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Abstract—Synthetic aperture radar (SAR) has emerged as a 

critical technology for detecting and classifying objects such as 

ships in challenging environments. However, few-shot learning 

remains challenging due to the limited availability of labeled SAR 

data, complex radar backscatter, and variations in imaging 

parameters. In this paper, we propose a novel network, scattering 

point topology for few-shot ship classification (SPT-FSC), which 

addresses these challenges by incorporating scattering 

characteristics into the network learning process through a 

scattering point topology (SPT) based on scattering key points. We 

design a topology encoding branch (TEB) through a series of 

operations to encode the topological information of scattering 

points, resulting in a SPT embedding  that improves the network's 

adaptability to the imaging mechanism and reduces imaging 

variability in SAR images. To effectively fuse the SPT embedding 

and image features extracted from a convolutional neural network 

(CNN), we introduce a novel mechanism named reciprocal feature 

fusion attention (RFFA). Additionally, to address the limited 

diversity in the training data, we apply fine-tuning based 

methodologies and construct a fine-grained ship classification 

dataset by combining the OpenSARShip and FUSAR-Ship 

datasets. Our comprehensive experiments on these datasets 

demonstrate the effectiveness of our proposed SPT-FSC method, 

achieving high accuracy and robustness in few-shot ship 

classification tasks for SAR images, outperforming existing 

methods in this domain. 
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I. INTRODUCTION 

YNTHETIC aperture radar (SAR) is a powerful remote 

sensing technology that uses radar signals to create high-

resolution images of the earth's surface, with the ability 

to penetrate through clouds and vegetation for detection and 

classification of objects such as ships, vehicles, and buildings 

[1]. SAR has become an important tool for applications such as 

maritime surveillance, border control, and disaster response, 

where its ability to detect and classify targets in challenging 

environments is crucial for effective decision-making [2]. 

Ship classification of SAR images is a challenging task due 

to the complexity of radar backscatter from ships and the 

presence of environmental clutter. Various techniques have 

been proposed for ship classification, including statistical 

analysis, texture analysis, and machine learning algorithms. At 

the same time, different features such as shape, size, texture, 

and polarimetric characteristics have been used to discriminate 

between different types of ships, including cargo ships, oil 

tankers, and other vessels [2]. Statistical methods such as 

principal component analysis (PCA) and independent 

component analysis (ICA) have been applied to extract 

discriminative features from SAR images for ship classification 

[3]. Texture analysis methods such as gray level cooccurrence 

matrix (GLCM) and local binary pattern (LBP) have also been 

used to capture the spatial variation of backscattering signals 

from ships [4]. However, these conventional methods are 

limited in their ability to handle the complex nature of SAR 

backscattering signals and the variability of environmental 

conditions, leading to reduced accuracy and robustness for ship 

classification in SAR images [5]. Machine learning algorithms 

such as support vector machines (SVM), k-nearest neighbors 

(KNN), and random forests (RF) have been applied to 

automatically classify ships in SAR images with high accuracy 

[6]-[8]. Some studies have also explored the use of hybrid 

approaches that combine multiple machine learning algorithms 

for ship classification, such as feature selection followed by 

SVM classification [9]. 

In recent years, deep learning methods such as 

convolutional neural networks (CNNs) have shown promising 

results for ship classification in SAR images, achieving high 

accuracy and robustness to variations in ship size, shape, and 

orientation [10]. However, the limited availability of labeled 

SAR data remains a bottleneck for further progress in this field. 

Traditionally, deep learning models for SAR image 

classification require a large amount of labeled data to achieve 

high performance. However, acquiring labeled data for SAR 

S 
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images is time-consuming and expensive, which limits the 

applicability of deep learning models in practical scenarios. In 

SAR image classification, where the datasets are often limited 

and imbalanced, few-shot learning offers an effective solution 

to enhance classification model accuracy and robustness. 

Therefore, few-shot learning has emerged as a promising 

solution to address this issue by enabling deep learning models 

to classify SAR images accurately with a limited amount of 

labeled data [11], [12].  

Few-shot learning is a type of machine learning that aims to 

train models with the ability to learn from a small number of 

examples [13]. By leveraging prior knowledge or meta-

learning, few-shot learning algorithms can effectively 

generalize to new tasks with limited labeled data [14]. In the 

context of SAR image classification, few-shot learning 

approaches have been proposed to extract and leverage the 

underlying features of SAR images, which can be used to 

classify images with a limited number of labeled examples [15]. 

Recently, various few-shot learning methods have been 

developed, including data augmentation, meta-learning, and 

transfer learning. Data augmentation is a technique that 

generates additional training data by applying various 

transformations to the existing data [16]. In few-shot learning, 

data augmentation can be used to generate more labeled 

examples from the limited training data. This approach has been 

shown to improve the performance of few-shot learning 

methods in various applications [17]. Meta-learning is another 

popular few-shot learning approach that aims to learn how to 

learn from a few examples [18]. It involves training a model on 

multiple tasks and using the learned knowledge to quickly adapt 

to new tasks with only a few labeled examples. Meta-learning 

has been successfully applied in various computer vision 

applications, such as object recognition and segmentation [19]. 

Transfer learning is a technique that involves transferring 

knowledge from a pre-trained model to a new task [20]. In few-

shot learning, transfer learning can be used to leverage the 

knowledge learned from a large dataset to improve the 

performance on a few-shot learning task with limited labeled 

data. Transfer learning has been widely used in various 

computer vision applications, including few-shot learning [21]. 

