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3D building mapping from airborne LiDAR data
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Abstract—This study introduces an automated, open-source
workflow for large-scale 2D and 3D building mapping using
airborne LiDAR data. Uniquely, our workflow operates entirely
unsupervised, eliminating the need for any training procedures.
We have integrated a specially tailored digital terrain model gen-
eration algorithm into our workflow to prevent errors in complex
urban landscapes, especially around highways and overpasses.
Through fine rasterization of LiDAR point clouds, we’ve en-
hanced building-tree differentiation. Additionally, we’ve reduced
errors near water bodies and augmented computational efficiency
by introducing a new planarity calculation. Our workflow offers
a practical and scalable solution for the mass production of
rasterized 2D and 3D building maps from raw airborne LiDAR
data. Our method’s robustness has been rigorously validated
across a diverse dataset in comparison with deep learning-
based and hand-digitized products. Through these extensive
comparisons, we provide a valuable analysis of building maps
generated via different methodologies. We anticipate that our
highly scalable building mapping workflow will facilitate the pro-
duction of reliable 2D and 3D building maps, fostering advances
in large-scale urban analysis. The source code for our workflow
is publicly accessible at: https://github.com/hunsoosong/airborne-
lidar-building-mapping.

Index Terms—Building mapping, airborne laser scanning,
unsupervised, 3D building, open-source

I. INTRODUCTION

A. Current State of Large-area 2D Building Mapping

BUildings are key structures in which numerous human
activities unfold. They offer invaluable insights into hu-

man practices and the subsequent environmental impacts [1].
Building maps, especially those derived from remote sensing
imagery, are crucial to numerous fields, including disaster
management, urban ecology, smart city planning, population
estimation, and humanitarian aid [2]–[7]. However, the in-
herent uncertainties and errors in building maps can mislead
studies reliant on them. Thus, the remote sensing community
is dedicated to enhancing the quality of such maps.

Publicly available building maps typically provide only
2D information due to dependence on optical imagery. For
instance, OpenStreetMap (OSM) provides extensive spatial
coverage but lacks 3D information and suffers from incon-
sistencies in completeness, accuracy, and data vintage [8],
[9]. Authoritative maps, often seen as ground-truth [10], [11],
guarantee accuracy but typically lack 3D information and are
limited in spatial coverage due to high production costs.

Since the rise of deep learning in building extraction, high-
lighted by the SpaceNet challenge [12], deep learning-based
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methods have dominated recent literature [13]–[15]. Yet, deep
model performance can vary based on training conditions and
target areas [16], [17]. Thus, creating a universally dependable
model remains elusive, despite advances in domain adaptation
[17], [18] and sample refinement [19].

One significant milestone in large-area building mapping
was the release of Microsoft Building Footprints [20]. This
project produced the largest machine-generated building foot-
prints, utilizing the EfficientNet model [21] trained on millions
of building labels and corresponding satellite images. While
this initiative marked a major advancement by offering the
first continental-scale open-building maps, the quality can
be inconsistent because it used diverse optical images with
varying conditions for the mapping, similar to the challenges
faced by OpenStreetMap [22]. Given that the state-of-the-art
accuracy of deep learning-based mapping with optical imagery
doesn’t yet match authoritative maps—even with millions of
labels—it underscores the need for further innovations to
bridge the accuracy gap.

B. Towards Large-area 3D Building Mapping

Beyond the concern of building map accuracy, it’s essential
to recognize that buildings are inherently 3D entities. As cities
become denser and buildings taller, a 3D perspective is crucial
for understanding urban developments and their environmental
impacts [4], [23]. These maps enhance research in various
areas such as urban climate studies [24], disaster management
[25], population estimation [26], [27], and the assessment of
other forms of land classification [28]. It can also foster new
research domains in various smart city applications [29]–[33].

Airborne laser scanning (ALS) stands out as the prime
technique for obtaining comprehensive 3D building details.
Even with the associated costs, ALS stands as a preferable
choice over optical or SAR sensors [23], [34]–[36], which of-
ten fall short in delivering precise and detailed 3D data. When
in-depth 3D building data is essential and LiDAR promises
more accurate 2D building delineations, ALS emerges as the
preferred choice for both 2D and 3D building mapping. This
is particularly due to the scalability and accuracy challenges
observed with optical image-based deep learning approaches
[12], [16]. Hence, if a robust workflow for 2D and 3D building
mapping from ALS is established, LiDAR-based building
mapping could be more appealing than other methods in terms
of both accuracy and cost.

In recent decades, many building mapping algorithms using
airborne LiDAR data have been developed. These include un-
supervised and traditional machine-learning methods propelled
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by competitions, notably by the ISPRS community [37], [38].
While these methods have demonstrated effectiveness with
smaller datasets, their scalability is uncertain due to the limited
diversity and spatial extent of their study areas, raising trans-
ferability concerns [17], [39]. Also, the implementation details
of many such algorithms are not publicly shared, hindering
widespread application and further development. Furthermore,
post the rise of deep learning, their performances have been
observed to lag behind in general [40], [41]. Meanwhile,
there’s also a rising demand in extracting detailed building
structures, like roofs and facades, for precise “3D modeling”
[42]–[53]. While these methods yield refined 3D building
models fit for standards like CityGML [54] or BIM [55], the
intricate detail focus often compromises the scalability vital
for large-area building mapping projects.

This paper presents an end-to-end, open-source workflow
specifically designed for the mass production of rasterized 2D
and 3D building maps. Utilizing discrete point cloud data from
standard topography ALS, our workflow produces reliable
2D and 3D building maps without the need for repetitive
parameter tuning and surpasses the accuracy of Microsoft
Building Footprints. Operating unsupervised, it leverages the
inherent physical properties of buildings: ground-standing
objects with laser-impermeable and smooth surfaces. This
physical-property-driven approach ensures consistent, reliable
results and minimizes unexpected errors—a crucial aspect for
large-scale mapping. Through rigorous validation with a vast
and varied dataset, we confirmed that our approach is not
only computationally but also operationally scalable, well-
positioned to facilitate large-area 3D building mapping.

The main contributions can be summarized as follows.
• We present an open-source workflow that can facilitate

the mass production of rasterized 2D and 3D building
maps for large-area using airborne LiDAR data.

• Our physical-property-driven workflow produces building
maps with greater accuracy than Microsoft Building
Footprints, ensuring robust and consistent performance
across varied landscapes without parameter tuning.

• Our study provides a comprehensive comparison of build-
ing maps derived from different methods: LiDAR-based
unsupervised, deep learning with multiple sources (+
Microsoft Building Footprints), and hand-digitization.

The paper is structured as follows: Section II details the
proposed workflow. Section III presents experimental results
and in-depth error analysis. Section IV discusses computa-
tional complexity, parameter impact, and workflow limitations.
Section V concludes the study.

