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Abstract—Long-term deformation prediction and quantitative 

brine estimation are of great significance for safety precautions 

and environmental protection in salt mining areas. Traditional 

Interferometric Synthetic Aperture Radar (InSAR) combined 

with Probability Integral Method (PIM) has the following 

limitations: mathematical empirical models are mostly used in 

InSAR deformation modelling, which ignore the mechanisms of 

underground mining thus may limit the accuracy of deformation 

observations; InSAR deformation models have theoretical 

contradictions and inconsistencies with the future prediction 

models; PIM is not applicable to the deformation induced by salt 

solution mining. In this study, a novel Water-Solution Kinetic 

(WSK) InSAR model was proposed to replace the traditional 

InSAR models. It considers the principles of substance diffusion 

and mass transfer of salt, thus can be used directly for the 

quantitative prediction of both the deformations and extracted 

brine. Least Squares with Inequality Constraints (LSIC) was 

introduced to solve the unknown WSK parameters based on the 

InSAR phases to improve the computational efficiency. Two salt 

mines in China were selected for the experiments. The results 

show that the maximum predicted deformation was 296 mm in 

XR and 155 mm in HR, and the brine composition was estimated 

to be 0.406 and 1.477 million tons per year, respectively. 

Compared to traditional Static-PIM, the accuracy was improved 

by 48.3% and 54.5%, respectively. The results indicated that 

WSK is more precise and reasonable for predicting the 

deformation in salt mining areas, which can provide data 

reference for the management of salt mines. 

 

Index Terms—InSAR, water-solution kinetic, salt mining area, 

deformation prediction, brine estimation or prediction. 
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I. INTRODUCTION 

HINA is one of the few countries in the world with 

extremely rich salt mineral resources, with reserves of 

about 4.45 trillion tons[1]. Due to the multi-directional 

exploitation of water-solution, the rock salt caverns are prone 

to collapse and brine leakage, which may arouse serious 

damage to the surrounding environment and threat to the 

safety of human life and property [2]–[4]. Therefore, long-

term deformation monitoring and prediction in salt mining 

areas can ensure the safety of mining activities, provide a 

reference for mining management and environmental 

protection [5]–[6]. 

The Multi-Temporal Interferometric Synthetic Aperture 

Radar (MT-InSAR) is an advanced earth observation 

technology developed in recent years, which has proven to 

have tremendous capabilities for deformation monitoring in 

mining areas [7]–[14]. However, the single MT-InSAR can 

only achieve the time series deformation monitoring during 

SAR acquisitions, which cannot be acquired to predict the 

displacement beyond the span of the SAR acquisition images. 

To compensate for this limitation, researchers have combined 

the Probability Integral Method (PIM) with MT-InSAR 

technology to predict the forward deformation induced by 

mining activities [15]–[20]. The basic thought is to use the 

deformation time series obtained by the InSAR technology as 

observations for the inversion of the PIM parameters, and then 

the forward deformations in future periods can be predicted 

using the PIM prediction model. However, the following 

limitations still need to be discussed: Firstly, pure 

mathematical empirical models (i.e., linear, seasonal, and 

polynomial models) are mostly used in the InSAR 

deformation modelling process to generate InSAR 

deformations, which ignore the underground mining 

mechanisms, thus may limit the accuracy of the deformation 

observations. In fact, the mining-induced ground deformation 

shows complex non-linear characteristics temporally. 

Obviously, a single mathematical empirical model cannot 

reasonably describe the complex deformation mechanism of 

underground salt mining process. Secondly, inaccurate InSAR 

deformation results will transfer unavoidable errors to the 

estimated PIM parameters, which will then propagate to future 

predicted results. Thirdly, although the widely used PIM 

C 
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models are proven to be effective in coal mining areas, it may 

not be suitable for describing the dynamic processes of water 

solution extraction in salt mining areas. Finally, combination 

of Genetic Algorithms (GA) and Least Squares (LS) methods 

are mostly used for parameter estimation of non-linear InSAR 

physical models [21]–[22]. Most of these algorithms are based 

on iterative searching algorithms, which are time consuming 

and highly dependent on the initial value of the parameters. 

Consequently, it may lead no solution or large estimation 

errors induced by non-convergence of the iterations. 

In this study, we propose a novel Water-Solution Kinetic 

(WSK) InSAR prediction model to replace the traditional 

InSAR models, which considers the principles of substance 

diffusion and mass transfer. In WSK model, the physical 

parameters of diffusion coefficient and solution concentration 

are incorporated into the InSAR deformation model, which 

can reasonably interpret the temporal non-linear 

characteristics of the deformations induced by the water-

soluble mining activities. In order to estimate the WSK 

parameters, the Least Squares with Inequality Constraints 

(LSIC) is introduced here, which can estimate the unknowns 

based on InSAR phase observations, significantly improve 

solving efficiency and accuracy. The WSK model and 

estimated parameters can be used directly to predict the 

forward deformation and the quantitative brine extraction.  

In this work, firstly, the methodology of WSK construction 

based on the principles of substance diffusion and mass 

transfer, and the parameter estimation based on LSIC 

algorithm were introduced respectively. Then, both simulated 

and real data experiments were designed to verify the novel 

algorithms. Two salt mines in China, Xinhua Rock Mine (XR) 

in Hunan Province and Huai'an Rock Mine (HR) in Jiangsu 

Province, were selected for the real data experiments. Two 

groups of deformation time series were obtained and the 

quantitative brine extraction prediction was carried out based 

on WSK. The accuracy evaluation for WSK modelling, 

deformation monitoring and prediction were also executed. 