Few-shot learning has gained significant attention in recent 

years as it offers a promising approach to tackle challenges in 

various computer vision tasks. In the realm of image 

classification, few-shot learning techniques have shown 

remarkable adaptability to recognize objects or categories with 

limited labeled data. This capability is particularly valuable in 

domains where acquiring extensive labeled data is costly or 

impractical. Furthermore, few-shot learning is not limited to 

image classification but also extends its potential to image 

detection and segmentation tasks. In the field of image 

detection, few-shot learning empowers models to identify 

objects or regions of interest in images with only a few 

annotated instances, which is crucial for applications such as 

object tracking and surveillance. And few-shot object detection 

based on fine-tuning has received widespread attention in 

recent years, such as TFA [22], FSCE [23] and DeFRCN [24]. 

Additionally, in image segmentation, where the goal is to 

segment objects or regions within an image, few-shot learning 

techniques have demonstrated their ability to adapt and 

generalize with limited labeled data [25].  

Despite the success of existing few-shot learning methods, 

there are still several problems and challenges that need to be 

addressed for SAR images. Firstly, the imaging mechanism of 

SAR images is different from optical images, resulting in 

different feature representations and classification challenges 

[26]. Unlike optical images, SAR images contain multiple 

scattering effects and speckle noise, which can obscure the 

underlying features of the image [27]. The difference in the 

imaging mechanism and the characteristics of SAR images 

require specific adaptations and modifications to existing few-

shot classification methods [28]. Secondly, SAR images exhibit 

significant variability due to changes in imaging parameters 

[29]. SAR images are affected by various factors, such as the 

imaging mode, incidence angle, polarization, wavelength and 

so on, which can result in significant variations in the image 

features. This variability makes it difficult to learn a robust 

representation that can generalize to new classes with limited 

labeled data [30]. Furthermore, the imaging variability of SAR 

images can also result in high intra-class variance and low inter-

class distinction, making it difficult to distinguish between 

similar classes [31]. This variability can result in a high degree 

of ambiguity in few-shot classification, leading to poor 

performance. Thirdly, the training data of few-shot 

classification in SAR images lacks diversity [27]. SAR images 

are typically acquired over specific regions and at specific 

times, which can limit the diversity of the labeled data. When 

training a few-shot classifier on a small number of classes, the 

classifier may not be able to generalize well to new classes that 

are not similar to the training classes. This lack of diversity can 

lead to overfitting and poor generalization performance of few-

shot classification models. 

To address these challenges, a new network SPT-FSC is 

proposed in this article for few-shot ship classification in SAR 

images. Different from previous methods of directly applying 

the deep network model to the SAR images, SPT-FSC 

integrates the scattering characteristic into the net-work 

learning process. We propose scattering point topology (SPT) 

based on scattering key points [32], and a SPT embedding 

which introduces information on additional features to the 

network. Meanwhile, SPT features and the image features 

extracted by the CNN belong to different modalities, so we need 

to better integrate the two features. Consequently, we introduce 

the reciprocal feature fusion attention (RFFA) to 

comprehensively integrate two distinct sets of features. 

Furthermore, to alleviate the issue of limited diversity in the 

training data of SAR images, we apply fine-tuning based 

methodologies to exploit the knowledge gained from a larger 

dataset. In this regard, we amalgamate the OpenSARShip [33] 

dataset and the FUSAR-Ship [34] dataset to generate a ship 

classification dataset, encompassing an expanded array of 

categories and an augmented sample size. 

The main contributions of our work can be summarized as 

follows: 

1) A SPT method is proposed based on the scattering key 
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points, which incorporates not only the position 

information of the scattering key points but also the 

distance information between the scattering points and 

the inherent information of each individual scattering 

point; 

2) SPT-FSC employs an effective topology encoding 

branch (TEB) to encode the topological information of 

scattering points to derive the SPT embedding. This 

approach was employed in few-shot classification to 

enhance the network's adaptability to the imaging 

mechanism and more effectively alleviate the imaging 

variability inherent in SAR images; 

3) To achieve effective fusion of the SPT embedding and 

image features obtained from the CNN, a mechanism 

named RFFA was designed. RFFA is a mechanism that 

amplifies the representational capacity of neural 

networks by enabling them to learn from both directions 

of the input sequence; 

Extensive studies have been conducted on OpenSARShip 

and FUSAR-Ship to validate the effectiveness of the proposed 

method. In comparison to the baseline, the accuracy of 4-way 

1-shot and 4-way 5-shot tasks is improved by 11.90% and 

25.15% on OpenSARShip dataset, respectively, and the 

accuracy of 5-way 1-shot and 5-way 5-shot tasks is increased 

by 24.08% and 30.72% on FUSAR-Ship dataset, respectively. 

II. RELATED WORKS 

A. Few-Shot Classification Methods 

Few-shot classification is the task of learning to classify new 

categories with only a few labeled examples per category. 

There are several methods that have been proposed to tackle 

this problem. Meta-learning approaches include MAML [18], 

Reptile [19], and Prototypical Networks [14]. MAML learns a 

set of initial weights that can be quickly adapted to new tasks 

with few examples. Reptile performs a similar task but uses a 

simpler optimization method that is faster to compute. 

Prototypical Networks learn a prototype for each class and 

classify new examples based on their distance to the prototypes. 

Matching Networks [35], Relation Networks [36], and Siamese 

Networks [37] are examples of metric learning approaches. 

