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Abstract—Semantic segmentation of remote sensing images
(SSRSI), which aims to assign a category to each pixel in remote
sensing images, plays a vital role in a broad range of applications,
such as environmental monitoring, urban planning, and land
resource utilization. Recently, with the successful application
of deep learning in remote sensing, a substantial amount of
work has been aimed at developing SSRSI methods using deep
learning models. In this survey, we provide a comprehensive
review of SSRSI. Firstly, we review the current mainstream
semantic segmentation models based on deep learning. Next, we
analyze the main challenges faced by SSRSI and comprehensively
summarize the current research status of deep learning-based
SSRSI, especially some new directions in SSRSI are outlined,
including semi-supervised and weakly-supervised SSRSI, unsu-
pervised domain adaption (UDA) in SSRSI, multi-modal data
fusion-based SSRSI, and pretrained models for SSRSI. Then, we
examine the most widely used datasets and metrics and review
the quantitative results and experimental performance of some
representative methods of SSRSI. At last, we discuss promising
future research directions in this area.

Index Terms—Semantic segmentation, Remote sensing images,
Deep learning, Semi-supervised, Weakly-supervised, Unsuper-
vised domain adaptation, Multi-modal fusion, Pretrained models.

I. INTRODUCTION

SEMANTIC image segmentation is essential to many visual
understanding systems. It involves labeling a category for

each pixel in an image. Semantic segmentation of remote
sensing images (SSRSI) achieves the pixel-level classification
of remote sensing images by applying semantic segmentation
technology to remote sensing and has played a vital role in
many applications, e.g., environmental monitoring [1], [2],
urban planning [3], [4], and land resource utilization [5], [6].

In the past decade, deep learning has made remarkable
progress in remote sensing [7], [8], [9] and has demonstrated
much superior performance in many areas (including scene
classification [10], objection detection [11], change detection
[12], and image fusion [13]). With the rapid development of
semantic segmentation technology in computer vision [14],
[15], generic deep learning-based models, including FCN [16]
and DeepLab [17], [18], have been widely used in SSRSI. At
the same time, targeted at the unique issues of remote sensing
images, such as complex image backgrounds, large image
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sizes, and multi-modal characteristics, a large number of deep
learning-based remote sensing image semantic segmentation
technologies have emerged [19], [20], [21], [22].

Reviews of deep learning methods for SSRSI have been
conducted in the past years [21], [22]. Kotaridis et al. [21]
conducted a meta-analysis to summarize recent image seg-
mentation studies regarding the algorithms, the software, and
the data source. However, this study just performed the sta-
tistical analysis of the latest progress and did not involve the
technical details of deep learning-based SSRSI. Yuan et al.
[22] reviewed recent development in deep neural networks and
their applications to SSRSI, but they mainly focused on CNN-
based models and did not touch on other advanced methods
(e.g., Transformer-based models [23], universal segmentation
models [24]) and some important topics (e.g., unsupervised
domain adaption (UDA) semantic segmentation).

This survey aims to provide a comprehensive overview
and an insightful analysis of models and algorithms for deep
learning-based SSRSI. Unlike previous reviews, this survey
summarizes some emerging techniques, especially those de-
veloped recently, e.g., Transformer-based models, and we
thoroughly compare different techniques. In addition, we
deeply analyze the unique challenges of SSRSI, which are
different from natural image segmentation. Finally, this paper
reviews some emerging directions, including UDA semantic
segmentation, multi-modal data fusion, and pretrained models
for SSRSI, which are not involved in previous reviews.

The remainder of this survey is organized as follows: Sec-
tion II provides an overview of popular deep neural network
architectures of image semantic segmentation. Section III pro-
vides a comprehensive overview of the most significant state-
of-the-art deep learning-based semantic segmentation models
of remote sensing images and some emerging themes. Section
IV introduces the commonly used loss functions and metrics
of SSRSI. Section V reviews some popular datasets. Section
VI reports some semantic segmentation models’ quantitative
results and experimental performance. Section VII discusses
the main challenges and future directions of SSRIS. Finally,
Section VIII presents our conclusions.

II. DEEP LEARNING ARCHITECTURES IN SEMANTIC
SEGMENTATION

This section reviews the most popular deep learning-based
semantic segmentation methods widely used in natural and
remote sensing images. We first introduce a formal definition
of deep learning-based semantic segmentation models. Given
the training set Xi ∈ RH×W×C , and the label category Yi ∈
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Large convolution kernels: GCN [30], RepLKNet [31], SLaK [32], etc.

RNN-based models: ReSeg [34], etc.

Global pooling: ParseNet [33], etc.

Self-attention: SETR [37], Segmenter [38], SegFormer [39], PVT [40], etc.

Image pyramid: Attention to scale [49], etc.

Encoder-decoder: U-Net [26], RefineNet [52], HRNet[53], etc.

Spatial pyramid pooling: PSPN [54], SegNeXt [56], etc.

Vanilla attention: DANet [61], PAN [63], etc.

RepLKNet [31], SLaK [32], ConvNeXt [69], Conv2Former [70], 

InternImage [71], ConvNeXtV2 [72], etc.

BEiT [73], MAE [74], ViT-Adapter [75], 

ViT-22B [77], DINOv2 [78], etc.

MaskFormer[81], Mask2Former [82], 

K-Net [83], OneFormer [84], etc.

SAM [24], FreeSeg [85], 

SEEM [86], SegGPT [87], etc.

Fig. 1. The taxonomy of deep learning architectures in semantic segmentation proposed in this paper and some popular deep semantic segmentation models.

RH×W×N corresponding to all pixels in the images, where
(H,W ) is the size of the image, C is the number of channels
of the image, and N is the number of categories of pixels.
The semantic segmentation task is to construct a segmentation
function f to minimize the loss between the predicted label
and the real label of each pixel of the images in the training
set.

f̂ = argmin(
∑
i

L(f (Xi) , Yi)), (1)

where L(·) is the loss function. In remote sensing image
segmentation tasks, it is usually cross-entropy loss, Dice loss,
etc. We can assign a label to each pixel in an unlabeled image
through the learned segmentation function f̂ .

In the early days, models such as FCN [16], SegNet
[25], U-Net [26], and DeepLab [17], [18], [27], [28] focused
on designing a specialized semantic segmentation model to
handle semantic segmentation tasks in a specific scenario.
In recent years, some studies have shown that combining
a model learned in pretraining tasks with a segmentation
network can achieve a performance comparable to or even
higher than that of the specialized segmentation network in the
downstream semantic segmentation tasks. Recently, with the
development of big models, especially the emergence of SAM
[24], the universal segmentation models for all segmentation
tasks (semantic, instance, panoptic) have made rapid progress,
and the research on image segmentation has entered a new
stage of development. Fig. 1 shows the taxonomy of deep
learning architectures in semantic segmentation proposed in
this paper.

A. Specialized architectures for semantic segmentation

Early deep semantic segmentation models were mainly
designed for a single task and scenario as a per-pixel classifica-

tion task. Semantic segmentation often involves some essential
techniques.

Global context modeling. Image semantic segmentation
needs to model global context and effectively fuse the global
context and local context. The main ways to capture global
context include dilated convolution, conditional random fields
(CRFs), large convolution kernels, global pooling, Recur-
rent Neural Networks (RNNs), and self-attention mechanisms
(mainly Transformer).

Dilated convolution can effectively enlarge the receptive
fields without increasing parameters, and has been widely
integrated into many semantic segmentation models to capture
global context. Representative works include DeepLab family
[17], [18], [27], [28], and DenseASPP [29]. But it also brings
a grid effect. The second category is utilizing CRFs as a
post-processing technique to model the long-range dependence
between image pixels, and the most representative work in-
cludes DeepLab [17] and DeepLabv2 [18]. These methods can
capture local and long-range dependencies within an image to
refine the predictions. But they have higher complexity than
end-to-end semantic segmentation methods. The third category
is to use large convolution kernels to improve the receptive
field of the model, such as GCN [30], RepLKNet [31], and
SLaK [32]. However, large convolution kernels lead to a large
amount of computation. The global pooling captures the global
receptive field by performing a pooling operation on each
feature map to get a scene-level context vector [33]. However,
detailed information related to object boundaries is missing
due to the pooling operations. RNN can model the long-term
and short-term dependence between pixels and help improve
the prediction of the segmentation map [34], [35]. However,
the inherent nature of sequential processing makes RNN-based
methods difficult to be processed in parallel.

Vision Transformer Models (ViTs) [36] utilize a self-
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attention mechanism to model the global context by calcu-
lating the correlations between two pixels, and has achieved
the best performance in semantic segmentation due to its
high parallel processing efficiency and strong representation
capability. SETR [37] is the first transformer-based model
for semantic segmentation. It utilized a pure Transformer as
the encoder to model the global dependencies. Segmenter
[38] used a mask transformer as the decoder to predict the
segmentation map. SegFormer [39] speeded up the model by
creating an MLP-based decoder with upsampling operation.
However, ViTs output single-scale low-resolution features and
have a very high computational cost on large images. Many
studies integrated the multi-scale analysis methods into ViTs to
generate multi-scale features, including Pyramid Vision Trans-
former (PVT) [40], Crossformer [41], HRViT [42], U-Netr
[43]. Several attention techniques, including shifted window
multi-head self-attention [44], spatial-reduction attention [40],
spatially separable self-attention [45], cross-shaped window
self-attention [46], neighborhood attention [47], dilated neigh-
borhood attention [48] were proposed to overcome the high
computational complexity of standard multi-head attention.
Overall, Transformers can model global dependencies, but
require a large dataset and face very high computational
overhead.

Multi-scale context modeling. Semantic segmentation
must consider high-level semantic information to improve
segmentation accuracy and utilize low-level feature informa-
tion to retain high-quality spatial details. Therefore, multi-
scale context modeling is critical to semantic segmentation.
The methods mainly include three categories: image pyramid,
encoder-decoder structure, and spatial pyramid pooling.

The first approach is the image pyramid model [49], [50],
[51], which resizes an input image into multiple scales and
then applies multiple parallel network branches to extract
features for each scale input. It also leads to high com-
putational complexity. The second approach is the encoder-
decoder structure, which integrates detailed information from
multiple scales in the encoder into the decoder through residual
connections. The most representative models include U-Net
[26], RefineNet [52], HRNet [53], etc. The third approach
is spatial pyramid pooling, which typically contains several
parallel pooling branches to generate multi-scale features.
Representative methods include DeepLabv3 [27], DeepLabv3+
[28], PSPN [54], UPerNet [55], SegNeXt [56]. However, mul-
tiple parallel branches increase the computational complexity.

Attention mechanism. To adaptively extract features
strongly related to target tasks, various attention mechanism is
also widely used in semantic segmentation, including channel
attention, spatial attention, channel & spatial attention, and
branch attention. At present, the main directions include the
combination of the attention mechanism and deep learning
models (mainly CNN) and the pure attention-based models
(mainly Transformer). We mainly introduce the former here.

Channel attention adaptively recalibrates each channel’s
weight by generating an attention mask across all channels
[57], [58]. Spatial attention uses attention masks across spatial
domains to achieve adaptive spatial region selection[59], [60].
Channel & spatial attention predict channel and spatial atten-

tion masks separately or generate a joint 3-D channel, height,
and width attention mask directly and use them to select
important features, such as DANet[61], VAN [62]. Branch
attention feeds the features at multiple scales into the attention
module to generate multi-branch attention maps to realize a
dynamic branch selection, such as Pyramid Attention Network
(PAN)[63].

The attention mechanism is still the main component of
many state-of-the-art semantic segmentation models due to
its ability to adaptively extract important feature information
based on task objectives to improve model performance.

B. Pretrained models for semantic segmentation

Pretrained models can alleviate the problem of lacking
large-scale annotation data and training resources in down-
stream tasks. The vanilla pretrained models use the networks
pretrained on a large-scale dataset as the starting point for
further refinement and perform the best performance. Recently,
with the emergence of SAM, many ultra-large-scale pretrained
models have been proposed, and they can achieve high image
segmentation performance without further finetuning.

CNN-based pretrained models. Semantic segmentation
models usually use well-designed backbone networks as en-
coders. Early research mainly used VGG [64], GoogLeNet
[65], ResNet [66], MobileNet [67] and ShuffleNet [68] as
backbone networks and used the network pretrained on Im-
ageNet as a starting point. However, due to the small scale
of these backbone networks, the effect of pretraining is not
obvious. In recent years, with the remarkable progress of large-
scale vision transformers, modernized DCNNs migrated the
advanced architecture of ViTs to DCNNs. Many improvement
methods were proposed to capture long-range dependencies
and increase the receptive field utilizing large convolution
kernels and deformable convolutions, including ConvNeXt
[69], RepLKNet [31], SLaK [32], Conv2Former [70], Intern-
Image [71], ConvNeXtV2 [72] have achieved a comparable
or superior performance than ViTs in semantic segmentation.
Therefore, ViTs have not entirely taken the role of DCNNs in
image semantic segmentation.