The spatial-temporal characteristics of the predicted 

subsidence, especially related to the the substance diffusion 

and mass transfer law were discussed. A sensitivity analysis 

for WSK parameters was also showed in the discussions in 

detail. Finally, the revealed discoveries and the advantages of 

WSK were concluded. 

II. METHODOLOGY 

A. Water-Solution Kinetic Subsiding Model 

The dissolution process of salts follows the principles of 

Water-Solution Kinetic, substance diffusion and mass transfer. 

The relationship between vertical subsidence and the total 

amount of brine can be written as [23]: 

0 0 0solQ Q t F S F=   =                           (1) 

where Q denotes the total amount of extracted brine during the 

periods between the two interferometric SAR acquisitions; 0Q  

is the amount of extracted brine per unit time and area; t is the 

total time of the mining activity, which can be defined as the 

temporal periods between the two SAR acquisitions; 0F is the 

dissolution area during the water dissolution process; solS is the 

vertical subsidence caused by water solution mining, which is  

treated as the ground subsidence. According to the principle of 

diffusion and dissolution, 0Q can be expressed as: 

( )0 /s x sQ D C C C = −                           (2) 

where D is the diffusion coefficient, which can be considered 

as an unknown parameter, the values of D  vary on different 

pixels, but treated as constant temporally; ( )s xC C− is the 

solubility of the rock salt, treated as constant spatially across 

all the pixels in the funnel, but varying temporally, sC is the 

concentration index of the saturated solution, which is treated 

as a constant, xC is the concentration index of the unsaturated 

solution, which is treated as an unknown variable;  is the 

thickness of the saturated solution layer, which depends on the 

velocity of the solvent and regarded as a constant here. 

According to (1) and (2), the time series function of 

subsidence solS  can be written as: 

( ) ( )( )/sol s x sS t D C C C t= −                         (3) 

where the diffusion coefficient D and solution concentration 

index xC are both treated as unknown WSK parameters. 

Function (3) describes the temporal relationship between 

subsidence and WSK parameters, which can assist in 

interpreting the temporal non-linear characteristics of the 

water-soluble extraction induced deformations. 

B. Time series InSAR Modelling Based on WSK 

Suppose that 1N +  SAR images are acquired, and M

interferometric pairs are generated. For each pixel of high 

coherence in i -th interferogram [24]–[26], the interferometric 

phase can be expressed as: 

44
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where  represents the radar wavelength; id represents the 

deformation along the line-of-sight (LOS) direction at the i -th 

high-coherence point of the m -th differential interferogram, 

referred as the Low-Pass (LP) deformation component; i

topo

represents the topographic phase,
4
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i ii

topo

B
H

R




 
=  , where

  and iB represents the radar incident angle and the 

perpendicular baseline, respectively; R is the sensor-target 

distance; 
iH is the elevation correction, which is unknown 

for the i -th pixel and considered temporally constant; i

def

represents the deformation phase; i

orbit represents the orbital 

error; i

res represents the residual phase, which mainly 

includes the atmospheric delay phase i

atm , the noise phase 
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i

noise and the High-Pass (HP) deformation composition i

non  

[27]. When the horizontal movement of the ground surface is 

ignored, the relationship between LOS deformation and 

vertical subsidence can be written as: 

( ) ( ) ( ) ( ) cosi

LOS B LOS A sol B sol Ad d t d t S t S t  = − = −      (5) 

where ( )LOS Bd t and ( )LOS Ad t are the deformations at dates Bt

and At respectively with the reference time 0 0t = ; similarly, 

( )sol BS t and ( )sol AS t are water-solution related subsidence 

respectively at Bt  and At  with respect to the time 0 0t = , 

where ( )0 0LOSd t   and ( )0 0solS t  . Substituting (5) into (4), 

the function between InSAR phases and WSK parameters can 

be expressed as: 

( )
44

/ cos
sin

i i ii

m s x s res

B
D C C t C H

R


   

  
= −   +  +   

(6) 

suppose  ,  sGP C =  defines the geological parameters, 

which are considered as the known parameters and can be 

determined according to the geological conditions in the 

mining area. Both the WSK parameters  ,  xWP D C= and 

iH are treated as unknown parameters, written as

, ,T i

xX D C H =   , and can be estimated by LSIC as 

introduced in Section Ⅱ-C. Substituting X  into function (3), 

the time series deformations both within and beyond the SAR 

acquisitions can be generated. 

C. WSK Parameters Estimation Based on LSIC Algorithm 

GA has been widely used to solve the problem of estimating 

non-linear parameters in InSAR physical model. However, its 

disadvantage is time consuming and low accuracy [22]. Since 

(6) can be transformed into a linear least square parameter 

estimation problem, we propose here the LSIC algorithm for 

solving (6) [28]–[29]. The algorithm is based on the least 

square estimation, which can avoid the time-consuming 

searching process of GA, accordingly improve the velocity of 

convergence. The uniqueness and stability of the parameters 

can be ensured by additional inequality constraints, which 

make LSIC more accurate than GA searching. The functional 

model for LSIC can be expressed as: 

Model: 

Constraint: 

AX v

CX W

 = +



                            (7) 

where  represents the interferometric phase observations in 

(6). A is the coefficient matrix; X represents the unknown 

parameters; v represents the random error vector; C is the 

coefficient matrix of the unknown vectors; and W is the 

constant vector. Therefore, the fitness function here can be 

written as: 

min ( ) ( )

Constraint: 

Tf AX P AX

CX W

  = − −



                (8) 

where P is the weight matrix, considered as the identical 

matrix here; According to the previous consulting and 

investigation, the following inequality constraints can be 

constructed: 
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where 1W , 2W  and 3W are the corresponding boundary values 

for D , xC  and iH , respectively. Among them, D  is within 

the range of [0, 1.87] × 10-9 m2/s, xC  within [0, 48.8] 

g/100gH2O, and iH  within [-20, 20]m [30]–[32]. Based on 

(8) and (9), the optimized unknown parameters can be 

generated iteratively. 

