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Abstract—With the development of Earth observation tech-
nology, it becomes easier and easier to acquire multi-modal
image data at the same time. To improve the performance of
multi-modal remote sensing detection algorithm, a new fusion
feature optimization detection network (FFODNet) is proposed.
The method is designed to solve the problem of performance
degradation caused by the unreliability of single modal data in
multi-modal remote sensing data. The key to obtain high quality
fusion features from multi-modal data with interference is to
suppress single modal redundant features and fully integrate
multi-modal features. The proposed method mainly includes
two improvements. Firstly, a novel joint expression optimization
module (JEOM) is designed to enhance the target features and
suppress the redundant and interference features that affect
the fusion effect. Additionally, we propose a novel specific
information enhancement module (SIEM) to further enhance
the discriminative feature information of targets within each
modal image. Experiments on DroneVehicle dataset show that
our proposed method is state-of-the-art on this dataset.

Index Terms—Multi-modal object detection, joint expression
optimization module, specific information enhancement module.

I. INTRODUCTION

THE object detection technology of Earth observation data
is widely used in military and civilian fields such as

intrusion warning, aerospace and so on [1], [2]. The optical
image has the texture and detail information of the target, and
the infrared image can provide the temperature information of
the target. These two types of target information are comple-
mentary. Currently, how to make full use of multi-modal data
has gradually become a new research hotspot [3]. However, in
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Fig. 1. Diagram of three types of fusion scheme. (a) Detection by fusion
image; (b) Detection by fusion feature; (c) Fusion both detection result.

the case that there may be modal interference in multi-modal
remote sensing data, how to obtain high-quality fusion features
and give full play to the complementary advantages of multi-
modal information is a major challenge for fusion detection
technology.

Optical remote sensing images have the advantages of easy
access and high resolution. Many researchers use optical
remote sensing images for object detection [4], [5]. However,
in some challenging visual scenes, such as low illumination,
smoke interference, and so on, relying solely on optical images
for detection often fails. Infrared remote sensing images can
obtain temperature information of the target without relying
on visual factors in the environment. Some researchers have
focused on using infrared images for object detection [6]. Due
to the low resolution of infrared image, it is difficult to detect
difficult targets such as low contrast, small scale and lack of
texture. In the face of some highly difficult suspected targets,
even the human eye is difficult to judge. If the temperature
information of the infrared image and the details and colors
of the optical image can be used at the same time, the detection
performance can be greatly improved. Therefore, it is worth
exploring how to solve the inherent limitations of single-
modal data by using multi-modal complementary information
to improve the detection performance [7], [8].

At present, deep learning technology is widely used in
various fields [9], and it is also the focus of research in the
field of multi-modal target detection. Figure 1 shows different
fusion strategies in multi-modal object detection algorithms in
detail, which are image-level fusion, feature-level fusion and
decision-level fusion. In this figure, the red part is responsible
for feature extraction, the green part represents the fusion step,
and the blue part points to the object detection. Many studies
have shown that implementing multi-modal feature fusion in
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the middle layer of the network can usually obtain better multi-
modal detection results [10]. Nowadays, multi-modal object
detection methods based on feature fusion have been widely
concerned and become the mainstream trend.

To use optical and infrared remote sensing images for
object detection, some researchers carry out direct weighted
summation of each modal branching feature. Li et al. introduce
illumination information to guide the fusion of multi-modal
image features [11]. They use a simple CNN and prediction
head to evaluate the illumination of RS optical images, and
according to the evaluation results, the importance of optical
image branch features is obtained, and finally the weighted
summation of each mode feature is carried out to obtain the
fusion feature. Guan et al. went a step further by using a deeper
hierarchy to evaluate the illuminance information [12], and
then used the evaluation results to guide multi-modal feature
fusion. However, the branch learning efficiency of the modal
weight calculation of this fusion method is low, which affects
the detection performance.