ViT-based pretrained models. The pretrained ViTs have
been widely used in image semantic segmentation. Most of
them are based on the ViT and Swin Transformer [44]. Bao
et al. [73] introduced a self-supervised vision representation
model named BEiT, which used masked image modeling tasks
to pretrain vision Transformers. He et al. [74] developed
masked autoencoders (MAE) for self-supervised learning, with
an encoder that operated only on the visible subset of patches
and a lightweight decoder that reconstructed the original image
from the latent representation and mask tokens. Chen et al.
[75] proposed the ViT-Adapter, which utilized a pretraining-
free adapter to introduce the image-related inductive biases
to downstream tasks. Yu et al. [76] hypothesized that the
general architecture of the transformer was more critical to the
model’s performance and proposed a PoolFormer by replacing
the attention module in transformers with a simple spatial
pooling operator. Dehghani et al. [77] presented a very large
vision transformer called ViT-22B, which included 22 billion
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parameters. Oquab et al. [78] proposed an automatic pipeline
to build a dedicated, diverse, and curated image dataset and
provided a pretrained visual model, DINOv2, trained with ViT
architectures.

However, there are still many underlying challenges for
pretrained models. First, the domain discrepancy between the
pretraining dataset and the dataset of downstream tasks has
been an obstacle to better knowledge transfer. Second, the
supervision collapse [79] happens when the pretrained model
concentrates on a constrained set of information and ignores
components crucial for downstream tasks but have no impact
on the pretraining objective. Lastly, the objective divergence
between the pretraining tasks and downstream tasks is also a
technical challenge for vanilla vision pretraining.

C. Universal architectures for all segmentation tasks

Although universal segmentation is not a new direction in
computer vision, it has only begun to develop rapidly in the
past two years with the explosion of vision foundation models.

The main objective of universal semantic segmenta-
tion achieves multiple segmentation (semantic-, instance-,
panoramic-) tasks through a unified model. MaskFormer [80],
Mask2Former [81], and K-Net [82] formulated all three tasks
to the panoramic segmentation architecture, which can be
trained on all three tasks and obtain high performance with-
out changing architecture. However, they must be trained
individually on each task to achieve the best performance.
OneFormer [83] extended the Mask2Former with a multi-task
training setting and can be trained only once and achieve
SOTA performance across all three image segmentation tasks.

Recent research [24], [84], [85] has proposed that universal
semantic segmentation can achieve open vocabulary seman-
tic segmentation with zero-shot transferability. SegGPT [86]
proposed a universal model for semantic segmentation via
in-context learning. Qin et al. [84] utilized adaptive prompt
learning to facilitate the unified model to capture task-aware
and category-sensitive concepts. SAM [24] proposed a pro-
motable segmentation model trained on 11 million images,
demonstrating strong zero-shot performance via prompt engi-
neering. SEEM [85] can perform any segmentation tasks in
open-set scenarios, and supports visual, textual, and referring
region prompts in any arbitrary combination.

With the emergence of SAM, building a universal segmenta-
tion model that can handle all segmentation tasks and enable
few-shot or zero-shot generalization in an open vocabulary
setting has become the crucial research direction.

III. DEEP LEARNING-BASED SEMANTIC SEGMENTATION IN
REMOTE SENSING IMAGES

Thanks to the explosion of deep semantic segmentation,
various image segmentation architectures have been widely
used in SSRSI and achieved superior performance. However,
in contrast to natural scenes, remote sensing images produced
from a bird’s-eye view have unique issues, such as large size,
complex backgrounds, large-scale variation, dense arrange-
ments, and low spatial resolution, these present challenging
scientific problems for SSRSI.

High intra-class variance and low inter-class variance.
Targets of the same category in remote sensing images, such
as roofs, often differ significantly in shape, size, color, and
texture, resulting in high intraclass variance. However, targets
of different categories, such as road and roof, have more
remarkable similarities, resulting in low inter-class variance.
This greatly reduces the separability of pixels.

Large-scale variation. Targets in remote sensing images
often have large-scale variation, such as airports and aircraft,
even for the same category of targets, such as ships, which
sizes range from several meters to several hundred meters.
Large-scale variation tends to cause small targets to be covered
and poses a massive challenge to semantic segmentation.

Class imbalance. The class imbalance problem is severe in
remote sensing images. For example, cities’ roads cover only
a tiny area of urban land. However, other categories, such as
impervious surfaces, low vegetation, and trees, account for
most of the land. In addition, the background in the remote
sensing images occupies most of the image area, leading to
foreground-background imbalance. Class imbalance results in
severely insufficient classification performance for categories
with a small number of pixels.

Large image size. Remote sensing images have a larger size
than natural images. For example, the patches in the ISPRS
semantic labeling data set (Potsdam) [87] have 6000 × 6000
pixels. It is almost unrealistic to input the whole image into
the model for training and testing while cutting or scaling
methods lose the objects’ global dependency information or
detailed information.

Limited labeled data. Due to the large size and complex
background of remote sensing images, labeling massive pixel-
level samples is labor-intensive and time-consuming. Some
complex scenes even required experienced professionals to
label samples. Therefore, gathering large-scale annotation data
is challenging in many cases, which dramatically affects the
performance of the deep semantic segmentation models.

Next, we will focus on reviewing five important re-
search directions in SSRSI, including supervised SSRSI,
semi-supervised and weakly-supervised semantic segmenta-
tion, UDA semantic segmentation, multi-modal data fusion,
and pretrained models for SSRSI. In supervised SSRSI, we
discussed how current research addresses the above first four
challenges. Other four research directions mainly focus on
solving the problem of limited labeled data. The paper lists
a simple correspondence (as shown in Fig.2) between five
challenging problems and five research directions. But we
must clarify that Fig.2 is just a rough division of their
correspondence relationships. There are also intersections be-
tween them. In particular, the first four challenges are often
involved in semi-supervised and weakly-supervised semantic
segmentation, UDA semantic segmentation, multi-modal data
fusion, and pretrained models for SSRSI.

A. Supervised semantic segmentation of remote sensing im-
ages

Under the framework of supervised learning, many semantic
segmentation methods have been proposed to effectively solve
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TABLE I
BRIEF SUMMARY OF SUPERVISED SEMANTIC SEGMENTATION MODELS OF REMOTE SENSING IMAGES AND KEY RELATED WORKS.

Research
Issues

Category Description Related work

High
intra-class
variance and
low inter-class
variance

Effective context
modeling and fusion

Multi-scale context modeling with encoder-decoder struc-
ture

[88], [89], [90], [91], [92], [93], [94], [95],
[96], [97], [98], [99], [100], [101], [102]

Multi-scale context modeling with spatial pyramid pooling [101], [103], [104], [105]
Global context modeling [106], [107], [88], [108], [109], [110], [111],

[102], [112], [113], [114], [115], [116], [117],
[118], [119], [120], [121]

Class-level context modeling [109], [122]

Multi-task learning

Combining with boundary detection [106], [100], [105], [118], [123], [124], [125],
[126], [127]

Combining with change detection [128]
Combining with super-resolution [129]
Combining with region pixel segmentation [108], [130]
Combining with target height prediction [131]

Large-scale
variation

Multi-scale fusion Fuse features of multiple scales [110], [111], [132], [100], [133], [134]
Foreground activation Enhance the foreground information while suppressing

background diversions
[135], [136], [99]

Multi-scale test Choose best segmentation result through multi-scale inputs [137]

Class imbalance One-stage method Re-sampling and re-weighting [100], [115], [135], [136], [138]
Two-stage method Decouple the learning of representation and classifier [121], [139], [140], [141]

Large image
size

Global-local pipeline Two branches for processing downsampled the entire image
and the cropped patches

[142], [143], [144], [145], [146], [147]

Multi-stage refinement Coarse-to-fine refinement on multi-stage predictions [148], [149]
Whole image processing Lightweight network to process full-size images [150], [151]

Deep learning-based SSRSI

Supervised SSRSI
Semi- and weakly-

supervised SSRSI
UDA for SSRSI

Multi-modal data 

fusion for SSRSI

High intra-class variance 

and low inter-class variance

Large-scale variation

Class imbalance

Large image size

Limited labeled data

challenging
scientific 

problems

Main 

research 

directions
Pretrained models 

for SSRSI

Fig. 2. Main research directions and challenging scientific problems for
SSRSI.

the challenging problems faced by SSRSI. This section clas-
sifies the current techniques according to the research issues.
Table I briefly summarizes supervised semantic segmentation
methods of remote sensing images and the related works.

1) High intra-class variance and low inter-class variance:
High intra-class and low inter-class variance seriously affect
the accuracy of SSRSI and cause blurry boundary segmen-
tation. The current main directions include effective context
modeling and fusion, and multi-task learning.

Effective context modeling and fusion. Effective modeling
and fusion of multi-type and multi-scale context information
are the keys to solving the problem of high intra-class and
low inter-class variance. Many methods have been proposed
to model multi-scale, global, local, and class-level contexts.

The encoder-decoder structure (e.g., U-Net, HRNet) is the
most popular architecture for attracting multi-scale feature.
The shallow-level features include many spatial details, while
deep-level feature contains more semantic information. Simple
concatenation or addition method can achieve multi-scale
context fusion in encoder-decoder architecture and has been
applied in many SSRSI methods [89], [90], [91], [92], [93].
However, these strategies fail to account for the inherent

semantic gaps between features at different levels, inadver-
tently embedding low-level background noise. Various adap-
tive methods improved multi-scale feature fusion by recalibrat-
ing the weights of high-level and low-level features utilizing
the attention mechanism [94], [95], [96], [97], [98], [99], gate
mechanism [88], [100], and deformable convolution [102].

Many studies of SSRSI considered spatial pyramid pooling
a crucial module to model multi-scale features in parallel
[103], [104]. In addition, some extensions of spatial pyramid
pooling improved the multi-scale feature fusion strategy by
adaptive spatial pooling [104], deformable convolution[101],
and graph convolution[105].

The above work mainly focuses on the modeling of multi-
scale context. In contrast, more research has been proposed to
capture global context and class-level context to overcome the
problem of high intra-class and low inter-class variance. The
global pooling included in many models, such as ParseNet,
only can learn the scene-level global context. Some researchers
utilized attention mechanisms, including spatial and channel
attention, to build a global context module on top of the feature
extractor for fine global context modeling [112], [113], [114],
[152]. Moreover, Cheng et al. [115] used information entropy
as an attention score to enhance valuable global context while
weakening the ambiguous representation.

Dilated convolution is also widely used to model global
context. Some SSRIS models build backbone networks using
dilated convolution instead of standard convolution for feature
extraction. In addition, the ASPP proposed in DeepLabv2 was
directly used as an essential module to extract multi-scale
context in many studies [108], [109], [110]. At the same time,
some research improved the parallel stack manner of multi-
context aggregation in ASPP by a sequential global-to-local
context aggregation [111] and attention mechanism [132].

In recent years, Transformer has been widely used to model
the long-range dependency between pixels for SSRSI [116]. In
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other work, various semantic segmentation models proposed
to use swin transformer as an encoder [117], [118], [119],
an auxiliary encoder [102], or a decoder [120] for SSRSI.
DWin-HRFormer [121] proposed a directional self-attention
mechanism to overcome the problem that the network tends
to ignore the feature orientation bias.

Most studies use spatial strategies to capture context in-
formation, including global pooling, dilated convolution, and
spatial pyramid pooling. They did not distinguish pixels from
different classes explicitly when calculating the context. Vari-
ous types of targets around pixels have different contributions
to pixel classification. Some work distinguished class-level
contexts to further enhance SSRSI [95], [122].

Multi-task learning. Multi-task learning promotes model
generalization and robustness by sharing representations be-
tween the primary and auxiliary tasks. By combining semantic
segmentation tasks with other tasks, such as boundary de-
tection, change detection, super-resolution, region pixel seg-
mentation, target height prediction, multi-task learning can
effectively alleviate the problem of high intra-class and low
inter-class variance.