D. Quantitative Brine Composition Prediction 

According to the principle of Water-Solution Kinetic, the 

brine composition can be expressed as [23]: 

21

4
y sT FHGE HGEd L HGEd= = +                 (10) 

where yT is the brine composition of the salt mining area; H is 

the thickness of the mining layer; G  and E are the weight and 

the average grade of the ore, respectively, which can be 

considered as known parameters; F is the total dissolution 

area during the development of the dissolution cavity; d is the 

diameter of the dissolution channel, which is treated as an 

unknown parameter here. As shown in Fig. 1(a) and (b), the 

shape of the dissolution cavity is approximately regarded as a 

long slot with a rectangular column in the middle and semi-

cylindrical ends. The diagrammatic sketch of cavern and 

surface subsidence induced by salt mining activities is shown 

in Fig. 1(b) and (c). 

 
Fig. 1. Diagrammatic sketch of cavern and surface subsidence induced by salt 

mining activities. (a) Top view of the dissolution cavities. (b) Side profile of 

the dissolution and diffusion processes of salts in the cavern. (c) 3D view of 

the surface subsidence. 

When ignoring the horizontal movement, the total 

dissolution area can be expressed as 
2 4 sF d L d= +  (where

sL is the distance between the well groups, which is
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determined in the design materials of the mining companies). 

The brine composition   for the area can be expressed as: 

yT Q g=                                    (11) 

where g represents the average content of the primary brine 

composition. Substituting (11) into (10), it can be derived: 

2

0.5

s s

Qg
L L

HGE
d





− + +

=                           (12) 

where sL , H , G , E , and g can be determined by 

investigating the geological structure of the study area [33]–

[35]. According to (1), the total amount of brine Q at time t can 

be written as: 

( ) 0

1

k

sol

i

Q S t F
=

=                             (13) 

where k  is the total number of pixels covering the image, 

( )solS t is corresponding vertical subsidence of the i -th high 

coherence point, which can be predicted following (3). 

Substituting (13) into (12), the diameter d can be estimated, 

and then the corresponding quantitative brine composition yT

at time t  can be predicted following (10). 

E. Flow chart and Process Steps 

 
Fig. 2. Flow chart of quantitative prediction for both deformations and brine 

extraction based on WSK. 

Fig. 2 shows the process flow of quantitative prediction for 

both time series deformations and quantitative brine extraction 

based on the WSK model. The specific steps are as follows: (1) 

Differential interferometric processing and identification of 

high-coherence points based on the double-threshold methods; 

(2) Time series InSAR modelling based on WSK; (3) WSK 

parameters estimation based on InSAR phases by the LSIC 

algorithm; (4) Forward dynamic subsidence prediction after 

the spans of SAR acquisitions; (5) Time series modelling 

between the subsidence and the extracted brine composition, 

and quantitative prediction for brine composition.  

III. EXPERIMENTS AND RESULTS 

A. Simulated Experiment 

A simulated experiment was designed in order to verify the 

feasibility and reliability of the proposed method. The space 

parameters of the Sentinel-1 A SAR images have been used 

for the simulation of the satellite parameters. The geological 

parameters were set as  240.8g /100gH O,  3 mGP = . The 

initial intervals for the magnitude of the unknown parameters 

were introduced in Section Ⅱ-C, and the parameters D , xC

and iH were simulated by 2-D Gaussian function, seasonal 

function and Gaussian random simulator, respectively. The 

real subsidence field can be generated according to (3), which 

can be used to evaluate the accuracy of the estimated 

subsidence. Totally, 500 pixels are extracted from the field for 

quantitative comparison. The interferometric phases were 

simulated according to (6). Random noise levels within 

0~0.65 rad were added respectively, the random noise can be 

expressed as (0.65)* (60,60)Noi sqrt rand= , where Noi

represents the noise; (0.65)sqrt represents the variance of 

0.65rad; (60,60)rand  is total simulated size of the phase 

function by random noise function [32] – [33]. The WSK 

parameters can be estimated by LSIC, which can be used to 

generate the predicted time series subsidence field. In order to 

quantitatively evaluate the accuracy of the WSK parameters, 

the relative error for each parameter was calculated under the 

noise levels of 0.05 rad, 0.25 rad, 0.45 rad and 0.65 rad, 

respectively (as shown in Table Ⅰ). The smaller the relative 

errors are, the higher is the accuracy of the estimates of the 

parameters. From the Table Ⅰ, the errors of the parameter 

gradually increase with the noise level. Even with a high noise 

level of 0.65rad, the relative errors of the three unknown 

parameters are lower than 6.0% (the highest relative error is 

5.8% for D ), which indicates the feasibility and reliability of 

LSIC algorithm. 
TABLE I 

RELATIVE ERRORS OF PARAMETERS UNDER DIFFERENT NOISE LEVELS 

Parameters 
Noise level 

0.05 rad 0.25 rad 0.45 rad 0.65 rad 

D  0.4% 2.2% 4.1% 5.8% 

xC  0.3% 2.0% 3.6% 4.2% 

iH  0.2% 1.6% 2.7% 3.2% 

Fig.3 shows the comparison between the predicted 

deformation by WSK parameters and the simulated real 

deformation at the 500 extracted pixels with a high noise level 
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of 0.65 rad. Obviously, the predicted deformation results 