II. METHODOLOGY

A. Overview
The proposed workflow generates rasterized 2D and 3D

building maps from the raw ALS point clouds. The work-
flow operates in a simple but robust rule-based approach
by exploiting the physical properties of buildings, which
are ground-standing and have laser-impermeable, relatively
smooth surfaces. The workflow has been optimized through
iterative refinements. Figure 1 summarizes the workflow and
its optimization procedures.

B. The proposed workflow
1) From ALS point clouds to Finely Rasterized DSM: Our

building mapping workflow starts from the raw point cloud
sourced from a typical ALS system. These point clouds depict
3D coordinates captured by airborne LiDAR sensors. Given
that these data points only represent a fraction of the earth’s
surface, there’s a natural limitation to their representation.

Data points can be sparse due to factors like flight con-
figuration and the laser’s interaction with ground objects. To
manage this inconsistency, point clouds are usually converted
to a gridded format known as the digital surface model (DSM).
However, during this transformation, certain areas, or grids,
might not register a LiDAR point. A common method to avoid
these gaps is to use a coarser ground sampling distance (GSD)
ensuring most grids have a LiDAR point [40], [56]–[58]. Yet,
generating a DSM with a coarse grid can result in data loss
and blur distinctions between buildings and trees.

Our approach employs “fine rasterization” for DSM cre-
ation. This method projects point clouds onto finely gridded
surfaces and fills in gaps later. Even if this means more gaps
initially, it helps prevent data loss from overlapping LiDAR
points that happens more when we rasterize DSM with a
coarse grid for. Also, when multiple points land on a single
grid, we opt for the lowest elevation point. This optimizes the
distinction between buildings and trees, especially when lasers
penetrate through tree canopies.

The nuances of DSM, as influenced by the rasterization
technique, are exemplified in Figure 2. Figure 2(a) is an
RGB image sourced from Google Earth. Figure 2(b) displays
the LiDAR point occupancy, highlighting grids occupied by
LiDAR points in white, with unoccupied grids in black. These
black grids indicate the DSM’s void areas before interpolation.
Figure 2(c-d) contrast the DSMs produced by coarse and fine
rasterizations. The former takes the highest elevation when
multiple points overlap, while the latter chooses the lowest.
Each DSM has a GSD of 2-meter and 0.5-meter, respectively.
The images clearly depict the challenge of coarse rasterization
in differentiating between buildings and trees. Conversely,
fine rasterization retains building shapes more accurately and
depicts trees as distinct, scattered points, emphasizing the
penetration difference between buildings and trees.

2) From Finely Rasterized DSM to DTM* and NDHM: Our
workflow characterizes a building as an object that stands on
the ground. This means that buildings are relatively tall and
display a distinct height difference from the adjacent ground at
their boundaries. Simply calculating the relative height above
the nearby ground and applying a mask based on a certain
height elevation can effectively identify building candidates.
This identification is facilitated by creating a digital terrain
model (DTM). When this DTM is subtracted from the DSM,
the result is a normalized digital height model (NDHM),
representing height above ground.

Our workflow adopts a DTM generation method, “DTM*”,
from [59], chosen for its computational efficiency and ability
to preserve detailed object boundaries. DTM* classifies
an object as a region fully enclosed by steep slopes. The
process initiates with the creation of a break-line map
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Fig. 1: Overview of the methodology
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Fig. 2: Comparison of two DSM rasterization methods: (a)
RGB image, (b) LiDAR occupancy map, (c) coarsely raster-
ized DSM, (d) finely rasterized DSM.

that delineates steep slopes. Following this, a connected
component algorithm is employed, filtering regions fully
surrounded by steep slopes as objects while ensuring all
ground sections are interconnected smoothly. This unique
object-wise filtering performed by DTM*, which outlines
the boundaries of ground-standing objects using the same
DSM, enhances computational efficiency and helps to avert
common errors often associated with large buildings and their
boundary definitions. Another crucial reason for adopting
DTM* is that it considers bridges and overpasses as ground,
unlike typical DTM generation methods [60]. Figure 3
showcases a comparison between DTM* and a reference
DTM (“DTM(R)”) obtained from the U.S. Geological Survey.
DTM* uniquely identifies overpasses as ground, setting them
apart from buildings in the subsequent NDHM and Building
Candidate Maps, a distinction not made by the reference
DTM. This distinction is vital, as, without it, bridges and
overpasses might be mistakenly identified as buildings in
subsequent workflow stages.

3) From NDHM to Building Candidates Map, 2D and 3D
Building Maps: Building Candidates Map is generated by
applying a certain Height Threshold (HT) to the NDHM.
Building Candidates Map will represent all objects that are
relatively taller than the nearby ground as a binary format, and
the objects might be buildings, non-building entities, or noise.
To distill actual buildings from these candidates, our workflow
executes four sequential operation: (1) water body masking,
(2) morphological filtering, (3) planarity-based filtering, (4)
boundary refining.

The first operation is the water body masking. This is
essential to filter out noise from water bodies that might
mistakenly be identified as buildings. This method employs

a concept similar to the studies in [61], [62], leveraging the
lower point density over water surfaces. However, in urban
settings, tall structures can similarly reduce point density due
to occlusion. Recognizing this, we’ve incorporated specific
adjustments. Our methodology classifies surface water based
on local LiDAR point density within a 9 by 9 window on a 0.5-
m resolution DSM. If the center pixel’s density falls 2 sigma
below the average, it’s marked as water. We’ve enhanced this
process with two further rules: firstly, we eliminate smaller
water bodies (those under 1,000 m2) from masking, since
they’re likely obscured by tall buildings. Secondly, we enforce
a 5-meter water buffer on larger water bodies, minimizing the
risk of misidentifying buildings due to adjacent water noise.

The second operation utilizes morphological filtering, capi-
talizing on size differences between buildings and relatively
smaller entities such as trees. Due to LiDAR’s ability to
penetrate trees but not solid building roofs, trees appear as
noise in the Building Candidates Map, a contrast emphasized
with fine rasterization, as shown in Figure 2. Therefore, we
apply erosion to the Building Candidates Map to remove
small objects, followed by dilation to restore any remaining
eroded pixels. Since mapping is binary, balancing omission
and commission errors is key. The filter’s kernel size (K1)
affects this balance: a larger K1 reduces commission errors
but can erase small buildings, while a smaller kernel does the
opposite. We discuss K1’s implications in Section IV-B.