Boundary detection is beneficial to mitigate boundary blur
and improve segmentation accuracy. The boundary prediction
is a two-category task, while the semantic segmentation is
a multi-category task in most cases. Most of the existing
methods [106], [100], [118], [123], [124] used a shared
backbone network to extract features for two tasks at the
same time, then designed a boundary-aware module on top
of the backbone network to generate a boundary map, finally
combined a segmentation loss and a boundary loss for model
training. Furthermore, some studies [105], [125], [126] used a
framework with two branches in a sequential or parallel man-
ner to process two tasks. However, the dual-stream architecture
faces the challenge of high model complexity. Most multi-task
methods manually set the weights of different losses, which
may lead to a suboptimal training result. some studies [127]
adopted the adaptive approach to weighing the segmentation
loss and boundary loss for multi-task learning. In addition,
combining semantic segmentation with other remote sensing
tasks is also an important direction to improve the accuracy of
image segmentation, including change detection [128], super-
resolution [129], region pixel segmentation [108], [130] and
target height prediction [131].

Overall, the problem of high intra-class variance and low
inter-class variance leads to weak separability between targets,
while current research still lacks systematic theoretical analy-
sis. From the model’s perspective, since the pixels of images
are not independent and identically distributed, there have
been many studies to build a specialized model architecture
to model the global, local, and class-level context, as well
as multi-scale context. However, modeling multiple contexts
at once is still a challenging problem. From the data per-
spective, utilizing multi-task learning to introduce supervised
information from auxiliary tasks to make the learned features
more separable is a practical approach. However, reducing
negative transfer or destructive interference between multiple
tasks remains a significant challenge.

2) Large-scale variation: The long-distance observation of
remote sensing images results in the target we are concerned
about often containing very few pixels, and their scale changes
significantly. To address these problems, researchers have
carried out a lot of research on foreground activation [135],
[136], [99], multi-scale fusion [110], [111], [100], [132], [133],
[134], and multi-scale test [137].

Foreground activation help improve the extraction ability
of small targets by enhancing foreground information while
suppressing background noise. Zheng et al. [135] proposed a
foreground-aware relation network and optimization method
for foreground modeling. Ma et al. [136] proposed a fore-
ground activation branch based on a feature pyramid network
to activate the small objects. RSSFormer [99] proposed two
attention-based modules to suppress background noise and
enhance object saliency adaptively.

The most popular technique to adapt to large-scale variation
is combining features from different scales and employing
low-level features as much as possible to recover spatial
details [110], [111], [100]. Merely merging features from the
shallow and deep layers may lose the small targets. Adaptively
selecting shallow or deep features based on target scale could
be a possible solution to this problem [132], [133]. however,
the limited learning capacity of each CNN tends to make
tradeoffs in segmenting different-scale objects. Hang et al.
[134] cascaded three subnetworks for gradually segmenting
different-scale objects.

It is impractical to extract features at too many scales in a
segmentation network. Meanwhile, there is no guarantee that
those pre-defined scales are optimal for a given application
scenario. Multi-scale test resizes the original images to various
scales and feeds them into a segmentation network, the output
segmentation maps are then assembled by average voting or
progressive error correction [137].

Foreground activation-based methods belong to the coarse-
to-fine approach, significantly improving small target recog-
nition in remote sensing images. Still, the effectiveness of
such methods seriously depends on the design of specific
foreground activation modules and loss functions. Multi-scale
fusion performs feature selection and fusion on a few pre-
defined scales. For scenarios with significant variation in target
scales, it is challenging to extract appropriate context infor-
mation for multiple targets of different scales [137]. Although
multi-scale test can alleviate this problem, they significantly
increase computational complexity through image inputs with
multiple scales.

3) Class imbalance: Class imbalance problem seriously
affects the accuracy of SSRSI. Anand et al. [153] discussed the
impact of class imbalance on neural network training, which
showed that the majority class dominated the gradient and
guided the model parameter update. The error of the minority
category remained at a high level. The directions to solve this
problem include one-stage methods [100], [115], [135], [136],
[138] and two-stage methods [121], [139], [140], [141].

One-stage methods mainly include re-sampling and re-
weighting. The primary purpose of re-sampling is to make
each category has the same number of samples [154]. In
contrast, re-weight the loss function in training is more com-
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mon in SSRSI. The typical method is to increase the loss
weight of the samples that are difficult to classify and assign
them a greater gradient in backpropagation. Therefore, the
most important thing in re-weighting is how to measure the
difficulty of classifying different samples. Sun et al. [100]
proposed an adaptive edge loss function based on online hard
example mining loss to alleviate the problem of recognizing
tiny objects and sample imbalance. Cheng et al. [115] used
entropy to measure the difficulty of sample classification and
adopted an entropy matrix to weigh the cross-entropy loss.
Zheng et al. [135] proposed a foreground-aware optimization
strategy to make the model pay more attention to foreground
and hard background examples. Ma et al. [136] applied a small
object mining-based network optimization to select effective
samples and refine the direction of the optimization. Bai et al.
[138] proposed a calibrated focal loss by using a prediction
confusion map to measure the classification difficulty.

Two-stage methods aim to improve the long-tail prediction
by decoupling representation learning and classifier head.
Specifically, the first stage learns the feature extractor and clas-
sifier head jointly, and then with the representation fixed, the
second stage re-learns the classifier head with a class balancing
strategy. Zhang et al. [139] introduced an adaptive calibration
function and a distribution alignment strategy to calibrate
the classifier. Zhang et al. [121] constructed a distributed
alignment module to adjust the biased decision boundaries in
the second stage. Cui et al. [140] introduced a region rebalance
strategy instead of the pixel rebalance strategy by encouraging
features to lie in a more balanced region classification space.
Zhong et al. [141] proposed a center collapse regularizer to
encourage the network to learn class-equiangular and class-
maximally separated structured features.

Compared with image classification task, in which image
samples are independent and identically distributed, the strong
contextual correlation between pixels results that class fre-
quency in the pixel domain being an unsuitable guide for
rebalancing [140], [141]. Thus, one-stage methods in image
classification tasks might not always produce performance
improvement for semantic segmentation. Recent two-stage
methods model the dependency between pixels through region
rebalance [140] and neural collapse [141]. However, they
mainly focus on the semantic segmentation of natural images,
and there is still a lack of pointed studies for remote sensing
images with more significant class imbalance issues.

4) Large image size: Deep semantic segmentation models
have high memory demand. Current approaches either down-
sample large-size images or crop them into small patches
for separate processing. However, the former removes details,
while the latter destroys image context. To overcome these
problems, current methods mainly include three categories,
including global-local pipeline [142], [143], [144], [145],
[146], [147], multi-stage refinement pipeline [148], [149], and
the whole image processing pipeline [150], [151].

The framework of the global-local pipeline utilizes two
parallel branches for processing downsampled entire image
and its cropped local patches separately, then conducting
the global-to-local fusion on the predictions. The most rep-
resentative work is GLNet [142]. Furthermore, some work

has improved GLNet. Some work refined segmentation by
adaptively distinguishing the importance of different cropped
patches [143]. FCtL [144] captured the relevance between the
local patch and its various contexts to produce high-quality
local segmentation results. Nogueira et al. [145] proposed to
select the best size for cropped patches by training a dilated
convolution network with distinct patch sizes. Other work
investigated how to achieve global and local fusion using the
Transformer [146], [147].

Multi-stage refinement pipeline adopts the refinement
scheme and performs coarse-to-fine refinement on multi-stage
predictions for better segmentation results. CascadePSP [148]
proposed a segmentation refinement model, where coarse
outputs from any other segmentation models are used as input
to refine boundary details in a coarse-to-fine manner. MagNet
[149] introduced a multi-scale framework where the output
segmentation map will be progressively refined as the image
is analyzed from the coarsest to the finest scale.

The whole image processing pipeline focus on inferring
the whole image directly. ISDNet [150] directly processed the
full-scale and downsampled inputs by integrating shallow and
deep networks. The shallow network used full-scale images
to enhance spatial detail extraction. The deep network takes
the downsampled image to extract high-level semantic infor-
mation. ElegantSeg [151] processed holistic extra-large image
semantic segmentation by extending the tensor storage from
GPU to host memory.

In summary, the global-local and multi-stage refinement
pipelines require cropping the image into patches. The seg-
mentation model must process both the downsampled full-
size images and the cropped patches simultaneously, inevitably
leading to complex network architecture and a slow inference
speed. The whole image processing pipeline can accelerate the
inference speed, but it must face large memory consumption.
Therefore, when facing the problem of the large size of remote
sensing images, it is necessary to balance multiple perspec-
tives, such as model performance, memory consumption, and
inference speed.

B. Semi-supervised and weakly-supervised SSRSI

A critical bottleneck in building deep learning-based seman-
tic segmentation models is that they require massive pixel-
level annotation data for model training. Semi-supervised
and weakly supervised learning has attracted more and more
attention because they can reduce the dependence on high-
quality labeled data.

1) Semi-supervised models: Semi-supervised SSRSI aims
to leverage both labeled and unlabeled data simultaneously to
learn semantic segmentation models. The current main meth-
ods comprise three categories, i.e., consistency regularization,
self-training and hybrid methods. Table II summarizes some
semi-supervised semantic segmentation methods.

Consistency regularization. The consistency regularization
methods are based on the low-density assumption that the
learned decision function should lie in low-density regions in
the input space. Fig.3 shows a simple semi-supervised seman-
tic segmentation framework based on consistent regularization.
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TABLE II
SOME REPRESENTATIVE SEMI-SUPERVISED SSRSI.

Category Method Publication Segmentation Model Main Mechanism

Consistency
regularization

Kang et al. [155] IEEE J-STARS 2021 DeepLab V3+ Image perturbation
Zhang et al. [156] IEEE J-STARS 2022 DeepLabv2 with ResNet Image perturbation
Ouali et al. [157] CVPR 2020 DeepLabv3 +, PSPNet Feature perturbation
Chen et al. [158] CVPR 2021 DeepLabV3+ Network perturbation

Self-
training

Sun et al. [159] IEEE J-STARS 2020 DeepLabv3+ combining boundary attention module GAN-based
Zheng et al. [160] RS 2022 Segmentation network with double-branch encoder GAN-based
Kwon et al. [161] CVPR 2022 DeepLabv3+ Auxiliary task
Lu et al. [162] IEEE TGRS 2022 DeepLabv2 with ResNet Adaptive pseudo label selection

Hybrid
method

Wang et al. [163] RS 2020 U-Net, DeepLabv3, DeepLabv3+ Image perturbation, auxiliary task
Li et al. [164] IEEE TGRS 2021 FCN with ResNet-50, U-Net Feature perturbation, GAN-based
Wang et al. [165] IEEE TGRS 2021 U-Net, DeepLabv3, DeepLabv3+ Image perturbation, threshold-based
Li et al. [166] P&RS 2021 DeepLabv3 + Image perturbation, threshold-based
Chen et al. [167] JAG 2022 DeepLabv2-based model Feature perturbation, threshold-based
Chen et al. [168] P&RS 2023 U-Net-based model combing dilated convolution

and attention
Image perturbation, threshold-based
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output map

Encoder Decoder

input 

perturbation 

feature

perturbation 

network
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unlabeled image 

labeled image ground truth
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CR

shared output map

output map with 
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Fig. 3. A simple semi-supervised SSRSI framework based on consistent
regularization. The consistency with various perturbations on unlabeled data
is carried out at different levels.

It enforces the consistency of the predictions with various
perturbations on the same unlabeled examples, e.g., input
perturbation, feature perturbation, and network perturbation.
Finally, the segmentation model is learned by combining
the supervision loss LSUP of the labeled images and the
consistency regularization loss LCR of the unlabeled images.

Input perturbation-based approaches leverage random data
augmentations on the input images and then perform con-
sistency constraints for the predictions produced from aug-
mented images [155], [166], [156], [169]. Feature perturbation
frameworks enforce an invariance of the predictions over small
feature perturbations for the same input unlabeled image [157].
Network perturbation-based methods enforce prediction con-
sistency by applying perturbations to the network itself. They
are typically implemented by adopting parallel segmentation
networks with different structures or the same architecture but
with various initializations [158].

Self-training. Self-training, also known as pseudo labeling,
has been proposed to solve semi-supervised SSRSI. Fig.4
shows a simple semi-supervised semantic segmentation frame-
work based on self-training. Self-training generates pseudo
labels for unlabeled images using a model trained on labeled
ones and uses them as supervised signals. The model is
further retrained by combining the supervised loss LSUP of

Encoder Decoder

output map

Encoder Decoder

unlabeled image 

labeled image ground truth

sup

shared 

pseudo label

output map

unsup

Confidence

Estimatation

Segmentation network

Fig. 4. A simple semi-supervised SSRSI framework based on self-training.
The pseudo-labels of unlabeled data with high confidence generated from a
model trained on labeled data refine the model iteratively.

labeled images with the pseudo-supervised loss Lunsup of
unlabeled images. The pseudo labels of unlabeled images
inevitably contain some errors. Learning using such labels as
supervision causes confirmation bias towards the errors and
returns corrupted models consequently. Therefore, the most
critical issue is to estimate the confidence of predictions and
help select the most effective pseudo labels.