maintain good consistency with the real subsidence even with 

a high noise level of 0.65 rad. According to the quantitative 

statistics of Fig. 3(a) to 3(h), the number of points with the 

deviations within [-3, 3] mm accounts for 100%, 100%, 93.4%, 

84%, 78.6%, 75.4%, 72%, and 71%, respectively, and the 

maximum deviations are 0.4 mm, 2.9 mm, 5.9 mm, 8.4 mm, 

9.8 mm, 11.8 mm, 13.1 mm, and 14.2 mm, respectively. The 

red broken line in Fig. 3(h) represents the deviations of all the 

pixels at 792 days, with the maximum deviation as 14.2 mm, 

which only accounts for 6.3% of the maximum deformation 

225 mm. The RMSE between the predicted and the real 

subsidence was estimated as ±5.4 mm, which proves the 

theoretical feasibility of the WSK model. 

 

Fig. 3. Comparison between the predicted subsidence and the simulated real settlement. (a) 24 days. (b) 120 days. (c) 288 days. (d) 432 days. (e) 528 days. (f) 

612 days. (g) 708 days. (h) 792 days. 

B. Real Data Experiment 

1) Study Area and SAR Data Preprocessing: Two typical 

salt mines, XR in Hunan Province and HR in Jiangsu Province, 

China, were selected as the study areas (as shown in Fig. 4). 

The red rectangles in Fig. 4(a) represent the spatial coverage 

of the Sentinel-1A (ascending) data covering the two study 

areas, and the purple rectangles are the two interested salt 

mines. Both the XR and HR areas are extremely rich in salt 

resources, not only in terms of reserves, but also with high salt 

content and relatively concentrated distribution [34]–[35]. 

 
Fig. 4. Map of the study area. (a) Coverage of SAR images. (b) Map of China. 

(c) Satellite images of the study area.  

The XR located in the Liyang Plain, the inclination angle is 

3~5°, the burial depth is 200~300 m, and the thickness of the 

mining layer is 3 m [33]. The HR area located in the Huaian 

Salt Basin and Hongze Salt Basin, with an inclination angle of 

5°~9°, a burial depth of 600~800 m, and a mining layer 

thickness of 5 m [34]. The continuous exploitation of mineral 

resources has caused accumulated changes in the structure of 

underground rock formations, which induces potential damage 

to the surrounding environment and infrastructures. According 

to our in-situ investigation, brine pumping and water 

salinization have caused ground cracks and brine leakage 

salinization in some areas (as shown in Fig. 5). 

 
Fig. 5. Geological and environmental damages in salt mining areas. (a) Brine 

leakage. (b) Crack on the wall. (c) Crack on the ground of road. (d) 

Salinization. 
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A total of 32 and 35 scenes of Sentinel-1A SAR images 

covering the XR area from June 15, 2015 to March 28, 2017 

and the HR area from March 28, 2017 to March 28, 2019, 

respectively, were collected. The coherence maps, intensity 

maps and unwrapped interferometric pairs with small spatial-

temporal baselines were generated via GAMMA, and the high 

coherence point identification, time series InSAR deformation 

modelling, WSK parameter estimation, time series 

deformation prediction and quantitative brine prediction were 

all implemented via Matlab software. The terrain phase was 

filtered using the Shuttle Radar Topography Mission Digital 

Elevation Model (SRTM DEM) data provided by NASA with 

a resolution of 30 m [36], and the orbital error was removed 

by polynomial fitting model. Minimum Cost Flow (MCF) was 

used to carry out the phase unwrapping processing [37], and 

the atmospheric phase delay was suppressed by Gacos 

(http://ceg-research.ncl.ac.uk/v2/gacos/) [38].  

2) WSK parameter estimation by LSIC: According to the in-

situ investigation, the geological parameters were set as GP =  

[48.8 g/100gH2O, 3 m] in XR and GP =  [48.8 g/100gH2O, 5 

m] in HR, respectively. The first 24 images of the XR (from 

June 15, 2015 to January 11, 2017) and 29 images of the HR 

(from March 28, 2017 to March 6, 2019) were used to 

estimate the WSK parameters  , xWP D C= , following Step (3) 

introduced in Section Ⅱ-E. The WSK parameters estimated by 

the LSIC algorithm in XR are shown in Fig. 6, where the 

values of D  are shown in Fig. 6(a), and the values of 

( s xC C− ) in (6) are shown in Fig. 6(b). D  is within 

[0.78219720, 0.78219880], it can be found interestingly that 

the values D  for the pixels in XR contain several red funnels 

but are not separately distributed. Each funnel is with dark red 

in the center and progressively lighter from the center 

outwards. The funnels are interconnected. This phenomenon is 

consistent with the spatial distribution characteristic of the 

deformations which will be discussed in Section V. The 

solubility ( s xC C− ) of the funnel at different temporal points 

are shown as Fig.6 (b), which shows similar seasonal 

variations with time series variations of the deformations. 

