝐼123%*.,/.############# 
= +0.19) (Fig. 5c). Only a few significant drought periods are 
observed during this time, specifically around 2076-2077 and 
2088-2089 under the 2-45 scenario, and 2070-2071 and 2080-2083 
under the 5-85 scenario. In addition, our results reveal that higher 
greenhouse gas emissions are associated with more severe 
intensities of both flood and drought events.  

Compared to SPI-3, the SPI-12 index shows less temporal 
variation due to their extended accumulation period, leading to 
more prolonged meteorological drought and flood periods. 
While both SPI-3 and SPI-12 show similar trends, suggesting a 
generally wetter condition, meteorological droughts in the 
future are anticipated to be both more intense and more 
frequent. Additionally, under the scenario SSP5-85, both 
indices indicate a notable increase in flood intensity towards 
2090.  

The SSI-12 index shows a consistent trend compared to the 
SPI-3 and 12. Specifically, while longer and more intense 
drought periods are reflected during the near future (𝑆𝑃𝐼12)#%*.,/.############# = 
-0.21) (SSP5-85) and mid future (𝑆𝑃𝐼12012+,-.############# = -0.28) (SSP2-45), 
flood trends are found during the near (𝑆𝑃𝐼12)#%*+,-.############# = +0.11) 

(SSP2-45), mid (𝑆𝑃𝐼12012.,/.############# = +0.20) (SSP5-85), and far future 
(𝑆𝑃𝐼123%*.,/.############# = +0.14) (SSP5-85) (Fig. 5). Both scenarios 
consistently project a transition towards a wetter pattern, 
characterized by increased frequency and extended durations of 
flood periods (Fig. 5). This notable shift emphasizes the need for 
strategic planning and adaptive measures to mitigate potential 
impacts on local ecosystems, infrastructure, and communities.  

D. Spatial representation of Future Extremes  
In this section, we calculated the average SPI-12 index for 

115 subbasins in the SRB, utilizing GCMs and SSP scenarios 
between 2023 and 2090. This aims to assess projected drought 
and flood intensities and their spatial representation across the 
SRB (Fig. 6). A comparative analysis of drought trends using 
SPI-12 skill scores shows a fluctuating pattern: beginning with 
a wet trend in the near future (𝑆𝑃𝐼12)#%*+,-.############# = +0.06), to a dry 
projection in the mid future (𝑆𝑃𝐼12012+,-.############# = -0.18), and then 
stabilizing to a neutral state in the far future (𝑆𝑃𝐼123%*+,-.############# = +0.03). 
However, the SSP5-85 scenario consistently indicates a 
progressively wetter trend across all future periods, suggesting 
an increase in flooding events, especially in the downstream 
regions of the SRB (Fig. 6). Specifically, the driest trend is 
observed in the near future  (𝑆𝑃𝐼12)#%*.,/.############# = -0.313), while the 
wettest projection peaks during the far future (𝑆𝑃𝐼123%*.,/.############# = 
+0.19).  

Both agricultural and urban areas in the SRB (Fig. 1e), are 
expected to encounter significant flood and drought conditions 
in the near future. In agricultural regions near Ban Don and Cau 
14 stations (see Fig. 1b), mild drought conditions are projected 
for the mid future under the SSP2-45 scenario. Conversely, 
under the SSP5-85 scenario, the near future is anticipated to 
have moderate to severe drought conditions, while the mid and 
far future are expected to experience mild-to-moderate flood 
conditions.  

In urban areas near Duc Xuyen station and Buon Tua Srah 
reservoir (Fig. 1b), the SSP2-45 scenario forecasts mild flood 
conditions for the near future, whereas the SSP5-85 scenario 
predicts mild to moderate flood conditions in both the mid and 
far future. These projections emphasize the critical need for 
flood prevention measures, particularly in the low-lying regions 
of the SRB (Fig. 1c). In addition, we found that these areas are 
known for high socioeconomic activities and dense populations 
[39], [45], thereby our findings aim to support authorities to 
understand potential impacts of future climate for implementing 
optimal strategies to maintain human well-being over this 
region. 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2024.3380514

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



9 
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. xx, 2024   
           
 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Spatial representation of the intensity of extremes using 
SPI-12 over GCMs during the near future (2023-2044), mid 
future (2045-2069), and far future (2070-2090). The blue color 
represents the wet trend while the red color represents the dry 
trend.  