One simplest method that solves this issue is the threshold-
based method using an uncertain output map as supervi-
sion[190], but their performance depends heavily on hand-
tuned thresholds. GANs are an essential solution for correct-
ing pseudo labels of semi-supervised remote sensing image
segmentation, which is studied to adaptively select high-
confident segmentation predictions on unlabeled images as
pseudo segmentation. The semantic segmentation network is
used as the generator, while the role of the discriminator is to
assess the confidence of predictions [159], [160].

The coupling issue is another problem of SSRSI methods
based on self-training, i.e., the teacher (trained on labeled
data) and student networks (re-trained on labeled data and
pseudo-labeled data) easily generate similar predictions on the
same input. Many methods have been proposed to decouple
their predictions as well as alleviate overfitting on noisy
pseudo labels, such as injecting strong data augmentations
on unlabeled images [170], repetitively producing pseudo
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labels for each training minibatch [158], adaptive choosing
a threshold for filtering incorrect labels [162]. Furthermore,
some studies [171], [161] introduced auxiliary tasks to correct
pseudo labels. Ke et al. [171] proposed a flaw detector to esti-
mate the prediction confidence and help correct the unreliable
pixels in the predictions. Kwon et al. [161] introduced a new
auxiliary task called error localization, which enabled semi-
supervised learning to be robust against inaccurate pseudo-
labels by disregarding label noises.

Hybrid method. There has been increasing research on
combining self-training with consistency regularization. Con-
sistency regularization can help improve the teacher network,
thus helping self-training to generate high-quality pseudo
labels and further enhance segmentation models. Wang et al.
[163] performed image perturbation by color jittering and
random flipping, then employed the consistency regularization
trained model for the average update of pseudo labels. Li
et al. [164] proposed a GAN-based consistency self-training
framework, which used the semantic segmentation network
as the generator to produce predictions and sent them with
random perturbations to the discriminator to assess the confi-
dence. Wang et al. [165] randomly pasted part of the labeled
image into the unlabeled image as a strong perturbation,
generating pseudo labels for weakly augmented data. Li et al.
[166] combined self-training and consistency regularization for
cross-domain SSRSI, which learned the transfer invariance and
rotation consistency under image perturbation and generated
pseudo labels for unlabeled data. Chen et al. [167] leveraged
the feature perturbation to conduct regularization constraints,
and provided the one-hot pseudo supervisions for further
self-training. SemiRoadExNet [168] proposed a GAN-based
semi-supervised road extraction network, which leveraged the
potential information of low-confidence pixels in pseudo labels
by entropy maps generated by the segmentation network.

Overall, consistency regularization extracts knowledge from
unlabeled data by learning consistent predictions under various
perturbations. However, the problem of high intra-class and
low inter-class variance in remote sensing images may result
in insignificant low-density regions, making the predictions
of consistency regularization methods potentially incorrect.
Self-training relies on the quality of pseudo-labels and the
metrics for selecting high-confidence pseudo-labeled samples.
In SSRSI, combining these two methods and other methods,
such as contrastive learning, is a more promising direction.

2) Weakly-supervised models: Weak annotation is far easier
to collect than fully pixel-level annotations. Weakly-supervised
semantic segmentation (WSSS) approaches used weak annota-
tions to reduce the dependence on fully annotated data. Most
existing methods of WSSS follow a two-step pipeline, i.e.,
generating pseudo labels and training segmentation models.
This section introduces the related research according to the
categories of weakly-supervised labels, which are image-level
labels [172], [173], [174], [175], bounding boxes [176], [177],
point annotation [178], [179], [180], and scribble annotation
[180], [181]. Table III compares the characteristics of some
representative WSSS methods.

Image-level WSSS. Image-level WSSS is a challenging is-
sue since the image labels indicate only the existence of object

categories and do not inform accurate object locations that
are essential for semantic segmentation. Recent Image-level
WSSS approaches commonly rely on Class Activation Maps
(CAMs) [187] as seeds to generate pseudo-ground truths.
However, CAMs identify class-specific discriminative image
regions, making these initial labels usually incomplete and
noisy. Some studies have proposed targeted methods to address
this issue. Cao et al. [174] proposed a coarse-to-fine pixel-level
label generation method to alleviate the local high response
property of CAMs and the potential label noise problem
by object-based label extraction and noisy label correction.
Li et al. [153] designed a confidence area selection module
and a low-to-high loss function to obtain reliable supervision
information from the coarse labels. Fang et al. [175] used the
adversarial climbing strategy to optimize CAMs. Zeng et al.
[182] proposed a framework directly transferring the scene
classification model to perform semantic segmentation.

Bounding boxes-level WSSS. Bounding boxes provide
information about individual objects and their location. They
can help remove the irrelevant regions and focus on the
foreground regions. Bounding boxes-level WSSS is mainly
focusing on the semantic segmentation of natural images.
Dai et al. [176] adopted a recursive training procedure to
iterate between automatically generating region proposals and
training segmentation networks. Song et al. [177] proposed a
filling rate-guided adaptive loss to help the model ignore the
incorrectly labeled pixels in the pixel-level proposal produced
from the bounding box supervision.

Point-level WSSS. A point label is an instance-wise point,
which roughly points out the center location of an object but
does not indicate the object’s scope. Lian et al. [178] presented
a road seeds estimation model to extract pseudo ground
truths from point labels. NFANet [179] fully utilized the
high similarity between pixels in water bodies and performed
water extraction through the features of adjacent pixels and
point labels. Chen et al. [185] used low-resolution land cover
products (LCP) as WS information to obtain an accurate high-
resolution LCP.

Scribble-level WSSS. A scribble roughly provides an ob-
ject’s location and extension with a single stroke. Maggiolo
et al. [180] utilized scribbled annotation to build a weakly-
supervised semantic segmentation model and used a fully con-
nected CRF to generate the pseudo ground truth by modeling
long-range dependencies. Wei et al. [181] proposed a weakly-
supervised road surface extraction method, which introduced
a road label propagation algorithm to propagate semantic
information from sparse scribbles to unlabeled pixels.

Compared with fully pixel-level annotations, weak-
supervised annotations have the characteristics of fast labeling
and low time cost. However, weak annotations usually lack
vital information, including shape, texture, and edges, making
the generated pseudo labels incomplete and noisy. WSSS
shows limited performance in obtaining the comprehensive-
ness of semantic information and segmentation accuracy.

C. Unsupervised Domain Adaptation for SSRSI
In remote sensing application scenarios, training data

(source domain) and test data (target domain) often have the
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TABLE III
SOME REPRESENTATIVE WEAKLY-SUPERVISED SSRSI.

Category Method Publication Segmentation Model Pseudo Label Generation Method

Image-level

Cao et al. [174] P&RS 2022 U-Net A coarse-to-fine pixel-level label generation
method

Li et al. [173] P&RS 2022 A multi-scale convolutional network
with resolution-preserving

A confidence area selection module with a
low-to-high loss function

Fang et al. [175] IEEE J-STARS 2022 DeepLabv3+ A random walk strategy
Zeng et al. [182] IEEE TGRS 2023 A U-Net-like segmentation model An end-to-end model without generating

pseudo labels
Bounding
box-level

Dai et al. [176] CVPR 2015 FCN combined with CRF Multiscale combinatorial grouping [183]
Song et al. [177] CVPR 2019 DeepLab Unsupervised dense CRF

Point-level
Lian et al.[200] IEEE TGRS 2021 Stacked hourglass network [184] A road seeds estimation model combined with

SVM
Lu et al. [179] P&RS 2022 A U-Net-like segmentation model A feature aggregation module and post-

processing method
Chen et al. [185] P&RS 2023 VGG-16+MLP Label propagation

Scribble-
level

Maggiolo et al.[203] IEEE TGRS 2021 Hypercolumn network [186], U-Net A fully connected CRF
Wei et al. [181] IEEE TGRS 2021 DeepLabv3+ A road label propagation algorithm

problem of domain drift. For example, the urban and rural
scenes have different class distributions. The urban scenes
with high population densities contain many artificial objects,
such as buildings and roads. In contrast, the rural scenes
include more natural elements, such as forests and water.
Model performance may decline rapidly under domain shifts.
UDA semantic segmentation, aiming to improve the gener-
alization ability for transferring knowledge from the source
domain to the target domain, has recently gained increasing
attention. Most UDA methods focus on photometric alignment
to align the source and target images in the input, feature,
and output spaces. Fig.5 shows a generic domain alignment
framework, often achieved through a Siamese architecture
with two streams. Each stream corresponds to a segmentation
model for processing the source and target domain images.
The parameters of the two models can be shared, partially
shared, or domain-specific. Generally speaking, the Siamese
network can be trained by combining two loss items. One is
the cross-entropy loss LCE corresponding to the supervisory
signals in the source domain, and the other is the adaptive loss
LAda to measure the distance between the source samples and
the target samples. Table IV compares the characteristics of
some UDA methods for SSRSI. Next, we detail the alignment
solutions between source and target domains at different levels
(i.e. input, feature, and output levels).

1) Input-level adaptation: Due to the high-level semantic
similarity in scene content and layout between the images from
the source domain and the target domain, many studies of
input-level adaptation use image translation or style transfer
methods to map data from one domain to another while
maintaining semantic consistency between images. Then, the
semantic segmentation models can be trained using translated
images with source domain labels.

A considerable number of studies [188], [189], [190] used
GAN architecture to address the input space’s domain adap-
tation in SSRSI. The most typical method is CycleGAN
[191], which is used to make a bidirectional image-to-image
translation between the source and target domains [188], [191].
However, remote sensing images contain a lot of complex
and heterogeneous structures, it isn’t easy to wholly maintain

Encoder Decoder

Encoder Decoder

Input Adaptation 

Source

Target

Segmentation Network

Feature Adaptation Output Adaptation 

Output Map

Output Map Ground Truth

Fig. 5. A generic domain alignment framework. A Siamese architecture with
one branch per domain is adopted, where domain alignment is often performed
at input-, feature-, and output-level.

the semantic consistency of images translated by GAN. Tasar
et al. [192] proposed a GAN-based UDA framework named
ColorMapGAN, which transformed the colors of the training
images into the colors of the test images without doing any
structural changes. Other studies adopted traditional image
processing methods for image translation, such as the Wallis
filter method [193].

Most of existing research focuses on the domain adaptation
of single source and target domains, hindering their further
expansion. Some researchers have extended domain adaptation
to scenarios with multi-source and multi-target domains. Tasar
et al. [194] proposed a DAugNet for multi-source, multi-
target, and life-long domain adaptation of satellite images in an
unsupervised manner. In [195], a StandardGAN was proposed
to deal with the multi-source domain adaptation problem. They
standardized each source and target domain using GANs so
that all the data had similar distributions.

2) Feature-level adaptation: The feature-level domain
adaption methods solve the problem of domain drift by mini-
mizing the distribution of the source domain and target domain
in the feature space. In general, they learn domain invariant
features by forcing a feature extractor to adjust the feature
distribution of the source domain and target domain data.
Therefore, choosing a proper divergence measure is the core of
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these methods. Widely used measures include Maximum Mean
Discrepancy(MMD) [196], Correlation Alignment (CORAL)
[197], Contrastive Domain Discrepancy(CDD) [198], Wasser-
stein Distance [199], etc. In SSRSI, some work [200], [201],
[202] has proposed various metrics based on covariance to
measure the domain divergence.

Adversarial learning uses a discriminator as a measure,
which is another effective way to align features in different
domains [203]. Lu et al. [204] proposed an adversarial learning
framework for cross-domain road detection. A global-local
alignment operation was introduced to adjust the weight of
the adversarial loss according to the recognition difficulty of
each pixel. MBATA-GAN [205] combined cross-attention and
self-attention to learn transferable features between the source
domain and target domain in a framework of adversarial learn-
ing. Wang et al. [206] proposed a two-stage UDA framework.
The first stage performed global-local alignment by adversarial
learning, while the second stage used self-training to align
category features.

3) Output-level adaptation: Prediction maps of the segmen-
tation network can retain useful semantic information, some
researchers utilize output-level alignment to realize domain
adaptation. At present, the main methods include adversarial
learning [207], [208], [209] and self-training [210], [211], and
their combination [212], [213], [214], [215], [216], [217].