In order to obtain the fusion features adaptively, Tu et al.
extracted the fusion feature information by layer by layer
joining and convolution of multi-modal features [13], which
improved the overall efficiency of the algorithm. Zhang et al.
went further, using a more complex concatenation convolu-
tional structure to obtain fusion features of multiple subspaces
simultaneously [14], and finally grouping these features along
the channel dimension to obtain fusion features for prediction.
This approach directly combines the features of the two
branches and ignores the possible interference in the modal
information.

Recently, attention structures have been widely used in
various architectures because of their excellent performance.
Meng uses a residual attention structure to perform self-
attention operations on convolution-acquired fusion features
to highlight their useful components [15]. Zhao et al. uses
Transformer architecture to perform self-attention operations
on multi-modal features and perform attention weighting in
multiple subspaces [16]. Wang et al. applied the attention
structure to feature fusion networks combined with reliability
weighting operations for high-level semantic information [17].
This method combines the high efficiency of multi-modal
detection based on feature fusion with the robustness based
on reliability weighting, and has achieved great success on a
remote sensing dataset. However, in the above methods, the
attention structure is only applied to the feature fusion method,
while the backbone network still uses the general structure for
feature extraction.

In summary, multi-modal object detection still faces many
challenges due to the significant modal differences between
different modal data. The simple weighted fusion method
struggles to fully aggregate the multi-modal feature informa-
tion. The fusion method based on concatenation convolution
fails to consider how to suppress feature information that
hinders fusion. Although the fusion methods based on atten-
tion structure design have shown excellent performance, they
neglect to improve the single-modal feature extraction ability
of the backbone network, ultimately reducing the efficiency of
multi-modal feature fusion. Additionally, optical images can

introduce interference in the feature fusion process, especially
under low illumination conditions. The discriminative infor-
mation is the information that can distinguish the target from
the background, such as the temperature difference between
the target and the background in the infrared image, and the
color difference in the optical image. The simple feature fusion
methods may inadvertently introduce interference information
and reduce the overall detection performance.

The main contributions of this paper are as follows:
1. To address the aforementioned challenges, this paper pro-

poses a novel two-branch multi-modal detection Fusion feature
Optimization detection network (FFODNet). The FFODNet
aims to adaptively fuse target feature information from multi-
modal remote sensing images and achieve high-performance
detection. Specifically, the method consists of two key im-
provements: the backbone network and the feature fusion
module.

2. To fully integrate multi-modal features and suppress
interference information that is unfavorable to fusion, we
propose a joint expression optimization module (JEOM) based
on cross-concern. The JEOM is designed to adaptively extract
high-quality multi-modal joint expressions of objects of in-
terest from remote sensing data with uncertain primary and
secondary states.

3. To enhance the discriminative feature information of
the target in the single-modal image, we propose a new
specific information enhancement module (SIEM) in the two-
branch backbone network. The SIEM is designed to suppress
irrelevant background feature information and further improve
the efficiency of the subsequent feature fusion operation.

The rest of this article is structured as follows: in Section
II, we describe the network structure and methods in detail.
Section III gives the details of our work and experimental
results and related comparison to verify the effectiveness of
our method. Finally, we summarize the research content in the
Section IV.

II. PROPOSED METHOD

The overall architecture of the proposed detection method
is illustrated in Figure 2. Since the infrared image and optical
image have a similar data format, we utilize an isomorphic
backbone network to extract features from the multi-modal
images. To ensure that the image features of each modality
have the same dimension within the network, we expand the
single-channel infrared image to three channels by duplicating
the same value across all channels. The feature extraction
process begins with a double-branch structure, which extracts
features from the multi-modal images. Subsequently, the joint
expression optimization module (JEOM) utilizes these features
to suppress information that is not conducive to fusion, thereby
extracting high-quality joint feature representations. Simulta-
neously, the specific information enhancement module (SIEM)
is employed to enhance the extracted features, thereby im-
proving the discriminative features of each individual modality
and further enhancing overall performance. Finally, the fused
features are passed to the detection head, where the detection
results are obtained. This detection head leverages the fused
features to identify and localize the target objects in the scene.
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Fig. 2. The proposed multi-modal object detection method mainly includes backbone, SIEM, JEOM and detection.