According to our estimated results of those two parameters, 

both the values of D  and ( s xC C− ) are minor, but the 

corresponding deformation is high. This phenomenon will be 

discussed in the sensitivity analysis part in Section V-B.  

 

Fig. 6. Estimated WSK parameters. (a) Estimated D for XR. (b) Estimated (
s xC C− ) for XR. 

3) Deformation Prediction Based on WSK: Fig. 7 shows the 

estimated and predicted deformations respectively. The last 8 

images of the XR (from February 16, 2017 to August 15, 2017) 

and 6 images of the HR (March 30, 2019 to July 28, 2019) 

were used for deformation prediction following Step (5) in 

Section Ⅱ-E, respectively. Spatially, we can see that the 

boundary of the settlement funnel can be clearly defined, with 

a deeper center and a shallower periphery. The center of the 

funnel started subsiding on July 3, 2016 and gradually spread 

outwards, changing from light green to dark yellow. Until 

January 11, 2017, a clear red funnel with stratification formed. 

From August 15, 2017, the central area became dark red and 

the settlement funnel was interconnected. Temporally, from 

July 9, 2015 to February 10, 2016, an overall slow subsidence 

trend played a major role, with color varying from blue to 

light green, and the maximum subsidence of 59 mm. From 

March 5, 2016 to January 11, 2017, with the further progress 

of mining, the study area obviously gradually intensified from 

light green to dark red. On January 11, 2017, the maximum 

subsidence was 209 mm. The maximum predicted subsidence 

was up to 298 mm on July 28, 2019. 

Similarly, for HR, as shown in Fig. 8, the boundary between 

the settlement funnel and the outside of the mine is more 

pronounced. Dissimilarly, a spatial integral subsiding 

dominated HR area and no obvious funnel can be extracted. In 

the time series, the maximum accumulated settlement was 123 

mm at March 6, 2019 and the maximum predicted subsidence 

was up to 156 mm.  
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Fig. 7. Time series monitored and predicted deformations of XR (reference date: June 15, 2015). 
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Fig. 8. Time series monitored and predicted deformations of HR (reference date: March 28, 2017).
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4) Quantitative Brine Extraction Prediction Based on WSK: 

As introduced in Section Ⅱ-D, the quantitative extracted brine 

can be estimated following Step 5 based on the time series 

deformation. The parameters sL , G , E , and g  were set as 

56.4 m, 2.15 t/m3, 0.52 t/m3, and 80%, respectively, and H

were set as 3 m in XR and 5 m in HR, respectively [22]. The 

dissolution area 0F  was set as 66.47 m2, which follows both 

the multi-look ratio and spatial resolution of Sentinel-1A 

satellite image. In simple terms, ideally about 15045 (i. e. 

1000 m/9.022 m×1000 m/7.368 m≈15045) pixels along the 

LOS direction can generate an area of 1 km2 with a multi-look 

ratio of 5:1. F  is the accumulated area of 0F  over all the 

subsiding pixels [15].  

According to the in-situ geological investigation of the two 

areas, the method of two-well or multi-well connection 

extraction had been adopted for water-soluble extraction. 

According to our results, single settlement funnel was 

identified around each well. As introduced in Section II-D, the 

primary brine composition can be estimated according to the 

cavity diameters d , in order to explore the disciplines of the 

cavity diameters variations for each settlement funnel, the two 

areas were divided into six sub-funnels around each water-

soluble sub-well (as shown in Fig. 9). The estimated values of 

the cavity diameters and the quantitative brine compositions 

for XR (from June 15, 2015 to August 15, 2017) and HR 

(from March 28, 2017 to July 28, 2019) are shown in Fig. 10 

and Fig. 11, respectively.  

It can be indicated from Fig. 10 and Fig. 11 that with the 

processing of water-soluble extraction, areas of the dissolution 

cavity funnel became larger, and more brine composition were 

extracted. The estimated values of the cavity diameters 

gradually increased with the continuous mining active 

exploitation of brine. The final predicted brine compositions 

were approximately 0.406 for XR and 1.477 million tons per 

year for HR, respectively. By consulting historical materials of 

the mining companies, the predicted results by our method 

shows good consistency with the actual brine compositions 

recorded in the mining companies, which indicates that the 

proposed InSAR WSK model can provide a practical and 

reliable Remote Sensing method for quantitative brine 

quantity extraction estimation. 

 

 
 

Fig. 9. Schematic of the distribution of sub-settlement funnels. (a) Settlement results obtained by WSK in XR on August 15, 2017. (b) Distribution of sub-

settlement funnels in XR. (c) Settlement results obtained by WSK in HR on July 14, 2017. (b) Distribution of sub-settlement funnels in HR. 
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Fig. 10. Brine compositions for six settlement funnels in XR.  

Fig. 11. Brine compositions for six settlement funnels in HR. 

 

Ⅳ. ACCURACY EVALUATION 

A. Accuracy Evaluation for WSK Deformation Modelling 

According to the literature [39], the residual phase can be 

used to verify deformation modelling accuracy in InSAR time 

series deformation modelling. Empirically, a lower residual 

phase in the interferometric pairs indicates a higher modelling 

accuracy. The average residual phases of each interferogram 

obtained by WSK are compared with that of traditional SBAS-

InSAR, shown as Fig. 12. Obviously, we can see that the 

overall amplitude of WSK-generated residual phases is lower 

than that of SBAS-InSAR, indicating that WSK is more 

suitable for water-soluble mining-induced ground subsidence. 