Adversarial learning implements the output-level domain
adaptation using a domain discriminator to distinguish whether
the segmentation predictions were from the source or the
target domain. Zheng et al. [207] performed local feature
alignment using the adaptive weight on the predictive entropy
map in the target domain to guide the adversarial learning.
Chen et al. [208] proposed a region and category adaption
domain discriminator to measure the differences in regions
and categories. Chen et al. [209] designed a category-certainty
attention module to reduce the attention of the discriminator
on category-level aligned features and increase the attention
on category-level unaligned features.

Self-training generates pseudo-labels for the target domain
images using the model trained in the source domain and
iteratively refining the segmentation model using the most
confident pseudo-labels. Tong et al. [210] proposed a pseudo-
labeling and retrieval-based sample selection scheme. The
patches with high confidence were assigned pseudo labels and
employed as the queries to retrieve related samples from the
source data. The retrieved results were used for fine-tuning
the segmentation model. DAFormer [218] used Transformer as
the backbone and proposed three training strategies, including
rare class sampling, thing-class ImageNet feature loss, and a
learning rate warm-up method for UDA segmentation. Li et
al. [211] utilized a DAFormer for UDA segmentation, and
presented a local dynamic quality strategy to improve the
quality of the pseudo-labels.

The main idea to combine adversarial learning with self-
training is to use adversarial learning to achieve domain
alignment in the output space while using a self-training
strategy to generate pseudo labels for samples in the target
domain, then further train the segmentation model using high-
quality pseudo labels [213], [214], [216]. Yan et al. [212]

proposed a triplet adversarial domain adaptation method. The
discriminator took a triplet of segmentation maps as input
and decided whether two segmentation maps were from the
same domain or not. Zhang et al. [215] proposed a two-
stage cross-domain adaptation framework. The first stage used
GAN to align the source domain to the easy-to-adapt target
domain. The second stage used the pseudo label generated
in the first stage to adapt the segmentation model to the
hard-to-adapt target patches. MemoryAdaptNet [217] explored
memory mechanisms to store, extract, and update variant
domain-level prototype information in adversarial learning and
self-training frameworks. Ma et al. [219] introduced local
consistency and global diversity metric on the basis of the
framework of adversarial learning and self-training learning
to improve the segmentation performance.

4) Multi-level adaptation: Multi-level adaptation often
achieves better alignment results by simultaneously align-
ing domains at multiple levels. Ji et al. [220] aligned the
source and target images at the image-, feature-, and output-
level by CycleGAN, adversarial learning, and mean teacher
model, respectively. Shi et al. [221] used CycleGAN and
adversarial learning to realize the input- and feature-level
domain adaptation, respectively. Li et al. [222] performed
input-level domain adaption by projecting the source and
target domains into a color space with normalized distribution
and implemented feature-level alignment using adversarial
learning. Self-training was adopted to enhance the domain
adaption at output space. Liu et al. [223] proposed a bispace
adversarial learning strategy to minimize domain discrepancy
in feature space and output space. Xu et al. [224] proposed
a class-aware domain alignment approach, including adap-
tive category selection and adaptive category alignment, to
model the intra-class compactness and inter-class separability.
Chen et al. [225] developed a class-aware domain adaptation
method that separately executed class-specific and global
domain alignment on feature and output spaces by a joint
local and global adversarial adaptation framework. MDANet
[226] achieved distribution alignment in input, feature, and
output levels, and combined contrastive learning and memory
mechanisms to extract and utilize domain invariant features.

The image-level domain adaptation methods achieve domain
invariance by reducing the cross-domain discrepancy in the
image layout and structure. The potential issue is that the
performance heavily relies on the quality of translated images.
Pixel-level flaws could significantly influence the accuracy.
The feature-level domain adaptation methods can realize fea-
ture alignment in hidden space with adversarial strategies
or divergence measures. However, aligning high-dimensional
features brings a high computational burden regarding large-
scale and complex remote sensing scenes. The output-level do-
main adaptation can reach efficient cross-domain distribution
alignment on the low-dimensional output space. But including
only high-level semantic information in output space affects
the performance of UDA semantic segmentation. The multi-
level domain adaptation method is equivalent to a class of
multi-task learning methods. Learning the weights of different
tasks is important as the number of tasks increases.
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TABLE IV
SOME REPRESENTATIVE UDA METHODS OF SSRSI.

Category Method Publication Segmentation Model Domain alignment

Image-level

Benjdira et al. [188] RS 2019 U-Net CycleGAN
Wittich et al. [189] P&RS 2021 FCN GAN
Cai et al. [190] IEEE TGRS 2022 DeepLabv2 CycleGAN
Tasar et al. [192] IEEE TGRS 2020 U-Net ColorMapGAN
Tasar et al. [194] CVPRW2020 U-Net GAN
Tasar et al. [195] IEEE TGRS 2020 U-Net GAN

Feature-level

Zhang et al. [200] IEEE GRSL2020 U-Net Feature covariance alignment
Wu et al. [201] IEEE TGRS 2022 DeepLabv2 Covariance regularization
Iqbal et al. [203] P&RS 2020 U-Net GAN
Lu et al. [204] P&RS 2020 FCN GAN
Liu et al. [202] IEEE GRSL2022 FCN GAN
Ma et al. [205] IEEE TGRS 2023 DeepLabv2 with ResNet-101 GAN
Wang et al. [206] IEEE J-STARS 2023 Deeplabv3+ with ResNet-101 GAN

Output-level

Zheng et al. [207] IEEE TGRS 2021 DeepLabv2 with ResNet-101 GAN
Chen et al. [208] IEEE TGRS 2022 DeepLabv2 GAN
Chen et al. [209] IEEE TGRS 2022 DeepLabv2 with ResNet-101 GAN
Tong et al. [210]] RSE 2020 A hybrid model combining patch classifi-

cation and pixel segmentation
Self-training

DAFormer [218] CVPR2022 DAFormer self-training
Li et al. [211] RS 2022 DAFormer Self-training
Yan et al. [212] IEEE TGRS 2019 DeepLabv3 Adversarial learning and self-training
Zhang et al. [213] IEEE TGRS 2021 An FCN-like model with ResNet and fea-

ture pyramid
Adversarial learning and self-training

Yan et al. [214] IEEE TGRS 2019 DeepLabv3 Adversarial learning and self-training
Zhang et al. [215] IEEE TGRS 2021 An FCN-like model with ResNet Adversarial learning and self-training
Yao et al. [216] IEEE TGRS 2021 DeepLabv2 with a pretrained ResNet Adversarial learning and self-training
Zhu et al. [217] IEEE TGRS 2023 DeepLabv2 with ResNet-101 Adversarial learning and self-training

Multi-level

Peng et al. [193] IEEE TGRS 2021 U-Net with attention
mechanism

(1) Image-level: Wallis filter
(2) Feature-level: adversarial learning
(3) Output-level: mean teacher model

Ji et al. [220] IEEE TGRS 2020 Modified FCN
(1) Image-level: CycleGAN
(2) Feature-level: adversarial learning
(3) Output-level: mean teacher model

Shi et al. [221] IEEE GRSL2020 FCN with ASPP (1) Image-level: CycleGAN
(2) Feature-level: adversarial learning

Li et al. [222] IEEE TGRS 2022 DeepLabv2
(1) Image-level: Colorspace Mapping
(2) Feature-level: adversarial learning
(3) Output-level: self-training

Liu et al. [223] IEEE TGRS 2020 A two-beaches network with U-Net
and wavelet transform

(1) Feature-level: adversarial learning
(2) Output-level: adversarial learning

Xu et al. [224] IEEE TGRS 2022 DeepLabv2 with ResNet-101 (1) Feature-level: adversarial learning
(2) Output-level: category alignment

Chen et al. [225] IEEE J-STARS
2020 Modified DeepLabv2 (1) Feature-level: adversarial learning

(2) Output-level: adversarial learning

Chen et al. [226] IEEE TGRS 2023 Deeplabv3+ with ResNet-101
(1) Image-level: Wallis filter
(2) Feature-level: adversarial learning
(3) Output-level: self-training

D. Multi-modal data fusion for SSRSI

Remote sensing data are often multimodal, e.g., optical
(multi- and hyperspectral), Lidar, and synthetic aperture radar
(SAR). In addition, sensors often carry auxiliary data, such
as digital surface models (DSMs). Remote sensing data of
different modalities can provide information from different
perspectives for the targets. Fusing multi-modal data has be-
come a new direction to improve the performance of semantic
segmentation algorithms. Generally speaking, designing a deep
semantic segmentation network for multi-modal fusion must
solve three critical problems. What to fuse: Which modal data
need to be fused, and how to represent them; When to fuse: At
which stage shall multimodal data be fused; How to fuse: What
kind of fusion methods should be used to realize information
fusion. In this section, we introduce the existing research on
these three aspects. Table V shows representative methods
based on multi-modal data fusion.

1) What to fuse:
Fusion of multispectral image and auxiliary data. A

DSM provides elevation data of objects in a remote sensing
image, facilitating the segmentation of tall objects, such as
buildings and trees. Utilizing DSMs to extract additional
features can further improve the semantic segmentation of
multispectral images [228], [229], [232], [248], [233], [235],
[236], [238]. In addition, other indicators such as Normalized
DSM(NDSM) [230], [231], Digital Elevation Model (DEM)
[123], [227], [237], Normalized Difference Vegetation Index
(NDVI) [230], [231], [234] from the near-infrared and red
channels, Normalized Difference Water Index [231] using
near-infrared and green channels, are utilized to fuse with the
multispectral images.

Fusion of multispectral image and LiDAR data [236],
[239], [240]. Multispectral images can provide high spatial res-
olution and rich spectral and textural information under good
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TABLE V
SOME REPRESENTATIVE REMOTE SENSING IMAGE SEMANTIC SEGMENTATION METHODS BASED ON MULTI-MODAL DATA FUSION. ”MULTI” DENOTES

MULTISPECTRAL IMAGE, ”AUX” DENOTES AUXILIARY DATA, ”HYPER” DENOTES HYPERSPECTRAL IMAGE.

Category Method Publish What to fuse How to fuse When to fuse

Multi and
Aux

Marmanis et al. [227] ISPRS Annals 2016 RGB+DEM Concatenation Late
Sherrah et al. [228] arXiv 2016 RGB+DSM Concatenation Late
Kampffmeyer et al. [229] CVPRW2016 RGB+DSM Concatenation Early
Audebert et al. [230] IEEE TGRS 2016 IRRG+DSM/NDSM/NDVI Averaging Middle and Late
Volpi et al. [231] IEEE TGRS 2016 RGB+NDVI/NDWI/NDSM Concatenation Early
Zhang et al. [232] RS 2017 IRRGB+DSM Summation Middle
Marmanis et al. [123] P&RS 2018 RGB+DEM Concatenation Late
Cao et al. [233] IEEE GRSL2019 IRRG+DSM Concatenation Middle
Zheng et al. [234] IEEE TGRS 2021 RGB+ DSM/NDVI Adaptive fusion (gate) Middle
Zhou et al. [235] IEEE TGRS 2021 RGB+DSM Adaptive fusion (gate) Middle
Zhao et al. [236] Neurocomputing 2022 RGB+DSM Adaptive fusion (attention) Middle
Liu et al. [237] IEEE TGRS 2023 RGB+DEM Summation Middle
Zhou et al. [238] IEEE TGRS 2023 RGB+DSM Adaptive fusion (attention, gate) Middle

Multi and
LiDAR

Liu et al. [239] CVPRW2017 RGB+LiDAR Adaptive fusion (CRF) Late
Audebert et al. [240] P&RS 2018 RGB+LiDAR Summation Early and Late
Sun et al. [241] P&RS 2018 RGB+LiDAR Concatenation Middle

Multi and
SAR

Li et al. [242] IEEE J-STARS 2020 RGBIR+SAR Adaptive fusion (attention) Middle
Li et al. [243] JAG 2022 RGBIR+SAR Adaptive fusion (attention) Middle
Ren et al. [244] JAG 2022 RGBIR+SAR Adaptive fusion (attention) Middle
Kang et al. [245] IEEE J-STARS 2022 RGBIR+SAR Adaptive fusion (gate) Middle
He et al. [246] P&RS 2022 RGB+DSM,RGBIR+SAR Adaptive fusion (GCN) Middle

Multi and
Hyper

Hong et al. [247] IEEE TGRS 2020 Multi+Hyper Adaptive fusion (GAN) Middle

illumination and fair weather. However, optical cameras are
strongly affected by the level of illumination. LiDAR senses
the environment by using its emitted pulses of laser light.
Therefore, LiDAR is only marginally affected by external
light conditions. Furthermore, LiDAR provides accurate range
measurements.Thus, it is easy to see that fusing the data of
LiDAR and multispectral images could give an enhanced total.