The third operation is planarity-based filtering, leveraging
the relatively consistent height feature of buildings in NDHM.
While previous methods have employed co-occurrence matrix-
based [63], [64], eigenvalue-based [65], [66], and Entrophy-
based [40] strategies, we’ve used a more efficient approach to
determine local height variations. Firstly, our workflow rounds
the NDHM to integer values and counts the unique integers
within a square kernel (K2) on the NDHM, creating a surface
roughness layer as illustrated in Figure 1. Each pixel in this
layer shows the number of unique integer values in a K2-
sized window. A pixel is marked “planar” if its roughness
falls below the Roughness Threshold (RT). For instance, with
K2 set at 5 and RT at 4, if a 5 by 5 window on the rounded
NDHM has fewer than 4 unique integers, the central pixel
is designated planar. The algorithm then determines the “pla-
narity” for each building candidate, which is the proportion of
planar pixels in the candidate. The planarity layer in Figure
1 displays these values. Assuming that building roofs have a
planar surface compared to non-building objects, we employ
a planarity-based filtering algorithm to exclude objects with
planarity values less than a specified ratio, termed the Dense
Tree (DT) value. This value is employed as a descriptor to
differentiate dense trees from building candidates. A more
detailed description of DT is provided in Section IV-B.

The fourth operation is boundary refining. We apply a
dilation kernel of size K3 to refine LiDAR’s underestimated
building boundaries. This deformation and underestimation
are detailed in Section IV-B. Although intricate boundary
refining methods [33], [67], [68] might delineate building
boundaries more precisely, often at the expense of requiring
shape constraints, we prioritize efficiency and scalability by
opting for the simpler dilation approach.
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Fig. 3: Comparison of DTM* and a reference DTM and their respective results. DTM* can prevent overpasses from becoming
building candidates.

Fig. 4: From NDHM to Building Candidates Map, 2D and 3D Building Maps. The color in Difference Map indicates which
operation caused the difference between Building Candidates Map and 2D Building Map.

Finally, the workflow generates a 3D building map by
extracting building pixels of the 2D building map from the
NDHM. Figure 4 shows a part of the workflow from NDHM
to 2D and 3D Building Maps. “Difference Map” represents
the difference between Building Candidates Map and the 2D
Building Map. The color in Difference Map indicates which
operation caused that difference.

By default, our workflow generates building maps of 0.5-
meter resolution as default, and its parameters have been
optimized through extensive experiments. HT was set as 1.5
meters. The kernel size (K1) of morphological filters was set
as 7 (a 7 by 7 pixels window). A 5 by 5 pixels window was
used for K2. RT and DT were set as 4 and 0.1, respectively.
K3 was set as a 5 by 5 pixels window by default. While
the optimal parameter combination may differ based on the
specific dataset, these default settings have proven to be robust.

III. EXPERIMENTAL RESULTS

A. Optimization and Evaluation

We tested the proposed workflow on datasets from Denver,
Colorado (Figure 5), and New York City (NYC), New York
(Figure 6), covering an area exceeding 550 km2. These datasets
included authoritative building maps and Microsoft Building
Footprints for comparison. The LiDAR data were sourced from
the U.S. Geological Survey’s 3DEP program.

The vastness of our study area made the conventional
evaluation - providing averaged metrics across the entire area -
less effective. Thus, in addition to the conventional evaluation
metrics, we introduced a tiling comparison method for more
comprehensive evaluation. This method segmented each city
into tiles of 0.5 km by 0.5 km, yielding 784 tiles for Denver
and 1428 for NYC. For each tile, we calculated the IoU and
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Fig. 5: Study area of Denver (14-km by 14-km)

Fig. 6: Study area of New York City (NYC) (17-km by 21-km,
New Jersey is excluded)

ranked them, identifying and emphasizing key disparities to
enhance comparative analysis.

Three maps were compared: LiDAR building map (result
of our workflow), Microsoft Building Footprints, and the
authoritative ground-truth. Please note the time discrepancies
across different maps. The details are summarized in Table I.

TABLE I: Summary of the Dataset

Parameter Denver NYC

Area 196 km2 357 km2

LiDAR Sensor Leica TerrainMapper Leica ALS70
Data Collection May - Sep 2020 Mar - Apr 2014
Point Density 4-pt/m2 5-pt/m2

Ground-truth Vintage 2018 Feb 2022
MS Footprints Vintage 2018-2019 Mostly 2019
No. of Tiles 784 1428

B. Results of the Denver dataset

1) Conventional quantitative results: As shown in Table II,
our workflow outperformed Microsoft Building Footprints in
all metrics. Intersection over Union (IoU) and recall were
particularly higher than that of Microsoft Building Footprints.
Considering the LiDAR building map was generated in a
fully unsupervised way with a single default parameter set,
the result shows that our workflow can produce a building
map more accurately than Microsoft’s deep learning-based
method as long as a decent quality of ALS data is available.

2) Tiling comparison: From Denver’s 784 tiles, we ex-
tracted 5 tiles that ranked within the top 10% showing notable
map differences. Figure 7 presents RGB images alongside

TABLE II: Conventional quantitative results of the Denver
dataset

IoU Precision Recall F1-score

Our workflow 81.8 91.2 88.8 90.0

Microsoft’s 77.3 90.4 84.2 87.2

their 3D building map, LiDAR building map (produced by
our workflow), Microsoft Building Footprints, and ground-
truth. The RGB imagery is sourced from National Agriculture
Imagery Program (NAIP)’s orthoimagery taken in 2015. Given
the 2015 vintage of the RGB imagery, it is anticipated that
buildings evident in both the RGB image and LiDAR building
map would also feature in Microsoft Building Footprints,
taking into account their respective vintages (see Table I).
Rankings presented above the RGB images offers insight into
the degree of difference of the tile among across all 784 tiles
of the Denver dataset. IoU values, which compare both the
LiDAR Building Map and Microsoft Building Footprints to
the ground truth, are also presented.

Distinctive performance disparities were evident with large
and uniquely-shaped buildings. Microsoft’s footprints had
difficulties with vast structures such as shopping malls and
warehouses, as well as with buildings having unique contours,
like sports complexes. These challenges could arise from a
lack of representative training data for these less common
building types, or the constrained input dimensions typically
used by deep learning models for semantic segmentation. For
instance, there’s a possibility that a model’s input only captures
the central portion of a large building’s roof, depriving the
model of crucial information for effective decision-making.

Our approach consistently outperformed in terms of IoU
values, even in residential areas. It capably identified auxiliary
units such as garden sheds or detached garages, elements often
overlooked by Microsoft, as exemplified in the fifth row of
Figure 7. This might be attributable to the resolution of optical
images, canopy obstructions, or a deficiency in training data
for these units. Comprehensive discussions on auxiliary units
are provided in Section III-D.

C. Results of the NYC dataset

1) Conventional quantitative results: As tabulated in
Table III, the LiDAR building map displayed superior
accuracy compared to Microsoft Building Footprints across
all metrics except for precision. The lower precision can
largely be attributed to the building boundary refinement
undertaken with dilation kernel K3. A more comprehensive
discussion regarding this is presented in Section IV-B. These
findings emphasize that building maps produced by our
workflow are consistently more accurate than Microsoft
Building Footprints, even when factoring in the broader
temporal discrepancy with the ground-truth.