The proposed architecture combines multi-modal feature
fusion and single-modal feature enhancement, allowing the
network to effectively capture useful complementary informa-
tion in multi-modal remote sensing images and improve the
performance of detection tasks. Additionally, the isomorphic
backbone network enables the extraction of consistent and
compatible features from different modalities, facilitating the
fusion process and enhancing the overall performance of the
detection method.

The specifics of the JEOM and SIEM are elaborated upon
in Section II-A and Section II-B, respectively.

A. Joint Expression Optimization Module

To obtain high-quality multi-modal fusion features, we
propose the JEOM based on cross attention to address possible
interference in remote sensing data. This module incorporates
both single-modal features and multi-modal joint features to
perform attention operations. The objective of these oper-
ations is to enhance useful information while suppressing
redundant information that is not beneficial for fusion. Net-
works generally exhibit better performance when they have
access to more useful information. By incorporating cross
attention mechanisms within the JEOM, our proposed method
effectively focuses on important features and enhances their
representation in the fusion process. This allows the network to
leverage the most relevant and discriminative information from
both single-modal and multi-modal features, thereby leading
to improved overall performance.

The query tensor is used to search for and enhance useful
features in each single mode. If the query tensor can search for
the target feature more accurately, then it can also be regarded
as learning a lot of useful information. To further improve
the fusion efficiency, an additional step is designed during
the fusion process. This involves adding the query vector,
which is calculated from each single-modal feature, to the
fusion feature. The structure of this enhanced fusion feature
is depicted in Figure 3.

As shown in Figure 3, the optical and infrared features
are input to the fusion module and mapped as query tensors
respectively. These query tensors are then combined with the
simple fusion multi-modal features for attention operations.

Fig. 3. Schematic diagram of joint expression optimization module (JEOM).

Finally, the query tensor and the enhanced fusion feature
are added together to obtain the final fusion feature. The
entire process leverages the attention mechanism to suppress
redundant information, thereby obtaining a high-quality fusion
feature expression.

By incorporating this enhanced fusion feature into the
network architecture, aiming to further emphasize the use-
ful information contained within the single modal features,
thereby increasing the proportion of useful information in the
final fusion feature.

In addition, an attention-enhancing structure similar to the
Transformer strategy is designed, which has a strong ability to
acquire high-quality fusion features [18]. In this structure, in
order to carry out adaptive information fusion, we use the form
of convolution instead of tensor product operation. Firstly,
the module fuses the multi-modal input features, obtains the
preliminary fusion features, and regards them as key tensors
and value tensors. Secondly, the query tensor is calculated
using each modal feature. Then, two query tensors and key
tensors are used to calculate the weight vector respectively,
and the value tensor is weighted by the weight vector. Finally,
the enhanced fusion features are added to the query tensor to
obtain the final fusion features. Finally, the enhanced fusion
feature is added to the query tensor to obtain the final fusion
feature. The formula of the overall calculation process is
expressed as follows:

JEOM(FRGB
i , F Inf

i ) =
˜

F Inf
i + ˜FRGB

i +QI +QR (1)
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where ˜
F Inf
i and ˜FRGB

i refer to the enhanced feature tensor
respectively. QR and QI refer to query tensors calculated from
RGB image features and infrared image features, respectively.

QR, QI = Conv1×1(F
RGB
i ), Conv1×1(F

Inf
i ) (2)

The Conv1×1 represents a convolution operation with ker-
nel size 1 that does not change the dimension. Take the feature
calculation of optical image as an example, the formula is as
follows:

˜FRGB
i = Tr(Q = QR,K = F f

i , V = F f
i ) (3)

The Tr is a cross-attention enhancement operation similar
to the Transformer strategy. It uses the query tensor and the
key tensor to calculate the weight vector, and weights the value
tensor as follows:

Tr(Q,K, V ) = W (Q,K) · V (4)

The dot multiplication in the formula refers to the multipli-
cation of values along the channel dimension after broadcast-
ing, so as to achieve the purpose of feature selection.