These approaches learn a distance metric between examples 

and use this metric to classify new examples. Matching 

Networks use a memory-augmented architecture to learn a 

similarity function between examples. Relation Networks learn 

a relation module that can compare pairs of examples and 

classify new examples based on their relation to the labeled 

examples. Siamese Networks learn a shared representation 

between pairs of examples and classify new examples based on 

their distance in this shared representation. DynaGAN [38], 

D2C [39], and ProtoGANs [40] are examples of techniques that 

use generative models. These methods learn to generate new 

examples for unseen categories based on the labeled examples. 

DynaGAN presents a few-shot domain adaptation method for 

multiple target domains, which utilizes an adaptation module to 

dynamically adapt a pretrained GAN model to these domains. 

D2C introduces a paradigm for training unconditional VAEs for 

few-shot conditional image generation, which leverages 

diffusion-based priors and contrastive self-supervised learning 

to adapt to novel tasks with minimal labeled examples. 

ProtoGANs combine the prototype learning approach of 

Prototypical Networks with a generative model to generate new 

examples for unseen categories. Transfer learning-based 

methods have shown promising results in addressing this 

problem. Baseline++ [41] is a state-of-the-art transfer learning-

based approach that aims to improve upon the baseline model 

by fine-tuning pre-trained models on a small labeled support 

set. It also utilizes the cosine similarity metric to enhance the 

distance metric learning process. Meta-Baseline [42] is another 

transfer learning-based method that utilizes meta-learning to 

improve few-shot classification performance. It learns to adapt 

to new tasks by learning a set of parameters that can be fine-

tuned quickly on new tasks. It also incorporates an auxiliary 

loss function to encourage the model to learn more 

discriminative features. 

Given the outstanding performance observed in few-shot 

learning methods relying on transfer learning, we opted for a 

fine-tuning-based approach in our few-shot ship classification 

method. Our model's baseline aligns with the Baseline++ 

framework, excluding the utilization of a cosine classifier. 

B. Few-Shot Classification in SAR images 

Few-shot classification in SAR images has been the subject 

of considerable research in recent years. Various approaches 

have been proposed to tackle this problem. One of the methods 

for few-shot SAR image classification is the instance-aware 

transformer (IAT) model [43]. The IAT model incorporates 

instance-level information into the classification process, which 

can enhance the performance of few-shot classification in SAR 

images. Another approach involves utilizing a weighted 

distance and feature fusion strategy [44]. The similarity 

between a query image and support images is evaluated using a 

distance metric through this method, and the accuracy of few-

shot classification is improved by combining the features 

extracted from both the query and support images. The 

technique proposed for few-shot SAR image classification, 

known as the spatial transformed prototypical network (ST-

PN), has been introduced in the network [45], which 

incorporates spatial transformations in the prototypical network 

to enhance its ability to recognize new classes. A few-shot 

learning framework is based on the prototypical network with a 

limited number of training samples [46], allowing it to learn a 

classifier capable of recognizing new classes with only a limited 

number of examples. A technique utilizing a meta-learning 

approach with amortized variational inference has been 

proposed [47], which involves a meta-learning framework to 

train a model capable of quickly adapting to new classes with 

only a few examples. The proposed method for few-shot 

classification in SAR images employs a metric learning 

approach that utilizes a siamese network to train a similarity 

metric [48]. Deep transfer learning has also been applied to few-

shot SAR image classification [49]. For the identification of 

few-shot SAR targets, Lu et al. presented a deep convolutional 

neural network based on transfer learning [50]. They utilized 
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the refined model to categorize new cases after fine-tuning a 

pre-trained network model on a few samples from new classes. 

Disentangled attention modules were used by Tai et al. to 

selectively transfer characteristics from electro-optical (EO) 

samples to SAR samples, eliminating the need for additional 

SAR samples [51]. Additionally, in the current landscape, a 

number of deep learning-based methods integrate object 

detection and classification. Several few-shot object detection 

methods for SAR images also include classification modules. 

Chen et al. [52] presented a novel few-shot SAR object 

detection framework based on meta-learning, utilizing an 

attention mechanism to emphasize class-specific features and a 

dynamic relationship learning paradigm involving graph 

convolutional networks and orthogonality constraints to 

enhance feature similarity. Zhou et al. [53] proposed a novel 

FSODM method for optical remote sensing that includes a 

lightweight meta-feature extractor (DarknetS) and an 

aggregation module (AggregationS) to improve SAR image 

feature representation and generalization for new classes. 

Nevertheless, the majority of prior model optimization 

research has primarily utilized general models designed for 

natural scenes, without taking into account the distinct imaging 

characteristics inherent to SAR and optical images. Our method 

innovatively designs a SPT, thereby uniquely integrating the 

scattering characteristics of SAR in the learning process of the 

network. 

C. Scattering Key Points for Deep Neural Network 

The concept of key points in deep neural networks has 

emerged as a pivotal aspect of modern computer vision and 

machine learning research. Key points, often referred to as 

keypoints or landmarks, represent specific spatial locations in 

an image or feature map. They serve as salient reference points, 

capturing essential information about the underlying structure 

and content of an image. While the idea of key points has been 

present in computer vision for decades, the advent of deep 

learning has revitalized its relevance and utility in 

transformative ways. One of the primary roles of key points in 

deep neural networks is feature extraction. CNNs use learned 

filters to identify these key points, enabling the networks to 

recognize patterns, objects, or structures within the data. This 

has led to remarkable progress in image classification, object 

detection, and segmentation tasks. Key points also facilitate 

spatial understanding, enabling models to infer the relative 

positions and orientations of objects in an image. 