Fusion of multispectral image and SAR [241], [242],
[243], [244]. SAR sensors penetrate particular ground objects
in all weather conditions, and SAR images provide rich
geometric information on ground objects. Taking SAR images
as complementary data in optical image processing can prevent
the weather’s interference to a certain extent. Fusing multi-
spectral and SAR images for SSRSI is a promising approach
to improving segmentation accuracy.

Fusion of multispectral image and hyperspectral im-
age [247]. Hyperspectral image collects the electromagnetic
spectrum from the visible to the near-infrared wavelength
and has more abundant spectral characteristics. However,
hyperspectral images have the disadvantage of low spatial
resolution. Combining multispectral and hyperspectral images
for semantic segmentation can benefit from each technology’s
unique advantages [204].

2) How to fuse: This section summarizes typical fusion
operations in neural networks. We restrict our discussion to
two sensing modalities for simplicity, though more still apply.

Addition or Average [237], [230], [232]. This operation
adds the feature maps element-wise or calculates the average
mean of the feature maps to obtain fused feature.

Concatenation [123], [227], [228], [229], [231], [248],
[233]. This method usually stacks the feature maps from
different modalities along their channels.

Adaptive fusion. The above two modes ignore the hetero-
geneity between different modalities and are prone to generate
redundant features and noise information. Therefore, it is

better to select complementary information for fusion adap-
tively. Among them, the most representative strategies include
attention mechanism [236], [238], [242], [243], [244], gate
mechanism [234], [235], [238], [245], Graph neural network
(GCN) [246], GAN [247], conditional random field [239].

3) When to fuse: Deep neural networks represent features
hierarchically and offer various choices to combine multi-
modal data at early, middle, or late stages. Next, we will briefly
introduce the early, middle, and late fusions.

Early fusion. This strategy concatenates the images of two
modalities along the channels into a multichannel tensor and
feeds the tensor into a one-stream neural network for training
[229], [231].

Late fusion. This method merges features from different
modalities at the last layer of the neural network before the
final prediction layer or integrates the prediction results from
different modalities to generate the final segmentation map
[123], [227], [228], [230], [239].

Middle fusion. This method is the compromise of early and
late fusion. The middle fusion uses a dual-stream architecture
to extract features from the different modalities. The feature
fusion is carried out at different feature levels of the semantic
segmentation model. Therefore, there is a lot of work to
explore the appropriate fusion level for the best results [237],
[232], [233], [241].

Early fusion learns the joint features of multiple modalities
at an early stage, fully exploiting the information of the raw
data. Meantime, early fusion has low computation require-
ments as it jointly processes the multiple sensing modalities
early. However, early fusion is sensitive to spatial-temporal
data misalignments caused by differences in imaging princi-
ples, imaging time, imaging conditions, and resolution. Only
its domain-specific network must be trained when introducing
a new modality without affecting other branches. Late fusion
requires multiple prediction networks to predict segmented
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maps from different modalities, thus requiring significant com-
putational complexity and memory consumption. In addition,
it discards rich intermediate features that may be highly
beneficial when fused. The middle fusion approach has high
flexibility. Nevertheless, given a network architecture, finding
the optimal way to fuse the middle layer isn’t easy. The
optimal fusion architecture should be found automatically.
Neural network structure search and regularization methods
can potentially solve the problem, but there is a lack of pointed
research.

E. Pretrained models for SSRSI

Applying pretrained models to semantic segmentation is
an important way to alleviate the problem of missing large-
scale labeled data and has been the most important direction
in remote sensing image processing in the past two years.
Combining pretrained models with a segmentation network
and fine-tuning the model on a small-scale dataset can achieve
the highest segmentation performance. Table VI lists the
current representative remote sensing pretrained models.

The three elements that make up a foundation model include
a large-scale dataset, a pretrained model, and the pretraining
method. Since 2021, several million-scale publicly available
large-scale datasets have been built in remote sensing, in-
cluding FMoW [249], SeCo [250], Million-AID [251], Levir-
KR [252], GeoPile [253], SSL4EO-S12 [254] and SSL4EO-L
[255]. In the early days, pretrained model research typically
deals with ResNet50 [250], [252], ViT Large [256], [257],
Swin Base [253], [258], ViTAE-B [259], and ViTAEv2-S
[260], the number of parameters of them was relatively small
compared to those in computer vision. Recently, with the rapid
development of vision foundation models, the size of remote
sensing pretrained models has expanded to billon-scale [261].

The training methods for pretrained models include super-
vised learning and self-supervised learning (SSL). Wang et
al. [260] investigated different supervised pretrained models
on the Million-AID dataset. However, the performance of
supervised pretraining depends on the domain difference be-
tween source and target data. SSL does not require human
annotation in the pretraining process, which can also ensure
a small domain gap between the pretraining dataset and the
downstream task dataset. Therefore, SSL has become the
main method of remote sensing foundation models. Currently,
SSL methods in remote sensing mainly include contrastive
learning (CS) [250], self-distillation [253], and masked image
modeling (MIM) [256], [257], [258], [259], [262], [261].
Contrastive learning constructs positive and negative pairs to
learn both invariant and distinguishable visual features [250],
[254], [255]. SeCo [250] leveraged the seasonal changes to
enforce consistency between positive samples. Self-distillation
is learning to predict relationships between multiple views
of an unlabeled image. GFM [253] leveraged the teacher-
student paradigm for continual pretraining. The masked image
modeling randomly masks parts of an image and learns to
reconstruct the masked part. Currently, some studies [259],
[261] directly utilize MAE for pretraining. However, the ran-
dom mask strategy in MAE may remove the tokens of critical

regions and ignore many small objects. It is inappropriate to
directly apply this strategy to self-supervised learning on re-
mote sensing data. Some optimized mask strategies have been
proposed, including PIMask [258] and adaptive masking token
strategies [262]. Moreover, SatMAE [256] leveraged temporal
or multi-spectral information in RS images to improve self-
supervised pretraining with MAE. Scale-MAE [257] improved
MAE with a GSD-based positional encoding to model scale-
specific information.

In computer vision, the training dataset of the largest
pretrained model (ViT-22B [77]) has reached 4B images, and
the model parameters have reached 22B. However, the largest
remote sensing pretrained model (ViT-G12 [261]) still has a
significant gap in the size of the dataset and model parameters,
so there is still great room for the development of remote
sensing pretrained models.

IV. LOSS FUNCTIONS AND METRICS FOR SSRSI
A. Loss functions

Loss functions, which aim to measure the dissimilarity
between the ground truth and the predicted segmentation, play
an essential role in SSRSI. The commonly used loss functions
can be divided into three categories: distribution-based Loss,
region-based Loss, and compound Loss. This section will
introduce the loss functions commonly used in SSRSI.

1) Distribution-based loss: The distribution-based loss is
a pixel-by-pixel measurement of the distance between the
predicted and true values. The most fundamental function in
this category is cross entropy, all other functions are derived
from cross entropy. For an image with k categories and N
pixels, cross-entropy is defined as follows:

LCE = − 1

N

N∑
n=1

k∑
i=0

yin log
(
pin

)
(2)

where yin is the ground truth binary indicator of class label i
of pixel n, and pin is the corresponding predicted segmentation
probability.

Obviously, cross entropy calculates losses on individual
pixel, and it works best in scenarios with equal data distribu-
tion among classes. It often fails to achieve good results due
to class imbalance issue. As a result, a number of enhanced
loss functions, such as Weighted Cross Entropy (WCE), have
been suggested to weight different pixels. WCE is a commonly
used extension of CE, which is defined by

LWCE = − 1

N

N∑
n=1

k∑
i=0

βiy
i
n log

(
pin

)
(3)

where βi is the weight for class i.
Focal loss is another extension of CE, which adapts WCE

to focus on hard examples by reducing the loss assigned to
well-classified examples. It can also deal with foreground-
background imbalance. It is defined by

LFocal = − 1

N

N∑
n=1

k∑
i=0

βi(1− pin)
γ
y
i

n log
(
pin

)
(4)

where (1− pin)
γ is a modulating factor with tunable focusing

parameter γ ≥ 0.
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TABLE VI
SOME REPRESENTATIVE REMOTE SENSING PRETRAINED MODELS FOR SEMANTIC SEGMENTATION.

Category Method Pretrained model Parameters Pretrained dataset Pretraining method

Supervised learning
GeoKR [252] ResNet50 24M Levir-KR Geographical knowledge as supervision
RSP-ViTAEv2-S [260] ViTAEv2-S 18.8M Million-AID Scene classification

Contrastive SSL
SeCo [250] ResNet50 24M SeCo Time-level CS
Wang et al. [254] ViT-S 26M SSL4EO-S12 MoCo v2
Stewart et al. [255] ResNet-50 24M SSL4EO-L SimCLR v1 and MoCo v2

MIM-based SSL

SatMAE [256] ViT Large 307M FMoW SatMAE
RingMo [258] Swin Base 88M A dataset of 2M images MIM with PIMask strategy
RVSA-ViTAE-B [259] ViTAE-B 89M Million-AID MAE
Scale-MAE [257] ViT Large 307M FMoW Scale-MAE
AST [262] AST 463M A dataset of 1M images MIM with adaptive masking strategy
ViT-G12 [261] ViT-G12 2.4B Million-AID MAE

Self-distillation SSL GFM [253] Swin Base 88M GeoPile Teacher-student paradigm

2) Region-based loss: The goal of region-based loss is
to minimize the mismatch or maximize the overlap regions
between the segmentation map and the ground truth map.
Considering the classifications of other pixels in the image
is necessary, which can highlight foreground information and
alleviate the problem of class imbalance. Representative loss
functions include Dice Loss, IoU (Jaccard) loss, Tversky Loss,
and Focal Tversky (fTversky) Loss.

Dice Loss is inspired from Dice Coefficient. Dice loss
function is formulated as follows:

LDice = 1−
2
∑N

n=0

∑k
i=0 y

i
np

i
n∑N

n=0

∑k
i=0 y

i
n +

∑N
n=0

∑k
i=0 p

i
n

(5)

Intersection over Union (IoU) loss, similar to Dice loss. It
is defined by

LIoU = 1−
∑N

n=0

∑k
i=0 y

i
np

i
n∑N

n=0

∑k
i=0 (y

i
n+pin − yinp

i
n)

(6)

To achieve a better trade-off between precision and recall,
Tversky loss adapts the Dice loss to emphasize false negatives,
it is defined by

LTversky = 1−
(

N∑
n=0

k∑
i=0

y
i
np

i
n)
/ (

N∑
n=0

k∑
i=0

yinp
i
n

+ α

N∑
n=0

k∑
i=0

(1− yin)p
i
n + (1− α)

N∑
n=0

k∑
i=0

yin(1− pin))

(7)

where α is a hyper-parameter that controls the tradeoff be-
tween false negatives and false positives.

Similar to the Focal loss, fTversky loss utilizes a γ modifier
to leverage hard examples. It is defined as below:

LfTversky = (L)
γ (8)

3) Compound loss: The compound loss type is a combina-
tion of above two types, thereby leveraging pixel- and region-
level losses. We present two typical combinations.

Combo loss is defined as a weighted sum of Dice loss and
a cross entropy. It makes an effort to employ cross-entropy
for curve smoothing while simultaneously utilizing Dice loss
to solve class imbalance problem. It’s defined as:

LCombo = αLCE + (1− α) LDice (9)

To alleviate class imbalance problem and force the model
to learn from hard segmentation pixels better, combining Dice
loss and focal loss was proposed, it is defined by

LDiceFocal = αLDice + (1− α) LFocal (10)

It is worth noting that there are other loss functions[263],
but they are basic variations or combinations of cross entropy
loss and Dice loss. They are either used to solve class
imbalance problem, or to improve segmentation performance
by paying more attention to hard-to-classify pixels during
training. Although many loss functions have been proposed,
current research [263], [264] has shown that there is no one
that performs better in all situations. It is necessary to choose
the appropriate loss function according to our objectives.

B. Evaluation Metrics

Generally speaking, the quality of a model can be evaluated
from several perspectives, including quantitative accuracy,
training efficiency, memory requirements, etc. This paper
mainly introduces the quantitative metrics used to assess the
accuracy of SSRSI.