For XR, the Standard Deviation (STD) of the residual phases 

obtained by WSK was estimated as ± 0.32 rad, with an 

improvement of 45.7% compared to SBAS-InSAR. Similarly, 
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for HR, the STD of the residual phases was ± 0.34 rad, with an 

improvement of 48.8%. 

 

Fig. 12. Residual phase comparison. (a) The XR area. (b) The HR area. 

In addition, another accuracy index, namely Akaike's 

Information Criterion (AIC) index from information theory, is 

introduced here to evaluate the modelling accuracy. The AIC 

index can be estimated following the equation of 

ln( / ) 2( 1)AIC Ni RSS Ni Ku= + + . Here Ni represents the 

number of high coherence points; RSS  represents the sum of 

squares of the residual phases; Ku is the number of unknown 

parameters of the model). Based on the estimated AIC index 

value, the accuracy of the model can be calculated following:

0.5 0.5/1AIC AICPAIC e e−  − = + , where AIC is the difference 

between the AIC indices of the two different comparative 

models. The more accurate models are those with a lower AIC. 

Here the estimated AIC index of WSK was 5.74, and 8.34 for 

that of SBAS-InSAR, with an improvement of 18.3%. 

Comparatively, for HR, the AIC index of WSK was estimated 

as 1.15 compared to 2.89 of SBAS, with a 29.5% 

improvement. The comparative results show another potent 

proof for the better modelling accuracy of WSK. 

B. Accuracy Evaluation for WSK Deformation Monitoring 

In order to verify the external accuracy of the monitored 

deformation in salt mining areas, the historical levelling 

measurement data from August 2, 2015 to December 18, 2016 

were collected in XR. The locations of the levelling points 

(CP1, CP2, …, CP6) are shown in Fig. 9(a), with the reference 

point marked as R in the northeast corner. Fig. 13 shows the 

comparison of WSK-generated deformation time series and 

the levelling measurements, compared with that of SBAS-

generated deformations. The RMSE of the WSK results was 

estimated as ±5.4 mm, whereas that of SBAS-InSAR was ±8.5 

mm, with an improvement of 44.6%. The most serious 

subsidence point was located at CP3 with the maximum 

subsidence of 138 mm, the RMSE of WSK only accounts for 

3.9% of the maximum deformation, which indicates the 

promising accuracy of WSK for time series deformation 

monitoring for ground subsidence induced by water-soluble 

mining activities. 

Fig. 13. Comparison with levelling measurements in XR (reference date: August 2, 2015). 
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C. Accuracy Evaluation for WSK Deformation Prediction 

As described in Section Ⅲ-B, the remaining 8 images of the 

XR (from February 16, 2017 to August 15, 2017) and the 6 

images of the HR (from March 30, 2019 to July 28, 2019) 

were retained to predict the deformation after the span of the 

SAR acquisition images. To compensate for the unavailability 

of simultaneous levelling periods, the SBAS-derived results 

were used for comparison with the WSK prediction results. 

The comparison with the WSK prediction results was carried 

out using the traditional Static-PIM and the Coordinate Time 

function (CT-PIM) as introduced in [20], [33], [40]. Four 

periods of deformation prediction for XR (from June 15, 2015 

to May 16, 2017, April 5, 2017, June 28, 2017, and August 15, 

2017, respectively) and HR (from March 28, 2017 to March 

30, 2019, May 17, 2019, June 10, 2019, and July 2019, 

respectively) were extracted for the quantitative comparative 

analysis. The deviations and probability distributions between 

the deformation predictions generated by WSK, CT-PIM and 

Static-PIM were shown as Fig. 14 and Fig. 15, respectively. 

Fig. 14. Deformation deviations between different deformation prediction models and SBAS-InSAR in XR (reference date: June 15, 2015). 

It can be seen from Fig. 14 and Fig. 15 that the WSK has 

better consistency with the SBAS-InSAR monitored time 

series. In order to show the quantitative accuracy comparisons, 

three accuracy indicators: STD, Maximum error and Error 

range were estimated, which are shown as Table Ⅱ and Table 

Ⅲ, respectively. Obviously, both the three indicators for WSK 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2023.3348210

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



13 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

are lower than those for CT-PIM and Static-PIM. The total 

STD of WSK was estimated as ±11.3 mm, with an 

improvement of 48.3% compared to that of Static-PIM; ±7.2 

mm for HR, with an improvement of 54.5%. This further 

proves that the WSK has better accuracy in predicting the 

deformation of salt mining areas.  
TABLE Ⅱ 

ACCURACY INDICATORS FOR WSK DEFORMATION PREDICTION IN XR. 