The integration of scattering key points into deep neural 

networks for the analysis of SAR images represents a 

significant breakthrough in remote sensing and computer 

vision. SAR images, characterized by their complex and 

texture-rich content, have long posed unique challenges for 

traditional computer vision approaches. The introduction of 

scattering key points marks a promising shift towards 

harnessing the full potential of deep neural networks in SAR 

image analysis. These key points serve as salient landmarks, 

allowing deep neural networks to effectively understand, 

classify, and interpret the content of SAR images. The use of 

scattering key points has led to remarkable strides in object 

detection and recognition within SAR images.  

Recent studies [32], [54]-[57] have proposed the use of a set 

of key points to model local scattering regions for guiding 

networks in SAR object detection and classification. An 

anchor-free network was proposed by Fu et al. [54] that uses 

scattering key points to guide network training and employs 

predicted scattering key point positions as offsets for 

deformable convolution modules. It has been found that the 

scattering key points obtained using the Harris corner detector 

roughly capture the structural characteristics and capture the 

distinguishing features of ships. The proposed SFR-Net [55] 

aims to address the completeness issue of aircraft detection 

results in SAR images by utilizing the scattering point relation 

module (SPRM) to analyze and correlate discrete scattering 

points. The SPRM enables the extraction of characteristics and 

establishment of connections among scattering points, thereby 

overcoming the discreteness issue inherent to individual aircraft 

in SAR imaging. Sun et al. [56] proposes a novel unified 

framework named SPAN for accurately locating and classifying 

ships in large-scale SAR images by capturing the distribution 

characteristics of strong scattering points in the ship area. 

SPAN utilizes a ship classification encoder module to extract 

the correlation and distribution characteristics between each 

scattering point, and combines the features and distribution 

information of strong scattering points to recognize the ship 

category. A novel integrated framework named SCAN [57] was 

proposed for few-shot SAR aircraft classification, which 

includes a classification path and a scattering extraction branch 

that utilizes a scattering extraction module (SEM) to guide the 

network to learn the number and distribution of strong 

scattering points for each target type. The scattering extraction 

branch employs a SEM to improve the SAR target feature 

representation and optimize the main classification task, which 

leads to better performance on novel category few-shot 

recognition tasks. The proposed SPG-OSD [32] method for ship 

detection in SAR images incorporates the scattering 

characteristics of SAR images to guide the network through an 

oriented two-stage detection module and a scattering-point-

guided RPN. The innovative use of key scattering points in the 

RPN effectively reduces false alarms and missing ships, while 

the RPN predicts the position of these points and utilizes 

location information to extract features near them.  

Most of the aforementioned research endeavors have 

leveraged scattering key points to facilitate network learning of 

pertinent features and enhance precise localization. However, it 

is imperative to acknowledge that, in practice, the distribution 

and spatial interrelationships among scattering key points can 

divulge pivotal insights into the fundamental shape, boundaries, 

and internal composition of the target. Consequently, we 

introduce a topological structure founded upon scattering key 

points, aiming to elevate the representation of ships' structural 

characteristics. This enriched feature representation is 

subsequently applied within the domain of few-shot ship 

classification. 
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III. METHODOLOGY 

A. Problem Setup 

In standard few-shot classification, the objective is to acquire 

knowledge of new concepts within a set of novel classes 𝐶𝑛𝑜𝑣𝑒𝑙 , 

with only a limited number of samples, while having access to 

a labeled dataset of base classes 𝐶𝑏𝑎𝑠𝑒 containing a substantial 

number of images, where 𝐶𝑏𝑎𝑠𝑒  ∩ 𝐶𝑛𝑜𝑣𝑒𝑙  = ∅. The test set is 

divided into two distinct subsets, namely the support set and the 

query set. The support set comprises of a limited number of 

annotated samples belonging to the newly introduced classes, 

while the query set contains unlabeled samples of the same 

label space. The main goal of few-shot classification is to 

precisely classify unlabeled query samples based on the 

information provided in the support set. Specifically, when the 

support set contains N classes and each class is represented by 

K labeled samples, the problem is referred to as N-way K-shot 

few-shot classification. At the same time, the query set contains 

Q samples per class drawn from the same N classes, and the 

objective is to classify the N × Q query images accurately into 

their respective N classes.  

 In our setup, we use three separate datasets: a training set, a 

support set, and a testing set. The label space for the support set 

and testing set is identical, while the training set has its own 

unique label space that is completely separate from both the 

support and testing sets. During the training phase, our training 

method is exactly the same as normal image classification, as 

shown in Fig. 1. It refers to training a classifier 𝑓𝜃 with standard 

cross-entropy loss on all base classes. To accommodate the 

recognition of novel classes in the test stage, we replace the 

classification head of the model. Specifically, 

 
Fig. 1. Training and testing of few-shot classification in our setup 

 

the original classification head used during training on base 

classes is replaced with a new one designed to handle unseen 

categories. This replacement ensures that the model's output 

aligns with the novel class labels during testing, facilitating 

accurate classification. To make the model capable of 

recognizing novel classes during testing, we fine-tune it using 

the N×K images from the support set. This fine-tuning process 

involves updating the model's parameters to minimize the loss, 

allowing it to become more attuned to the novel classes' 

characteristics. Notably, both the backbone part and the TEB 

remain frozen during the fine-tuning process. This means that 

only the fully connected layer is updated using the support set 

images from the novel classes, allowing it to adapt to the unique 

characteristics of these classes. Subsequently, we evaluate the 

Fig. 2. Overall architecture of SPT-FSL. First, we extract the scattering key points from the objects and establish the scattering point topology. 