1) Pixel accuracy: Pixel Accuracy (PA), corresponding to
Overall Accuracy (OA), indicates the proportion of correctly
classified pixels in the image to the total number of pixels.
Pixel accuracy can be defined as:

PA =

∑K
i=1 q

i,i∑K
i=1

∑K
j=1 q

i,j
, (11)

where qi,j represents the number of pixels classified to the
semantic category j while the actual semantic category is i,
so qi,i represents the number of true positive samples in all
pixels with semantic category i.

2) Mean pixel accuracy: Mean Pixel Accuracy (MPA) is an
extension of pixel accuracy, representing the average accuracy
of each category of pixels. MPA can be defined as:

MPA =
1

K + 1

K∑
i=1

qi,i∑K
j=1 q

i,j
, (12)

3) Mean Intersection over Union: Intersection over Union
(IoU) is defined as the coincidence area between the predicted
segmentation map and ground truth, divided by the union area
of the predicted segmentation map and ground truth. Mean
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Intersection over Union (mIoU) refers to the mean value of
the Intersection over Union of all categories. Therefore, mIoU
can be defined as:

mIoU =
1

K + 1

K∑
i=1

qi,i∑K
j=1 q

i,j +
∑K

j=1 q
j,i − qi,i

, (13)

4) Precision, Recall, and F1-score: Precision and recall are
important indicators for many classical image segmentation
models. Similarly, precision and recall can be defined at the
category or global level.

Precision =
TP

TP + FP
, (14)

Recall =
TP

TP + FN
, (15)

where TP represents the true positive part of the image pixel,
FP represents the false positive part of the image pixel,
and FN represents the false negative part. F1-score is used
to measure the accuracy by combining precision and recall,
which can be defined as:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
, (16)

5) Dice coefficient: Dice coefficient is another popular
indicator of image segmentation. It can be defined as twice
the overlapping area of the predicted segmentation map and
the real segmentation map, divided by the union of pixels in
the two images. Therefore, Dice coefficient is very similar to
IoU:

Dice =
2 ∗ |A ∩B|
|A|+ |B|

, (17)

where A represents the predicted segmentation map, and B
represents the real segmentation map.

V. DATASETS FOR SSRSI

This section investigates the datasets most commonly used
for training and testing the SSRSI models based on deep learn-
ing (shown in Table VII). Firstly, the representative data sets
of several important research fields are summarized, including
fully supervised semantic segmentation, semi-supervised and
weakly supervised semantic segmentation, UDA semantic seg-
mentation, and multi-modal remote sensing image semantic
segmentation. Finally, we summarize several representative
datasets in cloud detection and road detection. The overall
situation has the following characteristics.

1) Remote sensing image segmentation datasets have de-
veloped rapidly in recent years. In terms of data scale,
datasets including iSAID [265], SEN12MS [266], Houston
2018 dataset [267], MDAS [268], and 38-Cloud [269] are
already in the same order of magnitude as natural image
semantic segmentation datasets (such as COCO, ADE20K).
On the richness of data types, current datasets cover multiple
data types such as multispectral, SAR, hyperspectral, and
LiDAR.

2) There are relatively few standard datasets in semi-
supervised and weakly supervised research. Semi-supervised
research can be carried out directly using fully-supervised

datasets, while weakly supervised research must build special-
ized datasets, standard datasets in this field are still relatively
lacking.

3) There aren’t many datasets available for UDA research.
Early, Some UDA methods have been developed by combining
two public datasets. However, directly utilizing combined
datasets may result in insufficient common categories and
inconsistent annotation granularity. Recently, the LoveDA
dataset [270] that distinguished between real urban and rural
scenes has facilitated research in the UDA field.

4) There are currently a lot of datasets available in the mul-
timodal data fusion field. Under the guidance of competitions
such as the IEEE GRSS data fusion contest, many semantic
segmentation datasets fusing various data types have been
constructed in recent years.

5) The construction of standard data sets in cloud and road
detection is relatively rich. High-resolution datasets covering
Landsat, Sentinel, Gaofen, and other satellites have been
constructed in cloud detection. It has been developed in road
detection for several years, and several standard datasets have
also been built. Due to the limited length of the paper, more
datasets in these two fields can be referred to [271], [272].

VI. PERFORMANCE REVIEW

In this section, we will discuss the performance of SSRSI
methods in different research fields. It is worth noting that
some works are based on non-standard datasets, and do not ad-
equately describe the experimental settings. Most importantly,
many publications do not provide source code for their model
implementations. It is challenging to compare various methods
on a unified standard. Therefore, this survey mainly focuses
on analyzing the overall situation of various technology fields
rather than comparing a single technology.

A. Performance comparison of supervised SSRSI

Supervised learning methods occupy the majority of remote
sensing image semantic segmentation models. Table VIII
summarizes the performances of several deep learning-based
segmentation models on ISPRS 2D semantic segmentation
dataset. We can see that since attention-based methods, es-
pecially Transformer-based models, have been widely used
in SSRSI, the performance of SSRSI has improved to some
extent and achieved the best prediction accuracy. At the same
time, the models based on multi-task learning can effectively
enhance the model’s ability by integrating other related tasks.
Figure 6 provide segmentation results for ISPRS 2D semantic
segmentation dataset to compare the performance of five meth-
ods, including SDFCN, ResUNet-a, ABCNet, RSSFormer, and
UNetFormer.

B. Performance comparison of semi-supervised and weakly-
supervised SSRSI

There are few semi-supervised and weakly-supervised meth-
ods in SSRSI. Table IX and Table X show the performance of
several of the semi-supervised and weakly-supervised methods
of SSRSI, respectively. We can find that semi-supervised
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TABLE VII
SOME STANDARD DATASETS OF SSRSI TASK

Category Dataset GSD Year Sensor Modality Semantic
Category

Image Size Quantity

Fully-
supervised

ISPRS Vahingen [87] 0.09 2013 Airborne Multispectral, DSM 6 2000×3000 33
ISPRS Potsdam [87] 0.05 2013 Airborne Multispectral, DSM 6 6000×6000 38
Zurich Summer [273] 0.6 2015 QuickBird Multispectral 8 1000×1150 20
Zeebruges [274] 0.05 2015 Airborne Multispectral,

LiDAR
8 10000×10000 7

DeepGlobe [275] 0.5 2018 WorldView-2 Multispectral 7 2448×2448 1146
AIRS [276] 0.075 2019 Airborne Multispectral 2 10000×10000 1047
iSAID [265] 4 2019 JL-1, GF-2 Multispectral 16 512×512 10468
LandCoverNet [277] 10 2020 Sentinel-2 Multispectral 7 256×256 9000
LandCover.ai [278] 0.05-

0.25
2020 Airborne Multispectral 3 9000×9500,

4200×4700
41

GID [210] 4 2020 GF-2 Multispectral 5 6800×7200 150
FUSAR-MAP [279] 3 2021 GF-3 SAR 4 1024×1024 610

Semi-
supervised

MiniFrance [280] 0.5 2021 Airborne Multispectral 14 10000×10000 2121
FloodNet Dataset [281] 2021 Airborne Multispectral 10 4000×3000 2343

Weakly-
supervised

WDCD [282] 8,16 2020 GaoFen-1 Multispectral 2 250×250 206384
SEN12MS [266] 10 2020 Sentinel-1, Sentinel-

2, MODIS
Multispectral, SAR 17 256×256 541986

UDA Inria Aerial Image La-
beling [283]

0.3 2017 Airborne Multispectral 2 5000×5000 180

LoveDA [270] 0.3 2021 Spaceborne Multispectral 7 1024×1024 5987

Multi-
modal

Houston 2018 [267] 0.05-1 2018 Airborne LiDAR, Multispec-
tral, Hyperspectral

20 601×2384 504712

US3D [284] 0.3 2019 WorldView-3,
Airborne

Multispectral,
LiDAR

6 1024×1024 2783

IEEE GRSS data fusion
contest 2021

10 2021 Sentinel-1, Sentinel-
2, Landsat 8, Suomi
NPP

Multispectral, SAR,
Infrared

4 800×800 98

UBC [285] 0.5-2 2023 SuperView-1,
Gaofen-2, Gaofen-3,
Gaofen-7, WorldView
1 and 2

Multispectral, SAR,
DSM

61 600×600 800

MDAS [268] 0.25-30 2023 Sentinel-1, Sentinel-
2, DLR 3K, HySpex,
Open street map

SAR, Multispectral,
Hyperspectral, DSM,
GIS

14 1371×888 108000

Cloud
detection

L7 Irish [286] 30 2012 Landsat 7 Multispectral 4 7000×6000 166
38-Cloud [269] 30 2018 Landsat 8 Multispectral 2 384×384 17601
WHU Cloud Dataset
[287]

30 2021 Landsat 8 Multispectral 3 512×512 859

KappaSet [288] 10 2021 Sentinel-2 Multispectral 6 512×512 9251
GF1 WHU [289] 16 2017 Gaofen-1 Multispectral 4 17000×16000 108
Levir CS [290] 16 2021 Gaofen-1 Multispectral 2 1320×1200 4168
AIR-CD [101] 4 2021 Gaofen-2 Multispectral 2 7300×6908 34
HRC WHU [291] 0.5-15 2019 Google Earth Multispectral 2 1280×720 150

Road
detection

Massachusetts roads
[292]

1 2013 Airborne Multispectral 3 1500×1500 1171

SpaceNet [293] 0.3 2018 WorldView-3 Multispectral 2 3000×3000 2517
DeepGlobe road extrac-
tion [294]

0.5 2018 WorldView-3 Multispectral 2 1024×1024 8470

RoadNet [295] 0.21 2019 Google Earth Multispectral 3 20

learning methods can improve the performance of semantic
segmentation models by integrating unlabeled data. In addi-
tion, the mIoU values of all semi-supervised deep semantic
segmentation models are less than 80%, indicating that deep
semantic segmentation models’ performance is still limited in
small-scale labeled datasets. The segmentation accuracy of all
weakly-supervised semantic segmentation approaches is still
far behind that of supervised learning models, indicating that
it is still challenging to attain high segmentation accuracy
when employing weak supervision signals. In addition, the
lack of standard benchmarks and datasets hinders the progress
of weakly-supervised semantic segmentation research.

C. Performance comparison of UDA SSRSI

Table XI summarizes the experimental results of some
representative UDA methods of SSRSI. We can find that
the models trained only with source domain datasets have
very low mIoU values in the target domain in most studies,
indicating that domain drifts greatly reduce the performance
of semantic segmentation models. At the same time, domain
adaptation has dramatically improved the performance of all
methods, which shows that domain adaptation is necessary
for the distribution discrepancy between training sets and test
sets. It is worth noting that different methods used different
segmentation models. Hence, it isn’t easy to compare the
performance of UDA methods directly through the results in
their papers.
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Fig. 6. Visualization of results on the Potsdam (top) and Vaihingen (bottom) datasets.

TABLE VIII
PERFORMANCE OF SOME SEGMENTATION MODELS ON ISPRS 2D

SEMANTIC SEGMENTATION DATASET, IN TERMS OF MEAN INTERSECTION
OVER UNION (MIOU), AND OVERALL ACCURACY (OA).

Category Method Dataset mIoU(%) OA(%)

CNN-based
models

RiFCN [89] Potsdam – 88.3

ScasNet [111] Vahingen 83.9 –
Potsdam 87.78 –

SDFCN [90] Vahingen 62.38 87.79
Potsdam 70.41 86.92

TreeUNet [91] Vahingen – 90.4
Potsdam – 90.7

SBSS-MS [137] Potsdam 87.68 –

Attention-
based
DCNNs

S-RA-FCN [113] Vahingen – 88.59
Potsdam – 89.23

LANet [94] Vahingen – 89.83
Potsdam – 90.84

ABCNet [152] Vahingen 81.3 90.7
Potsdam 86.5 91.3

HMANet [122] Vahingen 82.87 90.98
Potsdam 87.28 92.21

SAPNet [98] Vahingen – 89.7
Potsdam – 91.8

RSSFormer [99] Vahingen – 90.84
Potsdam – 91.25

Transformer-
based
models

DC-Swin [119] Vahingen 83.22 91.63
Potsdam 87.56 92

UNetFormer [120] Vahingen 82.7 91
Potsdam 87.5 92

Multi-Task
methods

SDNF [108] Vahingen – 92.2
Potsdam – 92.6

ResUNet-a [106] Potsdam – 91.5

TABLE IX
PERFORMANCE OF SOME SEMI-SUPERVISED SEMANTIC SEGMENTATION

MODELS.