Accuracy 

indicators 
WSK CT-PIM Static-PIM 

STD (mm) ±11.3 ±12.9 ±18.8 

Maximum error 

(mm) 
19.2 24.6 39.2 

Error range (mm) [−20, 20] [−25, 25] [−40, 40] 

TABLE Ⅲ 

ACCURACY INDICATORS FOR WSK DEFORMATION PREDICTION IN HR 

Accuracy 

indicators 
WSK CT-PIM Static-PIM 

STD (mm) ±7.2 ±8.4 ±12.6 

Maximum error 

(mm) 
17.2 19.6 28.6 

Error range (mm) [−20, 20] [−20, 20] [−30, 30] 

Fig. 15. Deformation deviations between different deformation prediction models and SBAS-InSAR in HR (reference date: March 28, 2017). 
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Ⅴ. DISCUSSIONS 

A. Spatio-temporal Characteristics for predicted Subsidence 

The deformation caused by water-solution is significant in 

terms of spatial variation: from the Fig. 7 and Fig. 8 we can 

see the subsidence sequences shows significant subsiding 

characteristics for both the two test areas. For XH, each 

settlement funnel was gradually diffusing from the center to 

the surrounding area, which perfectly illustrates the substance 

diffusion and mass transfer law during the dissolution of salt 

substances. In order to show the boundary variations of each 

sub-settlement funnel more clearly, the boundaries of the 

settlement funnels are shown in Fig. 16. The accumulated 

areas of each sub-settlement funnel gradually increased 

temporally.

Fig. 16. Dynamical changes of the sub-settlement funnels in XR (reference date: June 15, 2015). 

In order to clearly show the dissolution-diffusion 

characteristics, the deformation results of the extracted A5 

settlement funnel were enlarged and shown as Fig. 16. The 

boundaries of the settlement funnel with subsidence greater 

than 120 mm are highlighted with red lines. By calculating the 

area of the pixel points, the settlement area greater than 120 

mm was accumulated up to 664.7 m2 on July 3, 2016, and 

increased to 5982.3 m2 on August 15, 2017. The six sub-

funnels are not separately distributed. Each funnel is with dark 

red in the center and progressively lighter from the center 

outwards. The funnels were becoming interconnected 

temporally during the spans. AA' profile in the April 22, 2016 

image in Fig.16 was extracted for a profile analysis and shown 

as Fig. 17. As it shows, along AA’ two kinds of subsidence 

can be derived spatially, stable area (from the starting to the 

8th pixel) and solution area (from the 9th to the 30th pixel). 

Besides, it can also be found that the settlement funnel has 

multiple peaks of subsidence, respectively, with the maximum 

subsidence of 256 mm, 204 mm, and 109 mm, respectively. 

The multi-peak phenomenon is suggested related to the multi 

drilling wells distributed in A5. 

 
Fig. 17. Profile analysis based on WSK deformation in XR. 

 
Fig. 18. Dynamical changes of the sub-settlement funnels in HR (reference 

date: March 28, 2017). 
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Comparatively, the dissolution characteristics are not 

obvious for HR as shown in Fig. 18. Through the existed 

geological research [34], the salt mines located in HR have 

more than 40 years’ mining history [35]. The super long-term 

mining activities caused the settlement funnels interconnected, 

with the salt material mainly dissolved along the vertical 

direction and horizontal dissolution rate close to zero. 

Consequently, a tendency of overall land subsiding 

characteristic dominated in HR. 

To further analyze the temporal characteristics of the 

deformation results, five feature points were extracted in XR 

(F1-F5, as shown in Fig. 7) and HR (G1-G5, as shown in Fig. 

8), respectively (as shown in Fig. 19 and Fig. 20). For the two 

groups, similar temporal evolution trend: total subsiding with 

seasonal fluctuations can be found from Fig. 19 and Fig. 20. 

The maximum subsidence was determined at F5 in XR and G5 

in HR, respectively, with a maximum value of 296 mm and 

147 mm, respectively.  

Fig. 19. Time series settlement of feature points in XR (reference date: June 15, 2015). 

Fig. 20. Time series settlement of feature points in HR (reference date: March 28, 2017). 
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TABLE Ⅳ 

SOLUBILITY OF WATER-SOLUTION GLAUBER'S SALT AT DIFFERENT TEMPERATURES (G/100G H2O) 

Mineral 
Temperature (℃) 

0 10 20 30 40 50 60 70 80 90 100 

Thenardite – – – 50.4 48.8 46.7 45.3 44.1 43.7 42.9 42.5 

Glauber's salt 5.0 9.0 19.4 48.8 – – – – – – – 

Glauberite 0.18 0.19 0.20 0.21 0.21 – 0.21 0.20 0.20 – 0.16 

An interesting phenomenon of temporal seasonal variation 

has been revealed by our results. As shown in Fig 19 and Fig 

20, rapid subsidence trends occurred at all the five feature 

points during the warm seasons (15 June 2015 to 13 October 

2015 in Stage A, 29 March 2016 to 19 October 2016 in Stage 

B and March 12, 2017 to August 15, 2017 in Stage C for XR) 

and (28 March 2017 to 6 October 2017 in Stage A, 23 March 

2018 to 1 October 2018 in Stage B, and March 6, 2019 to July 

28, 2019 in Stage C for HR). In contrast, during the cold 

season in XR (October 13, 2015 to March 29, 2016 in Stage A, 

October 19, 2016 to March 12, 2017 in Stage B) and HR 

(October 6, 2017 to March 23, 2018 in Stage A, and October 1, 

2018 to March 6, 2019 in Stage B), a relatively slow 

developing trend dominated these points. The main reason for 

this seasonal variation is that the dissolution rate of Glauber's 

salt is directly affected by the solvent temperature (as shown 

in Table Ⅳ) [41]. In the summer, the high temperature 

increases the solubility of the solvent, which accelerates the 

dissolution of Glauber's salt. On the contrary, in winter, the 

temperature of the solvent decreases due to the decrease in 

external temperature, which inhibits the dissolution of the 

Glauber's salt. 