W (Q,K) = Poolaverage[CBL1×1(Q,K)]h,w (5)
CBL1(X,Y ) = L ReLu{Bn{Conv1[Cat(X,Y )c]}} (6)

The above formula represents the use of weight vector to
enhance the channel dimension of the feature graph. Where
Poolaverage refers to the global averaging pooling operation
of feature tensors along the width and height directions. The
CBL1×1 refers to the concatenation convolution operation.
The Bn and L ReLu are the batch normalized operation
and the activation operation using the Leaky ReLu function,
respectively. In the above equation, the F f

i refers to the
preliminary fusion feature, and the calculation formula of it is
as follows:

F f
i = Upsample(F̃ r

i + F̃ i
i ) (7)

The primary fusion features are obtained by adding and
applying operations on the calculated F̃ r

i and F̃ i
i .

F̃ r
i = Conv1×1(Cat(F r

i , F
add
i )) (8)

F̃ i
i = Conv1×1(Cat(F i

i , F
add
i )) (9)

To fully capture the discriminative information from each
modality, we concatenate the optical feature and infrared
feature and perform convolutions with the fusion feature
separately. This process enables the network to focus not
only on the combined features but also on individual modal
features, thus providing essential information for subsequent
fusion operations. the resulting fusion feature map is denoted
that primarily emphasizes the optical modal features as F̃ r

i .
The F add

i in the formula refers to the multi-modal features
of the initial fusion. This step enhances the discriminative
capability of the network and contributes to improved multi-
modal object detection performance.

Fig. 4. Schematic diagram of specific information enhancement module
(SIEM).

F add
i = Convs=2

3×3(F
RGB
i + F Inf

i ) (10)

F r
i , F

i
i = Convs=2

3×3(F
RGB
i ), Convs=2

3×3(F
Inf
i ) (11)

The Convs=2
3×3 in the formula represents a convolution

operation with kernel size 3 and step size 2. In order to obtain
the context information of different modal features, we carry
out a downsampling operation on the features involved in the
calculation when calculating the initial fusion features, so as
to obtain useful information conducive to fusion in a larger
area.

B. Specific Information Enhancement Module

To enhance the feature extraction capability of single-modal
remote sensing images, we propose a self-attention SIEM
module to further improve the detection performance. This
module leverages multi-scale feature information to enhance
the discriminative features of the target, thereby improving
the network’s attention to target information during the fea-
ture fusion stage. We adopt the attention-enhancing structure
proposed in this article within the SIEM. Given that the
input features consist of both deep and shallow features
that exhibit strong correlations, the operation methods of
the query tensor, key tensor, and value tensor within the
attention network in this section differ from those introduced
in the previous section. These modifications are necessary to
effectively capture and enhance the discriminative information
within the multi-scale feature representation. By incorporating
the self-attention SIEM module, we enable the network to
dynamically emphasize target-related information and enhance
the discriminative power of the fused features.

The structure diagram of SIEM is shown in Figure 4. SIEM
utilizes shallower features to enhance attention towards deeper
features. In many feature extraction networks, downsampling
operations are performed on feature maps to reduce compu-
tation. However, this downsampling process can result in the
loss of certain low-level spatial location information. SIEM
addresses this issue by enhancing the discriminative features of
the target and reducing the loss of spatial position information
caused by downsampling during feature extraction.

In SIEM, the input shallow feature is scaled, and the module
performs separate mapping operations on the deep feature
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and the scaled shallow feature. Specifically, key features and
query features are mapped, and their interaction generates
an attention vector. This attention vector is then utilized to
enhance the discriminative feature information within the deep
feature.