Next, we use the positions of these scattering key points to obtain feature vectors for corresponding nodes from Stage 1 of the backbone, and 

feed them into the GCN and MLP-mixer. Finally, the RFFA fuses the SPT embedding with features extracted by the CNN to generate the final 

prediction. 
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model's performance on the N×Q images from the query set 

using the fine-tuned model. This assessment phase ensures that 

the model can effectively recognize and classify novel classes 

based on the adapted knowledge acquired during fine-tuning. 

B. Overall Architecture 

The overall architecture of the proposed network model 

primarily consists of three components: the backbone, the 

topology encoding branch named TEB, and the reciprocal 

feature fusion attention module named RFFA, as shown in Fig. 

2. The backbone of the network is based on ResNet-12 [42], 

which is composed of four stages, each containing a residual 

block. Each residual block consists of three convolutional 

layers with a 3 × 3 kernel, followed by Batch Normalization 

and Leaky ReLU activation with a 0.1 slope. The number of 

channels in the convolutional layers for each residual block are 

64, 128, 320, and 640, respectively. A 2 × 2 max-pooling layer 

is applied after each residual block, and a 5 × 5 global average 

pooling is used at the end to obtain a 640-dimensional feature 

vector. This architecture is consistent with recent works and is 

kept simple without additional modifications such as Drop-

Block and wider channels. The TEB includes two layers of 

graph convolutional networks (GCNs) [58] and an MLP-Mixer 

[59] layer to extract the SPT embedding. The purpose of this 

branch is to capture the intricate spatial relationships among the 

scattering key points in the SPT. The RFFA module is designed 

to effectively fuse the SPT embedding with the features 

extracted from the CNN. This fusion allows for better 

concatenation of the features before they are input into a fully 

connected layer for predication. 

C. Scattering Point Topology (SPT) 

The SPT method is developed based on the principle that 

strong scattering points possess substantial significance and 

stability, containing an abundance of scattering information. 

This approach aims to explore the stable scattering 

characteristics of various targets, such as ships, to better 

understand and represent their structural and shape features. To 

initiate this process, the Harris detector [60] is applied to 

identify applied to identify important points that reflect the 

structural outline of the target, as illustrated in Fig. 3(c) and (d) . 

This process results in a set of points that  capture the shape and 

structure of the object. Subsequently, we apply the K-means 

clustering algorithm to classify the extracted points into N 

distinct clusters with high scattering intensities, as illustrated in 

Fig. 3(e) and (f). This step effectively eliminates redundant 

points and derives a more regular structure, which is essential 

for further analysis. The N cluster centers are defined as the 

scattering key points, denoted as 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑁} . These 

points represent the local distributions of scattering intensity 

and structural characteristics of the targets. By capturing these 

local features, the method is able to enrich the discriminative 

features of ships, leading to improved classification and 

recognition performance. Following the clustering process, the 

scattering key point coordinate 𝑉 = 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} of the scattering key points on 

the original images are obtained for establishing SPT.  

In effect, there is geometric structure information for the 

distribution of key scattering points of a target. Key scattering 

points of ships of the same category have comparable topology 

structure, which can also be confirmed by the similar 

distribution of key scattering points of the two containers in Fig. 

3(e) and (f). Therefore, we construct a topology structure based 

on the scattering key points, so as to fully utilize the distribution 

information of the scattering key points to characterize the 

structural characteristics of the ship. First, for a set of scattering 

key points 𝑃 , calculate the Euclidean distance ( ),i jd x x  

between each pair of scattering key points. This can be 

represented by the following equation: 

  
(a) (b) 

  
 (c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 3. Illustration of the SPT. (a) and (b) Origin SAR images of 

containers. (c) and (d) Extracted points by Harris corner detector. (e) 

and (f) Key scattering points. (g) and (h) SPT. 
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For each scattering key point 𝑝𝑖 , according to its Euclidean 

distance with other scattering key points, determine its K 

nearest neighbor data points. Determined using the following 

formula: 

 ( )argmin , : 1,2, , ,i j i i jN d p p j N N i= =    (2) 

where iN  represents the index of K scattering key points 

closest to scattering key point 𝑝𝑖 .  

And then, using the information of K nearest neighbors, 

construct an adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁 , where 

𝐴(𝑖, 𝑗) indicates whether there is a connection between 

scattering key points 𝑝𝑖  and 𝑝𝑗. In general, 𝐴(𝑖, 𝑗) is 1 if 𝑝𝑗 is 

one of the K nearest neighbors of 𝑝𝑖 , and 0 otherwise, which 

can be expressed as: 

 ( )
1,  

,
0,   .

iif N
A i j

otherwise


= 


 (3) 

Finally, using Dijkstra's algorithm, starting from each 

scattering key point 𝑝𝑖 , calculate the shortest path distance to 

other scattering key points to obtain the distance matrix 𝐸 ∈
ℝ𝑁×𝑁, where 𝑒𝑖𝑗 ∈ 𝐸 represents the geodesic distance from 𝑝𝑖  

to 𝑝𝑗. This forms an undirected graph 𝑇 = {𝑃, 𝐸}, also named 

as the SPT. Visualization of the SPT is shown in Fig. 3(g) and 

(h) .  This topology structure provides valuable insights into the 

distribution patterns of the scattering key points, as well as their 

positional relationships. By analyzing these relationships, it is 

possible to characterize the structural and shape features of ship 

targets more accurately. 