We found a correlation between the projected climate trends 
and the region’s characteristics. Specifically, higher elevation 
areas (Fig. 1c) are projected to experience fewer floods; 
however, higher intensity of floods is found in the downstream 
regions (Fig. 6). It is important to note that the near future is 
projected to see intensified drought conditions. Besides, we 
found that dense forest regions (Fig. 1c) showed a lower 
intensity of droughts (Fig. 6), thereby indicating their 
effectiveness in reducing climatic extremes.  

Furthermore, our results indicated that the high-elevation 
regions with higher slopes contribute to the increase in the risk 
of severe flooding in downstream regions (Figs. 1d and 6). 
However, the limitations of the LULC map used in this 
assessment must be acknowledged. For more accurate future 
scenario predictions, it would be beneficial to use future 
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projected LULC maps if applicable. Therefore, these findings 
should be considered as informative references rather than 
definitive conclusions.  

Additionally, considering the linear relationships observed 
between drought, flood events, LULC, and soil moisture, we 
recommend incorporating soil moisture data in future studies. 
Recent advancements in downscaled soil moisture datasets, as 
shown in recent works [95], [96], [97], and previously 
mentioned by [98], offer a valuable source of soil moisture 
datasets to enhance the accuracy and comprehensiveness of this 
study. While this section has highlighted the projected drought 
intensity over future periods, it is important to quantify the 
frequency of these drought events, which will be addressed in 
the following section. 

E. Drought Frequency 

 

 
Fig. 7. Spatial representation of drought frequencies using SPI-
12 index in the near future (2023-2044), mid future (2045-
2069), and far future (2070-2090). The darker color shows a 
higher probability of drought occurrence. 

Fig. 7 shows the spatial representation of drought 
frequencies. We found that areas within SRB with higher 
elevations and steeper slopes are especially prone to droughts 
(Figs. 1 and 7). Furthermore, the outlet region of the SRB is 
identified as being at a higher risk of both escalating drought 
occurrences and an increased frequency of flooding events.    

G. Projected Streamflow  
Understanding projected flood peaks is important in the SRB. 

Figs. 8 and 9 show the projected flood peaks at the SRB’s outlet 
(Fig. 1b) while Fig. 10 shows the difference in monthly 
streamflow in percentage, between the baseline scenario and the 
projections from GCMs and SSPs.  

 

 
Fig. 8. Projected flood peaks in (a, b) near future (2023-2044), 
(c, d) mid future (2045-2069), and (e, f) far future (2070-2090) 
under the SPP2-45 and 5-85 scenarios. The red lines represent 
the ensemble model, which combines the outputs from all 
GCMs, while other colors show the projections from individual 
GCMs. 

In the near future (2023-2044), we observed some notable 
trends among GCMs and SSPs. The ensemble model (SSP2-45)  
shows high flood peak values, highlighted with the upper 
bounds formed by the MIROC6 and CanESM5 models 
(significant in 2028, 2030, 2037, and 2041) and lower bound by 
the MRI-ESM2-0 model (Figs. 7a and 7b). Interestingly, a 
decreasing trend of flood peaks is found under the SSP5-85 
scenario. Specifically, if we consider the dominant decreasing 
trend as the main representation over the near future, the lowest 
difference of -0.19% and the highest difference of -35.66% are 
found compared to the ensemble SSP2-45. However, while the 
drying trend is found between 2023 and 2044, the mid future 
(2045-2069) shows a balanced trend when examining drought 
and flood years and is consistent with our findings in section C 
(Fig. 5b). To be specific, under the SSP2-45 scenario, the high-
peak return period is found to be between 7 and 9 years, during 
which the duration of these flooding events ranges from 4 to 5 
years. This trend appears similar across GCMs; however, the 
MIROC6 (SSP5-85) model exhibits a higher number of 
flooding events compared to other GCMs in the same period 
(Figs. 8c and 8d).  

In the far future (2070-2090), when analyzing projected 
changes in drought and flood events among GCMs, we found 
that (1) the wet trend is dominant over the future periods, and 
higher emissions correlate with more severe flood peaks; (2) the 
SSP5-85 scenario reveals a consistent extreme drought trend at 
the beginning of the 2080s (e.g., 2082 and 2083); and (3) while 
findings from ensemble models are considered more reliable, it 
is important to note that individual contributions from GCMs 
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should also be considered, as there can be significant variability 
in projections. Specifically, MIROC6 (SSP5-85) predicts many 
significant flooding events, with the lowest difference at 8.06% 
and the highest at 78.60%, compared to its SSP2-45 counterpart 
(Figs. 8e and 8f).  