2) Tiling comparison: From the 1428 tiles of NYC, we
chose five tiles that show pronounced discrepancies in different
building maps. Figure 8 displays RGB images alongside their
3D building map, LiDAR building map, Microsoft Building
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Fig. 7: Comparative visual assessment of five selected tiles from the Denver dataset. Displayed are the RGB images, our 3D
building map outputs, LiDAR building maps, Microsoft Building Footprints, and the actual ground-truth. Our workflow precisely
delineates large and uniquely shaped buildings, while the deep learning-based output (i.e. Microsoft Building Footprints)
sometimes introduced unexplainable artifacts in such structures.

TABLE III: Conventional quantitative results of the NYC
dataset

IoU Precision Recall F1-score

Our workflow 75.9 80.3 93.2 86.3

Microsoft’s 72.8 84.6 83.9 84.3

Footprints, and ground-truth. The RGB imagery is sourced
from NAIP’s orthoimagery taken in 2015. Given this vintage,
buildings present in the RGB image and ground-truth should
also appear in the 2019 Microsoft Building Footprints. Similar
to the Denver scenario, the RGB image ranking highlights key
differences between the LiDAR building map and Microsoft
footprints. IoU values, which compare the LiDAR and Mi-

crosoft building maps with the ground truth, are also displayed.
Unlike the Denver dataset, most top-ranked errors in New

York arose from the sea. Microsoft’s map frequently exhibited
artifacts in water bodies, an issue also observed by [22]. On
the other hand, our LiDAR map rarely showed errors over
water bodies, due to a water body masking process. However,
it did occasionally identify large ships as buildings. Errors near
coastlines sometimes emerged due to DTM inaccuracies; these
are elaborated upon in Section IV-C.

On land, mirroring Denver’s findings, many Microsoft
Building Footprint errors related to sizable or uniquely con-
toured structures. For instance, airports were problematic,
perhaps due to scarce training data samples. The LiDAR map
occasionally misinterpreted airplanes as buildings due to their
similar physical properties to buildings in LiDAR signatures.
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Fig. 8: Comparative visual assessment of five selected tiles from the NYC dataset. Displayed are the RGB images, our
3D building map outputs, LiDAR building maps, Microsoft Building Footprints, and the actual ground-truth. Our workflow
sometimes misidentifies large, non-building objects, such as airplanes or ships, as buildings. Conversely, the deep learning-
based output sporadically produced artifacts over water bodies and other errors that are difficult to clearly explain.

Other misclassifications included trailers and cargos.
Temporal dataset discrepancies also caused errors. An in-

stance from Figure 8’s fourth row shows commission errors on
the LiDAR building map, attributed to the temporal gap. We
found that some buildings in the LiDAR building map were
demolished after the LiDAR scanning. Microsoft’s method,
however, failed to detect those buildings, which must have
existed at the time of the mapping. This failure might be either
due to the unique shape of the buildings or the non-availability
of cloud-free optical imagery. The fifth row of Figure 8 reveals
a marked disparity between the building maps in the downtown
area. The discrepancy in Microsoft’s mapping doesn’t seem to
arise from either the temporal differences or the architecture
of the buildings.

In contrast to these unexpected errors in Microsoft’s image-

based approach, the errors in the LiDAR building maps are
generally more explainable. This underscores the merit of
our method, which centers on the physical representations of
buildings rather than intricate modeling that may not always
generalize well. Also, as LiDAR employs an active sensor,
its accuracy isn’t as susceptible to atmospheric interferences
like clouds. This positions LiDAR-based building mapping at
a distinct advantage over its optical image-based counterparts.
Because the errors in our method are more discernible and
foreseeable than in image-based techniques, there’s a substan-
tial reduction in the uncertainties tied to building maps. This
clarity is crucial as it renders the errors more manageable,
bolstering the reliability of subsequent analyses that leverage
these maps. One limitation of our approach is that it can
generate “fat” buildings, as depicted in the fifth row of Figure
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8. This issue stems from the building boundary refinement
process using dilation (K3), which also primarily accounts for
the lower precision of the LiDAR building map in comparison
to Microsoft Building Footprints, as indicated in Table III. A
more discussion on K3 can be found in Section IV-B.

D. Error Analysis by Building Size

1) Omission error: We observed both maps from our
workflow and Microsoft’s method often miss small buildings.
To evaluate the performance, focusing on small-to-medium-
sized buildings (< 800 m2), we counted the number of cor-
rectly detected buildings for different building areas. Here, the
building area refers to the area of each building’s footprint.
We defined a “correctly detected building” as an instance
that exists in the ground-truth and its overlapped portion with
generated building instances is more than 50%. Figure 9 and
Figure 10 show the number of correctly detected buildings
according to the building area for the Denver dataset and NYC
dataset, respectively. The “Number of Buildings” in those
graphs refers to the number of buildings in ground-truth for
each building area category. Only buildings smaller than 800
m2 were illustrated as the performance significantly varied
in relatively small buildings (< 100 m2) and the trend was
generally maintained for larger buildings.

In the Denver dataset, both maps often omit buildings
under 50 m2, like sheds or detached garages. Conversely,
the NYC dataset shows a higher detection rate because its
authoritative map doesn’t classify storage sheds as buildings,
unlike Denver’s. Since our workflow uses an erosion with K1
= 7, it removes some buildings under around 10 m2, mostly
storage sheds. While reducing K1 can detect smaller buildings,
it risks misclassifying non-building objects. This K1 trade-off
is discussed in Section IV-B.

The significant difference between the datasets highlights
the potential inconsistency in building definitions across var-
ious authoritative maps from different states and countries.
In light of this, our physical-property-driven, deterministic
workflow presents an avenue for producing more standardized
building maps.

Fig. 9: The numbers of correctly detected buildings and the
number of buildings in the ground-truth according to the
building area (0-800 m2) in the Denver dataset

Figure 11 provides the building counts in ground-truths of
the two datasets. Each category is to represent the different
types of buildings. The categorization consists of four classes
with different ranges of building area: 0-50 m2 (“accessorial
class”), 50-500 m2 (“residential class”), 500-10,000 m2 (“com-
mercial class”), and 10,000 m2– (“mega-size class”).

The first category represents accessorial buildings. It can
include storage sheds, detached garages, trailers, portable
cabins, and so forth. Some building types in this category
are often excluded in some classification systems. Indeed,
the authoritative map of Denver categorized the storage shed
as a building while that of NYC excluded it. The second
category, the residential class, represents most of the typical
residential buildings. This category accounts for the majority
of buildings. The commercial class, represents large commer-
cial buildings. This category may include office buildings,
retails, hospitals, warehouses, and industrial buildings. The last
category represents mega-size buildings such as large shopping
malls, factories, train stations, airports, and sports complexes.
Based on this categorization, we compared the detection per-
formances of our workflow and Microsoft’s method. Although
the type of building cannot be classified by only their areas,
this categorization can provide a sense of the difference in
performance according to the building types.