By incorporating SIEM into the network structure, we
leverage richer spatial information from the shallower features
to enhance the deeper features. Simultaneously, the deeper
features undergo self-attentional operations to enhance useful
target feature information. The useful information component
in the feature is enhanced to improve the efficiency of the
subsequent feature fusion network.

The overall calculation process is as follows:

SIEM(Fi−1, Fi) = Attself (Fi) +Attcro(Fi−1, Fi) (12)

The Fi and Fi+1 represent shallow features and deep
features in the process of feature extraction. The output of this
module is the sum of the arithmetic result of the deep feature
self-attention enhancement and the weighted feature of the
shallow feature. The formula for self-attention enhancement
is as follows:

Attself (Fi) = Tr(Qs(Fi),Ks(Fi), Fi) (13)
Qs(Fi),Ks(Fi) = Conv1×1(Fi), Conv1×1(Fi) (14)

In the cross-attention operation, deep and shallow features
need to be aligned in wide and high dimensions. In order to
retain more low-level spatial information, we only use one
convolutional layer for dimensional alignment. Although the
method also downsamples shallow features, compared with
the backbone network, the single-layer convolution operation
can retain more spatial information rather than extract more
semantic information. In addition, the single-layer convolution
structure can also establish additional residual paths and im-
prove the training efficiency of the method. The cross-attention
formula is as follows:

Attcro(Fi−1, Fi) = Tr(Qc(Fi−1),Kc(Fi), Fi) (15)

Qc(Fi−1),Kc(Fi) = Convs=2
3×3(Fi−1), Conv1×1(Fi) (16)

The Qc and Kc in the formula refer to the computational
structure of the query tensor and the bond tensor in this part.
The operation process of the function Tr in the formula is the
same as the formula (4) in Section II-A.

In the overarching process, we input the multi-modal image
data into the network and initiate distinct feature extraction
procedures using a specialized isomorphic backbone network
tailored for each modality. This step enables us to capture
and emphasize unique characteristics inherent to each type
of data. Following this initial extraction, we propose the
SIEM to dynamically amplify the discriminative information
present within the features of each individual modal. This
enhancement process occurs independently within dedicated
branches for each modal.

Building upon this enhancement, we activate the JEOM,
which orchestrates the fusion of multi-modal features at the

same hierarchical level. The objective here is to ensure a
harmonious integration of information across modalities, pro-
moting a synergistic representation. Within this fusion process,
careful attention is given to utilizing each modal feature map in
order to selectively suppress redundant information embedded
within the initial fusion feature map. This approach aims to
distill and preserve only the most pertinent details, generating
fusion features of elevated quality.

In culmination of this sophisticated process, we deploy
resulting high-quality fusion features for critical object detec-
tion tasks. Our comprehensive approach encompasses distinct
feature extraction, individual modal enhancement, multi-modal
fusion, and information refinement, all working collectively to
ensure the robust and effective performance of our network in
discerning and identifying targets within multi-modal image
data. By taking advantage of the different strengths of each
mode, our network extracts target discrimination features from
multi-modal images that capture both multi-modal shared
information and single-modal specific information. The indi-
vidual modal enhancement module refines the features of each
modality, boosting their discriminative power and facilitating
more accurate object detection. The multi-modal fusion pro-
cess effectively integrates the enhanced features from different
modalities, enabling the network to exploit the complementary
information and achieve a more comprehensive understanding
of the scene.

III. EXPERIMENT

A. Expereimental Datasets

The DroneVehicle dataset consists of 19,459 pairs of RGB-
infrared images, classified as vehicles, captured by camera-
equipped drones [19]. Regional scenes are divided into urban
roads, residential areas and highways. The lighting conditions
were night and day. We used 17,990 RGB-infrared image pairs
for training, 1,469 pairs for validation. The overall dataset
contains the following five categories of objectives: car, freight
car, truck, bus and van. Some images have the problem of low
contrast or low illumination, which will cause the network
to be interfered by certain modal data in the feature fusion
stage, which requires the feature balancing performance of
the network. According to the interference degree of modal
data, the data set is divided into the following two parts: the
weak interference subset and the strong interference subset.
The subsets are shown as Figure 5. It is important to note that
we have only divided the test set.