D. Topology Encoding Branch (TEB) 

After constructing the SPT, it is essential to access the feature 

map from the backbone's Stage 1 and identify the 64-

dimensional feature vectors corresponding to each scattering 

key point based on their coordinates 𝑉. These vectors serve as 

the attributes of the nodes in the topology, with the 

corresponding vector matrix denoted as 𝐹 ∈ ℝ𝑁×64. With the 

complete SPT in place, denoted as 𝑇 = {𝑃, 𝐹, 𝐸} , we can 

proceed to input it into the TEB, as shown in Fig. 4. 

The branch's first layer comprises a graph convolutional 

layer with the same number of input and output channels. This 

layer is followed by another graph convolutional layer, which 

compresses the output channels down to 32 dimensions. This 

process effectively extracts and condenses the features, yielding 

N 32-dimensional feature vectors, denoted as 𝐹′ ∈ ℝ𝑁×32 , 

which is expressed as  

 ( )  
,'

^ ^

j i

i jj i i

j i

e
f f

d d

 
= Θ N  (4) 

with �̂�𝑖 = 1 + ∑𝑗∈𝒩(𝑖)  𝑒𝑗,𝑖, where 𝑓𝑖
′ represents the i-th row of 

𝐹′ , 𝑓𝑗  represents the j-th row of 𝐹 ,   𝚯  represents trainable 

weights, 𝒩(𝑖)   represents  all neighbor nodes of i and  𝑒𝑗,𝑖 

denotes the edge weight from source node 𝑗 to target node i . 

However, directly concatenating these vectors would 

introduce a dependency on the order of input feature points, 

resulting in a  SPT embedding that could exhibit variations for 

different targets of the same category. In this scenario, 

scattering features representing the same feature area might 

appear in different positions, potentially compromising the 

effective utilization of ship scattering features. This limitation 

arises due to the constrained feature extraction capabilities of 

the subsequent fully connected layer. 

To confront and mitigate this challenge while bolstering the 

robustness of the embedding, the final layer incorporates a 

dedicated MLP-Mixer layer. This MLP-Mixer layer is 

meticulously engineered to further process the feature vectors 

while maintaining the same number of output channels as the 

input channels. The Mixer layer comprises two types of MLP 

sub-layers: channel-mixing MLPs and token-mixing MLPs. 

Within the Mixer layer, there are two distinct categories of MLP 

sub-layers, namely channel-mixing MLPs and token-mixing 

MLPs. These two sub-layer types are designed to serve specific 

purposes in enhancing feature fusion and communication. The 

channel-mixing MLPs are responsible for facilitating 

communication among different channels. They operate 

independently on each token, treating individual rows of the 

data table as their inputs. In contrast, the token-mixing MLPs 

are geared towards enabling communication across different 

spatial locations or tokens. They work independently on each 

channel and utilize individual columns of the data table as their 

inputs. These two types of sub-layers are intentionally 

interleaved within the Mixer layer. This arrangement ensures 

that both channel-level and spatial-level interactions are 

effectively harnessed, facilitating a comprehensive and holistic 

fusion of information across both input dimensions. 

Distinct from a conventional MLP, which primarily extracts 

features from individual vectors, the MLP-Mixer introduces an 

innovative capability: it facilitates communication between 

different spatial locations, specifically the features of scattering 

key points located at varying positions. This communication 

mechanism empowers the comprehensive fusion of feature 

Fig. 4. Framework of the TEB. 
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attributes from scattering key points situated in diverse areas. 

This fusion can be mathematically expressed as: 
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 Here σ is an element-wise nonlinearity (GELU [61]), 𝐅 is a 

patch composed of 𝑓2. Ultimately, by concatenating these N 32-

dimensional feature vectors, we obtain a SPT embedding that is 

largely independent of the scattering point placements. 

E. Reciprocal Feature Fusion Attention (RFFA) 

After completing the feature extraction process within the 

TEB, we transition from the  SPT to the SPT embedding. 

Nevertheless, a pivotal challenge arises when it comes to 

effectively amalgamating the  SPT embedding with the visual 

information, which has been extracted by the CNN. This 

challenge is critical to address as it determines the model's 

ability to synergize both visual and topological aspects. On one 

hand,  SPT embedding encapsulates the topological 

characteristics of the target, providing essential insights into its 

structure and organization. On the other hand, the visual 

information obtained through the CNN offers rich details and 

patterns that are crucial for accurate classification and 

recognition tasks. Bridging the gap between these two types of 

data and ensuring that they complement each other seamlessly 

is of paramount importance to improve the overall performance 

of the model. 

To tackle this challenge, we introduce the innovative concept 

of RFFA. RFFA serves as a mechanism to facilitate the fusion 

of visual information and  SPT embedding, thereby creating a 

unified representation. This integration plays a pivotal role in 

enabling the subsequent fully connected neural network to 

acquire a more comprehensive understanding of the target by 

simultaneously learning from both its visual and topological 

features. By incorporating two interactive cross-attention[62] 

functions within the RFFA module, we facilitate cross-modality 

learning, as shown in Fig. 5. These cross-attention functions are 

meticulously designed to discern subtle alignments and 

correspondences between the topological and visual 

information. They effectively identify and enhance the features 

that are corroborated and confirmed by both modalities, thus 

enriching the final fused representation.  