Table IV and Table V show the detection (true positive) rate
of each category respectively for each dataset. The detection
rate refers to the ratio of the number of correctly detected
buildings to the number of buildings in ground-truth.

TABLE IV: Detection (true positive) rates according to the
building category in the Denver dataset

Detection rates (%)

Accessorial- Residential- Commercial- Mega-size

Our workflow 25.8 96.1 98.4 97.6

Microsoft’s 20.6 93.3 97.1 92.4

In the Denver dataset, both methods struggled with the
accessorial class. But in the NYC dataset, our method had
a 67.1% detection rate compared to Microsoft’s 22.7% in
this class. This variance is attributed to differing classification

Fig. 10: The numbers of correctly detected buildings and
the number of buildings in the ground-truth according to the
building area (0-800 m2) in the NYC dataset
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Fig. 11: The number of buildings in ground-truths according
to the building area

TABLE V: Detection (true positive) rates according to the
building area in the NYC dataset

Detection rates (%)

Accessorial- Residential- Commercial- Mega-size

Our workflow 67.1 97.4 97.7 96.1

Microsoft’s 22.7 88.4 94.2 89.0

systems: Denver labeled storage sheds (a significant part of
the accessorial class) as buildings, while NYC did not. Since
both methods found it challenging to detect these sheds, they
both yielded low accessorial building detection rates in Denver.
However, in NYC, where sheds weren’t classified as buildings,
the performance disparity between the two methods was stark.

While the exact building type statistics were unclear,
there was a notable distribution difference between the two
datasets. In Denver, 52.0% of accessorial class buildings were
under 20 m2, compared to just 17.9% in NYC. Given that
most storage sheds are below 20 m2, it’s evident that the
classification system differences contributed to the significant
performance gap in the accessorial class. Except for the
accessorial category, our workflow produced a detection rate
of over 95.0% in all cases.

2) Commission error: Similar to the omission error, we
tabulated commission (false positive error) rates of the two
methods per building class. Table VI and Table VII show
the commission rates respectively for the two datasets. The
commission rate refers to the number of incorrectly detected
buildings out of the total number of buildings in ground-truth.
The “incorrectly detected building” is defined as an instance
that exists in generated building map but its overlapped portion
with the ground-truth is less than 50%.

Overall, our workflow had higher commission errors com-
pared to Microsoft’s. The commission rate was especially
elevated for the accessorial class in the NYC dataset. This
correlates with the LiDAR building map’s high detection rate
in this class. In essence, our method detected more accessorial
buildings than Microsoft’s, leading to more positives, whether
true or false.

Commission error accounts for a relatively small portion
of the total error in both methods. The time discrepancy to
ground-truth accounts for some portions of the reason. Except
for this, most of the commission errors from our workflow
were overhanging trees or DTM-related artifacts. Detailed
analyses of these errors are described in Section IV-C.

TABLE VI: Commission (false positive) rates according to the
building area in the Denver dataset

Commission rates (%)

Accessorial- Residential- Commercial- Mega-size

Our workflow 4.3 2.6 2.8 1.2

Microsoft’s 2.4 0.6 0.8 0.6

TABLE VII: Commission (false positive) rates according to
the building area in the NYC dataset

Commission rates (%)

Accessorial- Residential- Commercial- Mega-size

Our workflow 19.1 4.6 2.5 6.0

Microsoft’s 6.5 1.5 1.3 1.8

E. Compared to Other Deep Learning Methods

In earlier evaluations, our proposed method demonstrated
superior accuracy in extracting building footprints when com-
pared to Microsoft Building Footprints. It’s important to note
the differences in data sources: our approach utilizes airborne
LiDAR data, whereas Microsoft’s employs satellite imagery.
To address potential concerns regarding this difference in data
sources, this section delves into a comprehensive comparison,
covering methods from those that use LiDAR data to those
employing RGB-NIR imagery.

As a robust benchmark, we employed U-Net [69], which has
proven superior to traditional, non-deep learning techniques in
building extraction tasks [12], [40], [41]. Drawing from the
literature [40], [70]–[73], we adopted the following input data
configurations:

1) Only nDSM
2) nDSM + LiDAR Intensity
3) nDSM + RGB-NIR
4) nDSM + LiDAR Intensity + RGB-NIR
While the incorporation of RGB-NIR imagery arguably

offers an advantage—since it’s an additional data source our
workflow doesn’t harness—we included this to establish a
highly competitive baseline.

We subjected the deep learning models to two evaluation
scenarios:

1) Same City Scenario: Here, both training and test datasets
come from the same city. For this setup, both Denver and
NYC datasets were split into Western (W) and Eastern
(E) regions, as delineated in Figure 12. The evaluation
involved training the model on the West and testing on
the East, later reversing these roles. This was executed
for both cities.

2) Different City Scenario: In this scenario, the model
was trained using the entire Denver dataset (W+E) and
subsequently tested on the full NYC dataset (W+E), and
the reverse. Although this allows the model to leverage
a larger set of training samples, it poses increased
challenges compared to the same city scenario, owing
to a more distinct shift in data distribution.

While leveraging randomly distributed training samples
from the same city will enhance deep learning results, our
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TABLE VIII: Comparative performance summary of the U-Net model, Microsoft Building Footprints, and our workflow. The
table illustrates U-Net’s mean IoU values across different input configurations (nDSM, LiDAR Intensity, and RGB-NIR) and
evaluation scenarios (Same City and Different City)

Same City Scenario Different City Scenario

Test Area Denver NYC Denver NYC
(W) (E) (W) (E) (W + E) (W + E)

Train Area Denver (E) Denver (W) NYC (E) NYC (W) NYC (W+E) Denver (W+E)

U-Net (inputs are listed below)
nDSM 77.1 ± 0.9 77.9 ± 0.8 57.5 ± 5.5 64.5 ± 2.3 48.5 ± 9.6 63.3 ± 1.8
nDSM+Intensity 75.8 ± 2.1 77.8 ± 0.6 59.4 ± 4.3 63.9 ± 1.9 47.7 ± 5.3 60.1 ± 3.5
nDSM+RGB-NIR 79.4 ± 0.6 82.3 ± 0.4 73.9 ± 2.8 68.1 ± 4.1 57.2 ± 3.7 63.2 ± 1.6
nDSM+Intensity+RGB-NIR 80.5 ± 0.3 83.1 ± 0.4 73.4 ± 0.6 71.5 ± 0.3 57.7 ± 4.7 59.7 ± 4.6

Microsoft’s 75.5 79.4 73.6 71.6 77.3 72.8
Our workflow 80.9 82.9 77.6 73.7 81.8 75.9

Fig. 12: Graphical representation of Denver and NYC high-
lighting the division into Western (W) and Eastern (E) sectors
for the purpose of evaluation in Table VIII and Figure 13

scenarios were designed to reflect the expected real-world per-
formance of deep models—a commonly embraced approach
since training samples aren’t always feasibly collected from
all regions.