TABLE I
VOLUME DIAGRAM TABLE FOR EACH DATASET.

Dataset classes train set test set tote
DroneVehicle 5 17,990 1,469 19,459
FLIR-aligned 3 4,129 1,013 5,142

To ensure the consistency of the image scale between the
two modalities in FLIR, we conducted experiments on the
’aligned’ version [20]. The ’aligned’ FLIR contains 5,142
RGB-infrared image pairs, of which we used 4,129 pairs for
training and 1,013 pairs for testing. It covers different urban
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Fig. 5. The schematic samples of the weak interference subset and the strong interference subset are shown in the figure. In (a) is the schematic data of the
strong interference subset, and in (b) is the schematic data of the weak interference subset.

street scenes and includes three object categories: bicycle, car,
and person.

The training, testing, and overall data volumes for each
dataset are shown in the table I.

B. Implementation Details

We executed all experiments using PyTorch on a machine
equipped with a GeForce RTX 3090 GPU. The optimization
process employed the Stochastic Gradient Descent (SGD)
algorithm, with an initial learning rate set at 0.003, an at-
tenuation weight of 0.0001, and a momentum value of 0.9. To
quantitatively assess the performance of multi-modal object
detection, we employed the conventional evaluation metric
known as average mean precision (mAP).

C. Performance Evaluation on DroneVehicle dataset

Our base-structure is a two-branch object detection network
without SIEM and JEOM in Figure 2. The baseline of the
proposed method is improved by the single branch Faster-
RCNN [21]. To explore a better feature fusion method, we
conducted some relative comparative experiments. Hong et
al. listed a number of multi-modal feature fusion methods
[22]. Sharma et al. and Zhang et al used Point-wise addition
and Concat-Conv respectively to carry out multi-modal feature
fusion, and achieved certain results [23], [24]. We reproduced
the most complex fusion method in their paper and compared it
with direct addition and concatenation convolution, two simple
fusion methods, their structures are shown in Figure 6.

These three fusion methods are called Point-wise addition,
Concat-Conv and Cross-Concat-Conv in turn. Each of the
methods in the table uses ResNet50 for feature extraction
of single-modal images and only uses different structures
for feature fusion. Finally, the fused features are used for
object detection. By comparing the performance differences of
various fusion methods, experiments show that the proposed
fusion method is superior to the above fusion methods.

Table II shows that a more complex feature fusion network
can obtain better multi-modal fusion features, thus improving
the performance of the object detection method. To improve
the learning efficiency of the network and make a more
explicit performance comparison, we refer to the detection
network using direct addition operation in the fusion part as
the baseline.

TABLE II
THE EXPERIMENTAL PERFORMANCE OF EACH OBJECT DETECTION

METHOD ON DRONEVEHICLE DATASET, AS WELL AS THE MODAL IMAGES
IT USES. THE OPTIMAL DETECTION RESULTS ARE SHOWN IN BOLD.

Method Modality mAP
Faster R-CNN [21] R\I 43.94\52.63%

RoITransformer [25] R\I 47.91\59.15%
ReDet [26] R\I 51.04\60.54%

Gliding Vertex [27] R\I 52.48\62.89%
Point-wise addition [23] R+I 60.82%

Concat-Conv [24] R+I 61.63%
Cross-Concat-Conv [22] R+I 64.24%

UA-CMDet [19] R+I 64.01%
RISNet [17] R+I 66.40%

AR-CNN [28] R+I 71.58%
FFODNet(ours) R+I 76.93%

And table II shows the comparison between the proposed
method and the current object detection method with multi-
modal feature fusion capability. RISNet and UA-CMDet are
good fusion object detection algorithms at present [17], [19],
both using a mixture of feature-level fusion and decision-level
fusion strategies, but their performance is still inferior to our
proposed method.