In practice, the RFFA process starts with layer normalization 

to ensure consistent scaling and to enhance training stability. 

Following this, the input features from both modalities are 

processed through a shared fully connected layer, projecting 

them onto a shared inner dimension. We denote the modality of 

the topology and visual representations with subscripts T and V, 

resulting in 𝑯T
𝑙  and 𝑯V

𝑙 , respectively. The overarching concept 

is to enhance the importance of visual features within a target 

when their relevance is substantiated by the semantic context 

provided by the topology features. To formalize this, we 

introduce a cross-attention function, expressed mathematically 

as follows: 
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In this formulation, q, k, and v represent the query, key, and 

value functions, respectively, while 𝑑𝑘 is the dimension of the 

key vectors. After applying the cross-attention functions, we 

utilize fully connected layers to separately project the topology 

features and visual features back to their original dimensions, 

thereby obtaining the new topology features and visual features. 

To generate the final output, we concatenate these updated 

features, effectively combining the relevant information from 

both modalities to produce a more discriminative and robust 

representation. 

 
Fig. 5. Illustration of the RFFA. 

 

IV. EXPERIMENTS 

A. Datasets 

1)  OpenSARShip Dataset: The OpenSARShip dataset is a 

comprehensive collection of Sentinel-1 SAR images 

specifically designed for ship interpretation tasks. The dataset 

is compiled from Sentinel-1 images acquired across various sea 

areas, environmental conditions, and seasons, making it a 

valuable resource for research in maritime surveillance and 

related applications. This dataset comprises over 60,000 SAR 

image chips, with each chip measuring 256 × 256 pixels. The 

chips contain approximately 20,000 ships, with detailed 

annotations, including ship position, length, and width, as well 

as relevant environmental information, such as wind speed and 

wave height. The dataset also includes a wide range of ship 

types, such as bulk carriers, container ships, fishing vessels, oil 

tankers, passenger ships, and tugs, among others. Excluding a 

few categories with particularly small sample sizes, we utilized 

8 different classes from the dataset. We randomly selected 4 

classes for the training set and the remaining 4 classes for the 

test set, which is shown in Table I. 
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TABLE I 

THE DETAILED DATASET SETTINGS IN OUR EXPERIMENT. 

 

Dataset Base Classes Novel Classes  

 Cargo Dredgin 

OpenSARShip Fishing Passeng 

 Tanker Pilot 

 Tug Search 

 Cargo HighSpeedCraft 

 Dredger LawEnforce 

FUSAR-Ship Fishing Reserved 

 Tanker Passenger 

 Unspecified Tug 

 BulkCarrier, CargoShip Unspecified 

Open-FUSAR 

CrudeOilTanker, Fishing 

Passenger, Pleasurecraft 

Tanker, Tanker-HazardB 

Tug, WingInGrnd 

ContainerShip 

GeneralCargo 

Tanker-HazardA 

PilotVessel 

 
HighSpeedCraft, OffshoreSupplyShip 

OilProductsTanker 

Oil_ChemicalTanker 

 

 

2)  FUSAR-Ship Dataset: The FUSAR-Ship dataset is a high-

resolution SAR-AIS matchup dataset built using Gaofen-3 SAR 

images and associated automatic identification system (AIS) 

data. The dataset is specifically designed to facilitate research 

in ship detection, recognition, and maritime surveillance by 

providing high-resolution SAR images with accurate ship 

position and identification information from corresponding AIS 

data. FUSAR-Ship contains over 10,000 SAR image chips, with 

each chip measuring 500 ×  500 pixels. These images are 

acquired from Gaofen-3, a high-resolution SAR satellite with a 

spatial resolution of up to 1 meter. The dataset covers various 

sea areas, environmental conditions, and ship types, enhancing 

its versatility for algorithm development and evaluation. The 

AIS data included in the dataset provide ship identification, 

position, course, speed, dimensions, and other relevant 

attributes. Following the general settings in FSL, we utilized 10 

different classes from the dataset. We randomly selected 5 

classes for the training set and the remaining 5 classes for the 

test set, which is shown in Table I. 

3)  Open-FUSAR Dataset: To address the challenge of fine-

grained classification in SAR images, where the subtle 

differences between various classes make it difficult for few-

shot learning models to effectively learn discriminative features, 

we have integrated the aforementioned two datasets into a 

unified dataset called Open-FUSAR Dataset. During the 

integration process, we combined instances from the same 

categories across both datasets to increase the diversity and the 

number of samples for each class. Meanwhile, distinct 

categories were kept separate to maintain a broad range of ship 

types for classification tasks. After the integration, we 

randomly selected 13 classes to be included in the training set, 

ensuring a sufficient number of examples for each class to 

facilitate the effective training of the model. The remaining 6 

classes were designated as the test set, which enabled us to 

evaluate the performance of the trained model on unseen data 

and assess its generalization capabilities, which is shown in 

Table I. By combining and processing the two datasets in this 

manner, we aimed to enhance the model's learning ability by 

exposing it to a diverse set of examples across various ship 

types, environments, and conditions. Furthermore, this 

approach allows researchers to develop more robust and 

accurate fine-grained classification algorithms for SAR images, 

ultimately improving maritime surveillance and related 

applications. 