Another interesting phenomenon we discovered is that both 

XR and HR showed small jumps at the same time periods 

(marked black arrows in Fig. 19 and Fig. 20). This was not 

only related to the decrease in solubility caused by the above 

alternating winter and summer temperature, but also to the 

increase in precipitation [2], [42]. According to the collected 

precipitation and temperature data, the precipitation increased 

for both the four periods in both the two areas (as the four 

black narrows shown in Fig.19 and Fig.20. The recharge of 

external precipitation has exacerbated the uplift of surface 

deformation in the mining areas during those periods. 

B. Sensitivity Analysis for WSK Parameters 

It is important to analyze the sensitivity of the WSK 

parameters in order to understand how they affect the 

deformations and quantitative brine compositions. Suppose

( )SeS D and ( )xSeS C  as the sensitivity indices of the 

parameters D  and xC  to the subsidence solS ; ( )SeT D and

( )xSeT C to the brine composition yT , respectively. The Sobol 

index sensitivity analysis was adopted here.  

Sobol indices are important sensitivity evaluation indices, 

which describe the global sensitivity of each parameter to the 

objective functions [43]. Firstly, the first-order indices K  

and total-effect indices 
TotK  of the WSK parameters are 

calculated using variance analysis. Here K  is the partial 

variance, indicating the main contribution of a sample of the 

certain parameter to the output variances, where  is the 

certain parameter. 
TotK is the total variance, which describes 

the percentage of a group of samples for a certain parameter 

on the output variances; The perturbation analysis is then 

performed to quantitatively analyze the influences of each 

WSK parameter on the corresponding predicted deformations 

and brine compositions. The estimated indices for the two 

WSK parameters D  and xC  are shown in Fig. 21, with the 

ranges of different levels of importance listed in Table Ⅴ [43]. 

Fig. 21 shows that all the parameters are beyond the “Not 

correlated” range, which means they all have impacts on the 

accuracy of both the deformations and brine compositions, 

which cannot be ignored. It can be indicated that xC  is more 

sensitive than D  in the model, with both values of K  and 

TotK  located in the range of [0.8, 1], accordingly treated as 

“Very important” parameter. This indicates that xC  shows 

high sensitivity on both the predicted subsidence and the 

extracted brine. A minor disturbance for xC may cause 

significant errors on the predicted results. Comparatively, D

shows relatively less sensitivity, with both values of K  and 

TotK  located within the range of “Important”, except for K

of the predicted deformations estimated as 0.48. Although it 

locates within the range of “un important”, but still very close 

to the upper limit “0.5”. Consequently, both the two WSK 

parameters we introduced into the InSAR model are highly 

sensitive and important, and accurate estimation is crucial for 

the forward prediction for both the deformations and the 

quantitative brine in salt mining area. 

 
Fig. 21. Sensitivity analysis results of WSK parameters. 
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TABLE Ⅴ 

CORRELATION OF DIFFERENT SENSITIVITY INDICES RANGES. 

Ranges of Sensitivity Indices Correlation Extent 

0.8＜ K
＜ TotK

≤ 1 Very important 

0.5＜ K
＜ TotK

≤ 0.8 Important 

0.3＜ K
＜ TotK

≤ 0.5 Unimportant 

0＜ K
＜ TotK

≤ 0.3 Not correlated 

Ⅵ. CONCLUSIONS 

A novel InSAR deformation model based on Water-

Solution Kinetic, namely WSK, was proposed and 

successfully applied in the forward prediction for both the 

time series deformations and quantitative extracted brine 

composition. It considers the principles of substance diffusion 

and mass transfer of salt, thus can be used directly for the 

quantitative prediction of both the deformations and extracted 

brine. Least Squares with Inequality Constraints (LSIC) is 

introduced to solve the unknown WSK parameters. Both 

simulated and real-data experiments were carried out to test 

the feasibility and reliability of the proposed method. The 

simulation showed that the RMSE between the predicted and 

the real subsidence was estimated as ±5.4 mm. In the real-data 

experiments, the maximum predicted deformation of the XR 

area and the HR area was 296 mm and 155 mm, respectively. 

The external accuracy for the deformation prediction was 

estimated as ±11.3 mm and ±7.2 mm, respectively. The 

comparative experiments with the traditional SBAS-InSAR 

and the Static-PIM algorithm showed that the accuracy of the 

WSK-predicted deformations was improved by 48.3% in XR 

and 54.5% in HR, respectively. 

It can be concluded that the new approach has the following 

advantages: (1) WSK can reasonably reveal the non-linear 

characteristics of the time series deformations induced by 

water-soluble extraction in the salt mining areas: Spatially, 

with the single funnel but not separately distributed subsiding 

funnels around each water-soluble well, and with dark red in 

the center and progressively lighter from the center outwards. 

While temporally, the funnels were becoming interconnected 

during the spans and accompanied by significant seasonal 

fluctuations; (2) The WSK parameters can be directly 

estimated based on the InSAR phase observations, which can 

avoid the secondary error propagation of traditional PIM from 

InSAR inaccurate deformation observations to the subsequent 

predicted results; (3) LSIC algorithm, based on least squares 

estimation and with additional inequality constraints to ensure 

the uniqueness and stability, can avoid the time-consuming 

searching process of GA and significantly improve the 

accuracy and efficiency of parameter estimation; (4) WSK can 

be directly applied to the prediction of both the deformations 

and extracted brine composition,  which provides a practical 

and reliable Remote Sensing method for quantitative brine 

quantity extraction estimation, and broadens the application of 

the InSAR technology. 
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