For better comparison, the detection structure of the (a)
method in Figure 6 described above is used as our baseline.
Our improved mAP improves by about 16% compared to base-
line results and is significantly higher than the single-modal
object detection method. Experiments show that the proposed
method can extract high quality fusion feature information
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Fig. 6. Comparison of three fusion structure diagram. (a) is the direct addition of the feature map; (b) Convolution after concatenation of feature graphs; (c)
refers to multiple interleaved concatenation and convolution of feature graphs.

from infrared-optical image pairs, and its performance is state
of the art.

The subjective detection results of each algorithm are pre-
sented in Figure 7. The first line represents the fusion method
of Point-wise addition, the second line represents the fusion
method of Concat-Conv, and the third line represents the
fusion method of Cross-Concat-Conv. The fourth line displays
the detection result of UA-CMDet, and the image is sourced
from the original paper. The final line demonstrates the test
results of the proposed method. The proposed method demon-
strates excellent detection effectiveness, performing well on
dense targets and targets with obstructed edges

The quantitative analysis of each fusion method on the two
subsets is compared in the III. To evaluate the robustness of the
algorithm in difficult scenarios, the test set of the original data
set is divided into two test subsets according to the difficulty
of the scenario. Experiments show that the proposed method
is robust in low illumination environment.

TABLE III
THE EXPERIMENTAL PERFORMANCE OF EACH OBJECT DETECTION

METHOD ON DRONEVEHICLE DATASET, AS WELL AS THE MODAL IMAGES
IT USES. THE OPTIMAL DETECTION RESULTS ARE SHOWN IN BOLD.

Method mAP in subset (a) mAP in subset (b)
Point-wise addition [23] 59.8% 65.5%

Concat-Conv [24] 59.4% 72.9%
Cross-Concat-Conv [22] 64.2% 77.3%

FFODNet(ours) 75.2% 83.2%

As shown in Figure 8, the true value is shown in green on
the first row of the RGB image. The second and third rows
show the detection results for the baseline and the FFODNet,
respectively. To enhance visual clarity, we highlight the objects
with our approach above the baseline in yellow.

Visualizations of some of the detection results in the strong
interference subset are depicted in Figure 9. In the first column
of the presented data, the infrared data exhibits a low contrast
phenomenon, while the optical image suffers from cloud
interference. The feature fusion network needs to address the
low illumination interference caused by optical images in the
second and fourth columns of data. In the third column of
data, both cloud and low illumination problems are observed
in the optical images. These phenomena indicate that a certain
modality of data is not always reliable in the fusion object
detection task. Consequently, it is crucial for the algorithm to
initially treat all modal data as equally important during feature

fusion and adaptively suppress the interference introduced by
modal data throughout the fusion process.

The experimental results unequivocally validate the effec-
tiveness and feasibility of our algorithm, particularly when
applied to the challenging strong interference subset. The
algorithm demonstrates excellent detection performance, sur-
passing expectations and showcasing its potential for real-
world applications. The exceptional performance of our algo-
rithm can be attributed to its innovative fusion strategy, adap-
tive weighting mechanism, and end-to-end training approach.
These key components enable the algorithm to effectively
handle interference from different modalities, prioritize rel-
evant information, and optimize the feature fusion process for
accurate object detection. The algorithm’s ability to adaptively
suppress interference and exploit the complementary charac-
teristics of multi-modal data contributes to its outstanding
performance.

D. Ablation Experiment on DroneVehicle dataset

To verify the effectiveness of the module proposed in
this paper, we conducted ablation experiments on JEOM and
SIEM. Table IV shows the experimental results of the ablation
experiments. The baseline in Table IV refers to the method
Point-wise addition in Table II.