For our U-Net model, we used a direct approach: all inputs
were stacked and processed via the classic U-Net structure.
This decision was rooted in our intent to set a basic yet
clear benchmark for comparison. While more sophisticated
techniques like custom deep learning modules or multi-stream
fusion methods might offer enhanced results [71]–[73], our
main goal was to establish a transparent baseline to gauge the
effectiveness of our proposed method. For optimization, we
used the Adam optimizer, utilized a batch size of 16, and tested
various learning rates (1× 10−3, 1× 10−4, 1× 10−5) across
five iterations for each scenario. We applied early stopping
with a patience of 5.

The mean IoU from the optimal learning rate is presented
in Table VIII, contrasting it with the IoUs from Microsoft’s
Building Footprints and our method. Results reaffirmed the
robustness of our method. Although alternative deep learning
models with expansive training data might potentially surpass
the current U-Net benchmark, the significance of our work-
flow’s competitive edge remains undiminished. Notably, con-
trasting our results with the Different City Scenario, it becomes
evident that while U-Net suffers from data distribution shifts,

Fig. 13: Spatial distribution of IoUs for three distinct methods:
our workflow, U-Net, and Microsoft’s method, using datasets
from New York City and Denver. Each dataset is represented in
a 20 by 20 grid. The heatmap intensity indicates the IoU value,
with associated mean and standard deviation values presented
below. Differences in uniformity across the methods highlight
variations in model performance.

our approach remains robust, offering noteworthy advantages.
Figure 13 depicts the spatial distribution of IoUs for three

different methods: our workflow, U-Net, and Microsoft’s
method. Each dataset, both for New York City and Denver, was
divided into a 20 by 20 grid. Building maps generated from
these methods were compared to the ground-truth, resulting
in the IoUs for each grid being visualized as a heatmap. The
U-Nets utilized nDSM, LiDAR intensity, and RGB-NIR as
their inputs. We employed different training and testing parts
within the same city (trained in the west and inferenced in the
east, and vice versa) for building map generation. Below the
heatmap, the mean and standard deviation of the gridded IoUs
are displayed. The mean IoU presented signifies the mean IoU
across the 20 by 20 grids.

Notably, the spatial distribution of IoUs from our work-
flow is more consistent compared to other methods, as also
evidenced by the IoU’s standard deviation. This indicates
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Fig. 14: Assessment of our workflow in mountainous terrains: The figure showcases the LiDAR building map derived from
our method, Microsoft Building Footprints, Groundtruth, and the RGB satellite imagery along with the digital terrain model of
Los Angeles. The experimental area’s northern region predominantly features mountainous landscapes, whereas the southern
region is characterized by flatter urban terrains.

that both U-Net and Microsoft’s performances exhibit greater
variability across regions. The variation in U-Net’s perfor-
mance can be attributed to the data distribution shift, given
our experimental setup of west and east division. Intriguingly,
even with Microsoft’s method trained on millions of building
labels nationwide, covering a vast range of building types, its
performance consistency lags behind ours. This highlights the
robustness and scalability of our workflow that capitalizes on
the 3D physical representations of objects as they are captured
in airborne LiDAR measurements.

F. Performance in Mountainous Areas

The proposed method relies on the 3D coordinate data
derived from ALS. Given this, assessing its performance in
regions with intricate topographies, such as mountainous areas,
becomes imperative. To this end, we selected Los Angeles as
our test city. Los Angeles presents a diverse landscape for
evaluation: the northern section is predominantly mountainous,
while the southern region features a more urban and flat
terrain, as depicted in Figure 14. We generated a LiDAR
building map for Los Angeles and compared it with Microsoft
Building Footprints, using the ground-truth sourced from
Los Angeles GeoHub (https://geohub.lacity.org/). The ground-
truth’s last update was in 2017, our LiDAR data is from
2016-2017, and Microsoft’s data is from 2018-2019. Yet, this
data provides crucial insights into the performance variances
between mountainous and flat urban regions at large-scale.

Table IX details the results. Overall, our approach surpasses
Microsoft Building Footprints in accuracy across both terrains,
highlighting our workflow’s robustness and adaptability. Nev-
ertheless, we acknowledge that in extremely rugged terrains,
DTM* might, in theory, yield errors, thereby potentially
affecting the precision of building extraction. While these
instances are infrequent in typical urban settings, additional
attention should be required when a project’s target area
includes heavily rugged mountains.

G. Summary of results

Extensive quantitative and qualitative assessments confirm
that our workflow consistently outperforms Microsoft Building
Footprints across most metrics. Notably, our approach shines

TABLE IX: Comparison of building extraction performance
between the proposed workflow and Microsoft Building Foot-
prints in the Los Angeles dataset, categorized by mountainous
(Upper) and flat urban (Lower) terrains

IoU Precision Recall F1-score

Upper
Our workflow 75.1 86.0 85.5 85.8

Microsoft’s 73.5 89.2 80.7 84.8

Lower
Our workflow 76.5 86.8 86.6 86.7

Microsoft’s 75.9 89.9 83.0 86.3

in metrics like IoU, recall, and F1-score, and demonstrates
superior detection rates across all building categories. More-
over, its performance remained robust and superior, even
when benchmarked against highly competitive deep learning
methods utilizing LiDAR data or in challenging terrains like
mountainous areas.

Importantly, our workflow operates unsupervised, elimi-
nating the need for training procedures. Yet, our optimized
method outshines other competitive approaches without addi-
tional parameter tuning. Our workflow’s outputs are largely
predictable and explainable. This transparency is particularly
invaluable in extensive mapping projects where exhaustive
validation of every output isn’t feasible, ensuring reduced
uncertainties.

IV. DISCUSSION

A. Computational Complexity Analysis

The following analysis evaluates the computational com-
plexity of our workflow, focusing on key operations that
notably impact processing time:

1) Creation of DSM: Reading and distributing each LiDAR
point to an array results in a complexity of O(n), where
n represents the number of points. The nearest neighbor
interpolation, which is dependent on the point count,
similarly exhibits an O(n) complexity.

2) Creation of DTM: Both the Sobel operator and the
connected component analysis are determined by the
number of pixels in the image, resulting in an O(n)
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complexity. The subsequent interpolation also has an
O(n) complexity.

3) Creation of Building Candidates Map: This step consists
of evaluating height conditions and matrix multiplica-
tion, resulting in an overall O(n) complexity.