 
Fig. 9. Temporal anomalies of flood peaks under the SSP2-45 
and 5-85 scenarios during the near future (2023-2044), mid 
future (2045-2069), and far future (2070-2090), utilizing the 
IQR method.  

Anomalously high or low flood peaks can significantly 
impact hydrological processes [99], ecosystems [100], and 
human lives [101]. Thus, we utilized the IQR method (see 
section G) to identify anomalies in flood peaks projected by 
GCMs and SSPs. In general, we observed an increase in 
flooding events from the near to the mid future in the SRB (Fig. 
9). As discussed in previous sections, the mid future (2045-
2069) highlights the transition from dry to wet conditions over 
SRB. We found that the GCMs exhibit a modest upward shift 
in median flood peaks across SSPs, with the SSP 5-85 scenario 
tending to show higher flood peaks. In this assessment, we 
identified potential peaks projected across GCMs, where the 
MIROC6 and MRI-ESM2-0 models show significant peaks 
over the mid and far future (Fig. 9). Specifically, MIROC6 
projects a significant high peak in 2047 (1529 m³/s), while 

MRI-ESM2-0 shows high figures in 2048 (1577 m³/s) and 2049 
(1536 m³/s). During the far future, these two models 
demonstrate extreme high and low peaks; MIROC6 exhibits an 
extremely high peak of 2319 m³/s, as well as very low peaks in 
2074 (566.2 m³/s) and in 2080 (429.7 m³/s). Conversely, MRI-
ESM2-0 presents a contrasting extreme high peak in 2074 
(1697 m³/s) compared to MIROC6, underscoring the 
importance of carefully considering these future projections to 
develop cost-effective strategies and plans. 

 
Fig. 10. The monthly streamflow difference in percentage 
between the historical scenario and GCMs for (a, b) near future 
(2023-2044), (c, d) mid future (2045-2069), and (e, f) far future 
(2070-2090) under SPP2-45 and 5-85 scenarios.  

Over future periods, the projections for monthly average 
streamflow show significant variations across GCMs and SSPs. 
In general, the winter months (December to February) exhibit 
an increase in streamflow under both scenarios, with the highest 
records observed in January (Fig. 10). Moreover, the higher 
emission scenario projects greater intensity, where a high 
contrast between dry and wet trends is observed towards 2090. 

Conversely, our findings reveal that November experiences 
peaks in average monthly streamflow under the SSP2-45 
scenario across GCMs (Figs. 10a, 10c, and 10e). However, 
under the SSP5-85 scenario, these peaks are shifted to 
December. The more intense emission scenario (SSP5-85) is 
associated with a more pronounced increase in streamflow, 
while the spring and early summer months (April to June) are 
projected to see a significant decrease in streamflow compared 
to the historical scenario, with the most notable reduction found 
in June. These results highlight the severity of the projected 
extreme events, providing a scientific basis for regional 
agricultural practice in this region.  

V. CONCLUSION 
In this study, we conducted a comprehensive analysis to 

quantify the projected changes in future climatic extremes 
between 2023 and 2090. Four GCMs from the NASA NEX-
GDDP-CMIP6 dataset under two SSP scenarios have been 
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investigated over three future periods, including the near future 
(2023-2044), mid future (2045-2069), and far future (2070-
2090). Our method included the use of the hydrological SWAT 
model, robust indices (e.g., SPI and SSI), and IQR method to 
quantify the intensity and frequency of these climatic events. 
Our findings are summarized as follows: 

(1) A transition from dry to wet conditions is observed 
towards 2090, with the mid and far future projecting a 
wetter trend. Notably, the higher emission scenario tends 
to intensify the severity of climatic extremes. Future 
projections show a significant discrepancy in the 
frequency of extreme events towards 2090, accompanied 
by a shift in monthly precipitation patterns and an increase 
in intensity.  

(2) A shift in average monthly streamflow peaks is observed, 
transitioning from November to December under the SSP 
scenarios. The spring and early summer months exhibit a 
decrease in streamflow compared to historical averages, 
with the highest figures found in June. 

(3) A correlation between future extreme weather events and 
regional characteristics, such as terrain elevation, slope, 
and land cover patterns, is indicated. Regions at higher 
elevations and with dense forest coverage appear to be 
less susceptible to both drought and flood events.  

Our findings provide a scientific basis for understanding the 
impact of future climatic extremes on the region’s water 
resources. Thus, this work serves as a valuable resource for 
stakeholders and regional authorities to develop and implement 
sustainable strategies focusing on disaster prevention in this 
region. 
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