Category Method Dataset Labeled
data

mIoU(%)

CR Zhang et al. [156] Inria 1/8, Semi 73.26

Self-
training

Sun et al. [159] Vahingen 1/4, Full 76.22
1/4, Semi 77.53

Lu et al. [162] Vahingen 1/4, Semi 65.34

Hybrid
method

Wang et al. [163] Vahingen 1/4, Semi 68.29
1/4, Semi 77.39

Wang et al. [165] Vahingen 1/8, Full 57.91
1/8, Semi 64.56

Chen et al. [168] Massachusetts 1/5, Full 37.59
1/5, Semi 54.66

TABLE X
PERFORMANCE OF SOME WEAKLY -SUPERVISED SEMANTIC

SEGMENTATION MODELS.

Category Method Dataset mIoU(%)

Image-level
Gao et al. [174] Gaofen-2 80.6

Fang et al. [175] Vahingen 77.5
Potsdam 83.1

Point-level Lian et al. [178] Massachusetts 83.1
Lu et al. [179] Gaofen 79.1

Scribble-based Wei et al. [181] DeepGlobe 57.82

D. Performance comparison of multi-modal data fusion for
SSRSI

Table XII shows the performance of the semantic segmen-
tation models integrating the data of different modalities. We
can find that all methods have achieved high overall accuracy.
In addition, most methods show the experimental results
before and after multi-modal data fusion. Through comparison,
we can find that the accuracy of semantic segmentation of
multispectral images can be improved by fusing auxiliary,
LiDAR, and SAR images. However, we also see that fusing
SAR images can achieve greater improvement than auxiliary
and LiDAR data, possibly due to the higher data diversity
between multispectral images and SAR images.

E. Performance comparison of pretrained models for SSRSI

Table XIII shows the performance of some representative
remote sensing pretrained models in SSRSI. We can see that all
pretrained models based on large-scale remote sensing datasets
achieved the highest segmentation accuracy currently, indicat-
ing the superiority of the pretrained models. Secondly, ViT-
G12 reached the highest OA value, which shows that the large
scale of the pretrained models has improved the performance
of SSRSI. Finally, most remote sensing pretrained models
adopt a universal model architecture and pretrained methods,
which outperform most specialized semantic segmentation
methods. This demonstrates that pretrained models have broad
application prospects in SSRSI.
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TABLE XI
COMPARISON RESULTS OF SOME REPRESENTATIVE UDA METHODS OF

SSRSI.

Category Method Source
Domain

Target
Domain

mIoU(%)
Source
only

Adaptation

Image-
level

Benjdira et al.
[188]

Potsdam Vaihingen 17 30

Wittich et al.
[189]

Potsdam Vaihingen 60.8 65.9

Cai et al. [190] Potsdam Vaihingen 13.6 42.2
Vaihingen Potsdam 10.5 40.8

Feature-
level

Wu et al. [201] LoveDA
urban

LoveDA
rural

32.02 45.17

LoveDA
rural

LoveDA
urban

31.86 46.36

Lu et al. [204] SpaceNet DeepGlobe 17.69 32.05
DeepGlobe SpaceNet 21.24 22.9

Liu et al. [202] Potsdam Vaihingen 33 64.3

Ma et al. [205] Potsdam Vaihingen 37.13 63.5
Vaihingen Potsdam 12.11 48.42

Wang et al.
[206]

Potsdam Vaihingen 31.04 53.33
Vaihingen Potsdam 28.49 50.94

Output-
level

Zheng et al.
[207]

Potsdam Vaihingen 24.01 40.35
Vaihingen Potsdam 23.97 37.32

Chen et al.
[208]

Vaihingen Potsdam 21.78 49.6

Chen et al.
[209]

Potsdam Vaihingen 25.93 45.91

Li et al. [211] Potsdam Vaihingen – 63.23
Vaihingen Potsdam – 56.01

Yan et al. [212] Potsdam Vaihingen 29.2 56.8
Yan et al. [214] Potsdam Vaihingen 29.2 60.1
Zhang et al.
[215]

Potsdam Vaihingen 31.04 52.03
Vaihingen Potsdam 28.49 47.87

Zhu et al. [217] Potsdam Vaihingen 43.58 56.05
Vaihingen Potsdam 41.22 49.82

Multi-
level

Ji et al. [220] Potsdam Vaihingen 26.7 43.7
Li et al. [222] Potsdam Vaihingen 25.68 54.34

Liu et al. [223] Potsdam Vaihingen 12.98 43.3
Vaihingen Potsdam 12.82 39.61

Xu et al. [224] Potsdam Vaihingen 34.19 51.84
Vaihingen Potsdam 26.31 42.85

VII. PROBLEMS AND PROSPECTS

SSRSI based on deep learning has made significant
progress. However, we also realize that in many real appli-
cation scenarios, there are still many areas for improvement
in the performance and efficiency of various deep semantic
segmentation models. Based on the analysis of current tech-
nologies, this section discusses several challenging problems
and possible research directions.

A. Universal segmentation models

With the outbreak of SAM, building a universal segmenta-
tion model that can be applied to all segmentation (semantic,
instance, panoramic) tasks and achieve open vocabulary seg-
mentation has become a current research hotspot in computer
vision, including SAM [24], SegGPT [86], and SEEM [85]
have achieved strong segmentation capabilities and general-
ization ability. However, the performance of current univer-
sal segmentation models is not ideal in some complex and
practical scenarios [296], [297], [298]. In many cases, using
the tips of fine design is still necessary. Especially in remote
sensing, due to the complex background and the presence of a
large number of low-contrast, small, and irregular targets, the

TABLE XII
COMPARISON RESULTS OF SOME REPRESENTATIVE METHODS OF SSRSI

BASED ON MULTI-MODAL DATA FUSION.

Method What to fuse Dataset
OA(%)

Before
fusion

After
fusion

Marmanis et al.
[227]

RGB+DEM Vaihingen – 88.5

Sherrah et al. [228] RGB+DSM Potsdam 87.28 87.42
Audebert et al.
[230]

IRRG+DSM
/NDSM/NDVI

Vaihingen 89.4 89.8

Volpi et al. [231] RGB+NDVI
/NDWI/NDSM

Vaihingen – 87.83
Potsdam – 89.86

Marmanis et al. [123] RGB+DEM Vaihingen 89.4 90.3
Potsdam – 86.2

Cao et al. [233] IRRG+DSM Vaihingen – 91.5

Zheng et al. [234] RGB+
DSM/NDVI

Vaihingen 90.2 92
Potsdam 90.3 92.2

Zhou et al. [235] RGB+DSM Vaihingen 76.97 89.27
Potsdam 83.97 85.16

Liu et al. [239] RGB+LiDAR Potsdam 85.5 88.4

Audebert et al. [240] RGB+LiDAR Vaihingen 90.2 91.1
Potsdam 90 90.6

Sun et al. [241] RGB+LiDAR Potsdam 80.62 90.65
Li et al. [242] RGBIR+SAR PoDelta 87.72 93.61
Ren et al. [244] RGBIR+SAR GF-2, GF-3 80.58 89.19

Kang et al. [245] RGBIR+SAR GID, GF-3 72.16 79.05
SpaceNet6 98.31 98.6

He et al. [246] RGB+DSM Vaihingen 90.4 92.9
RGBIR+SAR MSAW 89.3 93.7

TABLE XIII
SOME REPRESENTATIVE REMOTE SENSING PRETRAINED MODELS FOR

SEMANTIC SEGMENTATION

Method Segmenatation
dataset

OA(%) mIOU(%)

GeoKR+FCN [252] Potsdam - 70.4
SatMAE+UperNet [256] SpaceNet - 78.51
RingMo+UperNet [258] Potsdam 91.74 -
RVSA-ViTAE-B+UperNet [259] Potsdam 91.22 -
Scale-MAE+UperNet [257] Potsdam - 78.9
RSP-ViTAEv2-S+UperNet [260] Potsdam 91.64 -
AST+UperNet [262] Potsdam 91.72 -
ViT-G12+UperNet [261] Potsdam 92.58 -

current universal segmentation models have not achieved ideal
results [296]. Moreover, no universal segmentation model is
specifically designed for remote sensing image segmentation.
There is an urgent need to build universal segmentation models
suitable for remote sensing images.

B. Few-shot semantic segmentation

Compared with natural images, the imaging of remote
sensing images depends on airborne or spaceborne platforms.
The image quality is easily affected by weather, imaging
angle, spatial resolution, and other factors. Acquiring large-
scale, high-quality remote sensing images is very costly. At
the same time, pixel-level semantic annotation requires much
time and labor. Transfer learning is an important way to
achieve few-shot semantic segmentation in the future. Many
remote sensing pretrained models, such as RingMo [258],
SatMAE [256], Scale-MAE [257], and ViT-G12 [261] have
achieved comparable results with specially designed models
in semantic segmentation tasks. Moreover, including semi-
supervised, weakly-supervised, and unsupervised semantic
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segmentation, can somewhat reduce the dependence on labeled
data. However, from the results in section V, we can find
that most methods, in the case of no or a small amount of
labeled data, cannot achieve satisfactory results. It is necessary
to improve further the abilities of semi-supervised, weakly-
supervised, and unsupervised learning.

C. More efficient segmentation model

The resolution of current remote sensing satellites is con-
stantly improving, the width of most RS images exceeds
10000 pixels. Processing such large-scale images poses a
considerable challenge to deep semantic segmentation models.
Meantime, semantic segmentation methods based on deep
learning often have high computational complexity. For exam-
ple, the model complexity of SETR [37] has reached 318.3M.
It is necessary to develop more efficient segmentation models.
One direction is to use lightweight backbone networks for
model training and inference. However, lightweight backbone
networks have smaller representation capabilities. The other
direction is to use pretrained models on a large-scale dataset
as the backbone network of the segmentation model. It can
reduce the calculation amount of the model in the training
stage and improve the segmentation ability. Finally, knowl-
edge distillation can build a large teacher model with high
performance and then train a small student model to match
the teacher model for model inference, which can also improve
the efficiency in the inference stage.

D. Domain generalization of semantic segmentation models

Many UDA semantic segmentation methods have been
proposed to solve the problem of domain drift. However,
we often face some complex scenes we have never seen
before. Generalizing the models trained in several different
but related domains to new scenes is a challenging problem,
that is, domain generalization [299]. The research on domain
generalization is very little in SSRSI. One stream for domain
generalization tasks is to learn domain invariant features.
The goal is to reduce the representation discrepancy between
multiple source domains in a specific feature space and enable
the learned model to generalize unseen domains. The second
stream is feature disentanglement, which decomposes a feature
representation into understandable sub-features.

E. More effective multimodal fusion methods

Currently, the means of earth observation are increasingly
diversified. SAR, hyperspectral, and other means are develop-
ing rapidly. The semantic segmentation research using multi-
source data fusion has advanced significantly. However, the
results in section V show that the performance improvement of
most deep learning-based segmentation methods using multi-
modal data is still limited. One reason is the lack of diversity
among multimodal data and the inability to effectively extract
complementary information, fusing diverse data sources and
adopting adaptive fusion methods is an effective way. On the
other hand, due to the inexplicability of neural networks, the
complementary information extracted by the deep semantic

segmentation models from multi-modal data is often unclear,
affecting the further improvement of multimodal data fusion.
By tracking the training process of the models, explaining the
models through visualization methods can provide directions
for further improvement of semantic segmentation models.

F. More abundant application modes

Although remote sensing image segmentation has been
applied in land use/land cover mapping, road surface ex-
traction, building extraction, green plastic cover, and other
fields, due to the complexity of remote sensing application
scenarios, the accuracy and reliability of the current deep
semantic segmentation methods are difficult to ensure fully au-
tonomous operation in most real-world applications. To enable
the application of the semantic segmentation models in more
scenarios, we must constantly enrich the application modes
of SSRSI in combination with the real scene particularity and
task requirements. For example, to meet the high-reliability
requirements of environmental monitoring, we can use the
machine for preliminary processing to ensure a high recall.
Then, professionals can conduct secondary confirmation.

VIII. CONCLUSION

Deep learning has made explosive development in the past
decade, immensely stimulating the research and application of
deep learning in SSRSI. This paper studied the challenges of
SSRSI compared with natural image semantic segmentation
and reviewed the research status of SSRSI based on deep
learning by providing an in-depth analysis of existing methods.
Then we described the datasets and metrics commonly used
in semantic segmentation and reviewed the quantitative results
and experimental performance of some representative models
of SSRSI. Finally, we discussed several potential directions for
future research. We hope that this survey can provide valuable
insights to researchers and inspire more progress in the future.
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