TABLE IV
OUR PROPOSED METHOD WAS COMPARED WITH BASELINE ABLATION

EXPERIMENTS. THE OPTIMAL DETECTION RESULTS ARE SHOWN IN BOLD.

Method car freight-car truck bus van mAP
baseline 89.70% 35.90% 49.00% 88.30% 41.20% 60.82%
base+S 90.10% 52.60% 64.20% 88.20% 54.50% 69.92%
base+J 90.30% 62.30% 71.70% 89.40% 60.70% 74.88%

base+J+S 90.40% 68.40% 72.60% 89.20% 64.10% 76.93%

The J and S in Table IV refer to the JEOM and SIEM
in Section II of this article. The fusion module is compared
with the simple fusion method. Furthermore, SIEM is used to
improve the ability of the network to extract the discriminant
features of the target, so as to improve the efficiency of feature
fusion. In the proposed method, the detection efficiency is
improved through the synergistic effect of JEOM and SIEM.
Experiments show that JEOM can optimize the detection
performance by improving the efficiency of feature fusion.
On this basis, SIEM can further improve the overall network
performance. On the basis of optimizing the feature fusion
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Fig. 7. Visualization of detection results of each algorithm. From top to bottom are the test results of Point-wise addition method, Concat-Conv, Cross-
Concat-Conv, UA-CMDet and FFODNet.

structure, it is meaningful to enhance the ability of each feature
extraction branch.

E. Performance Evaluation on FLIR dataset

To further validate the effectiveness of our proposed method,
we conducted comparison experiments with other state-of-the-
art methods on the FLIR-aligned dataset.

TABLE V
THE EXPERIMENTAL PERFORMANCE OF EACH OBJECT DETECTION

METHOD ON FLIR DATASET, AS WELL AS THE MODAL IMAGES IT USES

Method Modality mAP
Faster R-CNN [21] R\I 63.60\75.30%
HalfwayFusion [29] R+I 71.17%

DALFusion [30] R+I 72.11%
CFR [29] R+I 72.39%

GAFF [31] R+I 73.80%
YOLO-MS [32] R+I 75.20%

MFF-YOLOv5 [15] R+I 78.20%
UA-CMDet [19] R+I 78.60%
FFODNet(ours) R+I 78.30%

Table V presents the results of several advanced object
detection methods that possess multi-modal fusion capabilities.
As observed from Table V, our approach outperforms the
other methods, establishing itself as the leading method for
object detection on the FLIR dataset. These results further
demonstrate the superior performance and effectiveness of our
proposed method in multi-modal object detection tasks.

As observed in Table 3, using only infrared modal images
can achieve a higher degree of precision, mainly because the
infrared images in the FLIR dataset provide a better view
compared to the optical images. Inadequate fusion methods
may introduce interference information that hinders fusion,
ultimately reducing the detection performance of the network.
Notably, the YOLO-MS is recently advanced multi-modal
fusion object detection method. However, in our experiments,
we have achieved higher performance compared to the method.
Furthermore, while our approach performs equally well as UA-
CMDet on the FLIR dataset, it outperforms UA-CMDet on the
drone dataset. These results highlight the superior performance
and effectiveness of our approach in both FLIR and drone
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Fig. 8. Subjective diagram of test results. The rows from top to bottom are labeled optical images, baseline detection results, and the results of the FFODNet.

datasets.

IV. CONCLUSION

In this paper, a novel multi-modal detection fusion feature
optimization detection network (FFODNet) is proposed, which
adaptively fuses the target feature information of multi-modal
remote sensing images to achieve high performance detection.
It includes the improvement of backbone network and fusion
module. In order to obtain high quality fusion features by
enhancing object-specific features and suppressing redundant
information that may hinder fusion, a new JEOM is proposed.
Based on this, a new SIEM is designed to suppress irrelevant
background feature information and further improve the effi-
ciency of subsequent feature fusion operations. Experimental

results show that our proposed method outperforms existing
state-of-the-art methods on the DroneVehicle dataset.
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