4) Creation of Building Map:
a) Water body masking: This involves a sliding win-

dow operation for water body layer generation,
resulting in an O(n) complexity.

b) Morphological filtering: The morphological open-
ing operation has an O(n) complexity.

c) Planarity filtering: This also involves a sliding
window operation, approximated as O(n).

d) Boundary refining: Analogous to morphological
dilation, this step has a complexity of O(n).

For typical large-area building mapping tasks, it’s advisable
to segment the entire project area into smaller tiles, such as
1 km by 1 km tiles. In this context, with 4 points/m2 as an
example, there would be 4 million points for each 1 km by 1
km tile. This equates to an array of 2000 by 2000 pixels, given
a 0.5-m resolution. Under these conditions, the creation of the
DSM file often consumes the most time due to the need to
read all the LiDAR data points. Following that, interpolation
can also be time-consuming as its computation increases non-
linearly for larger rasters. While real-world computational
times can be affected by various factors, employing parallel
computation can greatly accelerate processing.

B. Suggestion for parameter tuning

Fine-tuning parameters can improve performance for spe-
cific scenarios. Crucial parameters to consider are K1, which
influences preferences for accessory classes; DT, essential for
densely forested regions; and K3, which impacts building
boundary metrics. This section delves into these parameters
and provides tuning recommendations.

1) K1 parameter tuning for handling accessorial buildings:
Increasing K1 typically reduces commission error but raises
omission error due to the erosion of smaller structures with
larger K1 values. Specifically, buildings smaller than K1∗GSD
will be eroded. With a default K1 value of 7 for 0.5-m GSD,
typical residential buildings are retained, but some accessorial
buildings might be removed. Erosion primarily removes trees
which are represented noise-like patches. However, some
dense trees or shrubs might remain, underscoring the need
for planarity-based filtering with DT.

Figure 15 displays three sample areas from Denver to
highlight the effects of different K1 values. Generally, K1
= 7 offers optimal performance, but there are trade-offs. The
first row in Figure 15 shows commission error with a smaller
K1 = 5; containers are mislabeled as buildings. The second
row illustrates omission errors when K1 = 9, resulting in the
removal of detached garages. The third row of Figure 15 shows
the trade-off between the omission of the storage shed and
commission errors of large, dense trees.

We also quantitatively evaluated the impact of K1 by
mapping the Denver dataset using different K1 values. Table X
and Table XI show the detection and commission rates,

Fig. 15: Generated building maps with different K1 values

respectively. The accuracy significantly varied in accessorial
class (0-50 m2) for different K1 values. A smaller K1 increased
the detection rate but also raised the commission rate. In
simpler terms, a smaller K1 is more inclined to map small,
accessory buildings, but it is also more prone to misclassifying
non-building small objects as buildings. Conversely, a larger
K1 can reduce commission errors but may erase some small
buildings.

TABLE X: The impact of parameter K1 on the workflow’s
detection (true positive) rates in the Denver dataset

Detection rates (%)

Accessorial- Residential- Commercial- Mega-size

K1=5 40.5 97.4 98.5 97.6

K1=7(default) 25.8 96.1 98.4 97.6

K1=9 13.2 91.5 98.1 97.6

TABLE XI: The impact of parameter K1 on the workflow’s
commission (false positive) rates in the Denver dataset

Commission rates (%)

Accessorial- Residential- Commercial- Mega-size

K1=5 12.9 3.5 3.2 1.2

K1=7(default) 4.3 2.6 2.8 1.2

K1=9 1.9 2.0 2.6 1.2

2) Dense trees (DT) parameter tuning for forested areas:
The DT parameter serves as the threshold for the planarity-
based filtering algorithm, primarily aimed at eliminating dense
trees. As DT increases, it’s more likely both dense trees and
buildings beneath overhanging trees will be removed. We
examined this phenomenon in Callaway, Florida, an 11 km2

region characterized by residential zones and dense tropical
evergreen trees. The LiDAR surveying was conducted during
the full leaf-on period in April-May 2017, providing a point
density of about 7-points/m2. Figure 16 provides the satellite
image and the generated building map from our workflow.
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Fig. 16: Satellite image and LiDAR building map of the
Callaway dataset (3.3-km by 3.3-km)

Fig. 17: IoU, precision, recall, and F1-score according to the
parameter DT in the Callaway dataset

To assess the influence of DT values, we varied DT and
calculated metrics like IoU, precision, recall, and F1-score, as
seen in Figure 17. We used Microsoft Building Footprints as
the ground-truth due to the lack of a more reliable source. An
optimal DT value of 0.35 achieved an IoU of 0.68, a modest
improvement from the default’s 0.66 IoU. This suggests that
while tweaking DT can slightly enhance accuracy, the default
setting remains broadly effective. Also, the plateau in the
IoU graph between DT values of 0.05-0.5 indicates that the
default DT value typically yields near-optimal results within
this range.

Although DT = 0.35 produced the highest IoU value, it
does not necessarily guarantee the best building map. Figure
18 depicts the study area in Callaway, Florida, showcasing
maps generated at various DT levels. At DT = 0, all building
candidates are shown prior to planarity-based filtering. At the
default DT = 0.1, most dense trees are removed, but some
non-building objects remain. At DT = 0.2, only buildings are
extracted, but DT = 0.3 erroneously removes two buildings
under overhanging trees, as validated via Google Street View.
These suggest the optimal DT value varies by study area
and is particularly sensitive in tropical regions, where dense
foliage can affect results. This limitation is more pronounced
with low point density, as further discussed in Section IV-C.

3) K3 parameter tuning for refining building boundaries:
The K3 parameter refines building boundaries by address-
ing underestimated building areas. This underestimation is
attributed to the radial whiskbroom pattern of ALS. As il-
lustrated in Figure 19, the blue grid captures multiple points

Fig. 18: Generated building maps (planarity maps) according
to the parameter DT and examples of buildings under over-
hanging trees in Google Street View (Image copyright: Google
Inc.). The numbers in parentheses indicate the latitude and
longitude of the building in decimal degrees, respectively.

Fig. 19: Graphical representation of airborne laser scanning

reflecting mixed elevations from the bottom, side, and top of
the building. Using the lowest elevation values to produce
the DSM leads to an underestimation of the total building
area. Such underestimation can occur even without acquiring
multiple points. Both the green and orange grids, for instance,
will be categorized as non-building pixels, as the laser captures
the building’s base, leading to boundary underestimation.
Factors like point density, scan angle, and laser beam position
influence this. Ideally, K3 would be tailored for each pixel
based on these factors, but data constraints make this computa-
tionally formidable. So, we use a universal K3 value although
it isn’t optimal at the individual object level. Quantitative tests
suggest a default K3 of 5 offers good accuracy in general, but
optimal values vary by area, as seen in the Denver and NYC
datasets (Table XII and Table XIII). Variations in optimal K3
values may also stem from inconsistencies in ground-truth.

TABLE XII: The impact of parameter K3 on the workflow’s
quantitative metrics in the Denver dataset

IoU Precision Recall F1-score

K3=1 70.1 95.6 72.4 82.4

K3=3 77.6 94.2 81.4 87.4

K3=5(default) 81.8 91.2 88.8 90.0

K3=7 80.5 85.6 93.2 89.2

C. Limitation
While most errors in our workflow can be mitigated

through parameter tuning as discussed in Section IV-B,
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TABLE XIII: The impact of parameter K3 on the workflow’s
quantitative metrics in the NYC dataset

IoU Precision Recall F1-score

K3=1 77.0 89.4 84.7 87.0

K3=3 77.9 85.3 90.0 87.6

K3=5(default) 75.9 80.3 93.2 86.3

K3=7 72.2 75.1 94.8 83.9

Fig. 20: Generated building maps with different K3 values

there are intrinsic limitations not directly related to the
commission-omission error trade-off. This section devotes to
discussing those limitations.

1) Error near skyscrapers: Though LiDAR isn’t impacted
by shadows, it’s susceptible to occlusion due to its slant scan
angle. This can lead to missed data points between closely
spaced tall buildings, especially near skyscrapers. Figure 21,
sample area from Manhattan, New York, exemplifies occlu-
sions causing blurred boundaries or gaps in the building map.

Fig. 21: Errors due to occlusion caused by skyscrapers

2) Low point density scenarios: In low point density sit-
uations, distinguishing between buildings and nearby over-
hanging trees becomes challenging. For instance, when a
laser penetrates a tree, as highlighted by the orange pixel in
Figure 19, it gets classified as a non-building entity, allowing
differentiation between the tree and the building. But if trees
are too dense to allow laser penetration, they may merge
with adjacent buildings. This can result in either omission or
commission errors, especially in low point density contexts.

We simulated scenarios with reduced point density by
subsampling the original LiDAR data. Figure 22 presents
various examples of dense trees during the leaf-on season.
Remarkably, even at very low densities (<1-points/m2),

Fig. 22: Errors due to overhanging trees in low point density
scenarios

buildings without overhanging trees were identified correctly.
However, with diminishing point density, trees are increasingly
misidentified as buildings. This suggests that as point density
rises, the accuracy of our workflow will likely enhance.

3) Commission errors due to the DTM: The workflow’s
robustness is partially due to the DTM* generation algo-
rithm’s integration. DTM* classifies bridges and overpasses
as terrain, reducing potential errors compared to other DTMs,
as demonstrated in Figure 3. However, certain DTM-related
issues persist. Errors can occur at the edge of the input LiDAR
tile (the geographic boundaries of the input LiDAR data file).
This is because DTM* assumes areas enclosed by a certain
level of a steep slope as non-grounds, but the enclosed area
near the edge of the LiDAR could be a disconnected terrain
[59]. Similarly, terrains bordered by steep slopes might be
mistakenly identified as buildings.

Figure 23 showcases such DTM-related inaccuracies. The
red dashed line signifies the boundaries of the LiDAR tiles.
Misclassifications are evident: in the first row, a bridge is
wrongly labeled due to tile disconnections; in the second,
lands near shorelines are erroneously recognized as buildings.
The third row displays a suspension bridge; its middle
section, surrounded by steep slopes in the DSM, is incorrectly
extracted as a building. Most of these errors can be addressed
by processing a more extensive input dataset and subsequently
subsetting on its central portion.

4) Deformation during the morphological filtering: Our
workflow includes the process that extracts buildings from
among building candidates using morphological operations.
One problem is that dilation after erosion may not recover
the original shape of the object. If maintaining the precise
boundary is paramount, it’s recommended to explore
alternative boundary-regularizing algorithms [33], [67], [74].

5) Limitations in 3D building map: Our workflow ef-
fectively generates 3D building maps, but limitations exist.
Inaccuracies are especially pronounced near high-rise build-
ings (Figure 22) and near residential buildings obscured by
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Fig. 23: Commission errors caused by artifacts in DTM (The
red dashed line indicates the data boundary of the LiDAR tile)

overhanging trees (Figure 21). While smoothing filters help
reduce noise, they might inadvertently remove minor sub-
structures, such as chimneys. The map’s quality hinges on the
LiDAR data’s accuracy, and refining building details requires
more precise references. The primary focus of our workflow
is on the mass production of rasterized 2D and 3D building
maps. Users should be mindful of these inherent constraints.

V. CONCLUSION

We present an end-to-end open-source workflow for 2D
and 3D building mapping from raw airborne LiDAR data.
To our knowledge, there has been no well-established open-
source workflow for generating 2D and 3D building maps.
Our system operates fully unsupervised, is computationally
efficient, and produces accurate results without the need for
intensive parameter tuning. Moreover, this study is the first to
evaluate a LiDAR-based building map against deep learning-
based and hand-digitized products on a large scale (> 550
km2). Our work not only provides a practical solution for
mass producing 2D and 3D building maps, but also furnishes
valuable insights into the strengths and weaknesses of different
methodologies, informing expectations for major large-area
building mapping techniques.

In recent years, deep learning-based methods, bolstered
by advancements in deep learning and the ready availabil-
ity of image data, have dominated the literature. However,
such methods have notable drawbacks. They typically require
training procedures, are computationally expensive, and their
errors can be unpredictable and difficult to explain. While deep
learning-based methods can achieve high accuracy according
to quantitative metrics, if users cannot anticipate or understand
the errors or biases these models may introduce, subsequent
studies based on these maps may lead to skewed outcomes.

Our workflow, on the other hand, is based on a largely
universal representation of buildings in airborne LiDAR data
that is a ground-standing object with a relatively smooth, laser-
impermeable surface. As such, our workflow is highly scalable
and its results are readily explainable. Also, since the operation

is completely unsupervised and straightforward, all procedures
are transparent, unlike the “black box” nature of deep learning.

Despite its exemplary performance, our workflow has lim-
itations. While many can be addressed with higher quality
(greater point density) LiDAR data, challenges remain, such
as unclear boundaries between dense trees and small buildings,
misclassification of non-building structures, deformations from
morphological filtering, and limited detail in building models.
Further research is required to tackle these issues. Adding
more sophisticated rules to our workflow may fix some errors.
However, it’s vital to ensure that scalability and generalization
aren’t sacrificed.

The source code of our workflow is available at https:
//github.com/hunsoosong/airborne-lidar-building-mapping.
Leveraging this workflow, we won first place in the GIS Cup,
further underscoring its robustness and effectiveness [75]. We
will continue to refine the workflow, and the generated 2D
and 3D building maps will be released and kept updated. Our
open-source workflow will enable the community to generate
2D and 3D building maps more readily and accurately, and
we hope our workflow and findings contribute to supporting
various studies with better building maps.
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