 

B. Implementation Details 

In our experiments, we employ a testing setup using 4way-

1shot and 4way-5shot configurations on OpenSARShip Dataset, 

using 5way-1shot and 5way-5shot configurations on FUSAR-

Ship Dataset and using 6way-1shot and 6way-5shot 

configurations on Open-FUSAR Dataset and, with 5 query 

images per class. The input images are resized to a fixed 

resolution of 84 × 84 pixels. During the training phase, we set 

the number of epochs to 50. For both the training and fine-

tuning processes, we utilize the stochastic gradient descent 

(SGD) algorithm as the optimizer. The optimizer is configured 

with a learning rate of 0.01, momentum of 0.9, dampening of 

0.9, and weight decay of 0.001. The fine-tuning process is 

executed with a total of 150 steps for 1-shot and 600 steps for 

5-shot. In the testing phase, we set the number of test episodes 

to 100 and employ a batch size of 4. In the context of the SPT, 

each scattering point's feature dimension extracted by the TEB 

is set at 32. Consequently, the dimensionality of the TEB output 

equals N×32. In parallel, the output of the backbone network is 

flattened, resulting in 640-dimensional vectors. To maintain 

consistency, we have set the default number of scattering key 

points (N) to 20, ensuring that the dimensionality of the TEB 
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output matches the output dimension of the backbone network. 

As a result, the SPT embedding shares the same dimensionality 

as the backbone output. Upon concatenation of the SPT 

embedding and the backbone output, the combined feature 

vector attains a dimensionality of 1280. This feature vector is 

subsequently input into the fully connected layer for further 

processing. Additionally, we have set the default number of 

nearest neighbor nodes (K) for the SPT at 3. 

C. Evaluation Metric 

For each episode, the accuracy (𝐴𝑐𝑐𝑖 ) is computed as the 

ratio of the number of correctly classified query images to the 

total number of query images. The computation process is 

presented in Equation (8), where 𝑁𝑞 denotes the total number 

of query images. The variables 𝑝𝑖  and 𝑡𝑖 represent the predicted 

class and ground truth class of the i-th query image, respectively. 

The indicator function 𝕀, is equal to 1 if 𝑝𝑖 = 𝑡𝑖 and 0 otherwise. 

 ( )0

1 qN

i i ij
q

Acc p t
N

==  =I  (8) 

To mitigate the impact of randomness, the experiment is 

conducted multiple times, and the final accuracy is determined 

as the average of all episode accuracies (𝐴𝑐𝑐𝑖), as shown in 

Equation (9). The variable N in the equation refers to the 

number of repetitions of the experiment. In the main experiment, 

N is set to 100 for all models, providing a more robust 

evaluation. 

 0

1 N
j iAcc Acc

N
==   (9) 

By utilizing this evaluation metric, we can achieve a more 

reliable and precise estimation of the models' performance. 

 

D. Ablation Studies 

we conduct a series of ablation experiments on three datasets 

to analyze the effectiveness of each proposed component in 

SPT-FSC. All subsequent experiments maintain the same 

settings to make a fair comparison. Specifically, we explore the 

effects of different numbers of scattering key points, varying 

numbers of nearest neighbors, the utilization of TEB including 

GCN and MLP-Mixer, and the impact of RFFA.  By 

systematically examining these aspects, we aim to gain deeper 

insights into the underlying mechanisms of  SPT and provide 

valuable guidance for optimizing its performance.  

1)  Effects of different number of scattering key points: In the 

analysis of the effects of different numbers of scattering key 

points on classification accuracy, it can be observed that an 

increase in the number of scattering key points generally leads 

to an improvement in classification accuracy for both the 1-shot 

and 5-shot scenarios, as shown in table II. However, the 

improvement tends to plateau or even slightly decline when the 

number of key points surpasses a certain threshold, such as 

N=20 for the OpenSARShip and FUSAR-Ship datasets. And 

the performance improvement is more pronounced in the 5-shot 

scenario compared to the 1-shot scenario. Furthermore, the 

impact of increasing the number of scattering key points on 

classification accuracy appears to be more significant for the 

Open-FUSAR dataset compared to the OpenSARShip and 

FUSAR-Ship datasets. This demonstrates the effectiveness of 

expanding the base class size in the dataset to address the lack 

of diversity in the training data for few-shot classification in 

SAR images. 

Fig. 6 offers a visualization of the SPT with different 

numbers of scattering key points, showing that the topology 

becomes more intricate as the number of key points increases. 

This increased complexity allows the method to capture more 

discriminative features, resulting in better classification 

performance. Nonetheless, it is crucial to strike a balance 

between the complexity of the SPT and the risk of overfitting, 

as utilizing too many scattering key points may lead to a decline 

in generalization capabilities. 

In conclusion, the increase in the number of scattering key 

points enhances the classification accuracy of the SPT method, 

particularly in the 5-shot scenario. However, it is essential to 

find an optimal balance between the complexity of the SPT and 

the model's generalization capabilities, as excessive complexity 

may lead to overfitting and reduced performance on unseen data. 

 

 

 

 

 

 

 

Table II 

EFFECTS OF DIFFERENT NUMBER OF SCATTERING KEY POINTS 

 

N 

OpenSARShip FUSAR-Ship Open-FUSAR 

1shot 5shot 1shot 5shot 1shot 5shot 

10 

15 

44.35±2.37 

47.25±2.19 

59.90±2.05 

66.40±2.27 

52.12±1.87 

51.12±2.27 

62.08±1.89 

66.72±1.55 

51.44±2.24 

56.00±2.30 

73.56±1.72 

77.56±1.59 

20 47.75±2.47 68.55±2.36 55.76±2.28 68.04±1.64 59.48±2.61 81.48±1.59 

25 51.95±2.92 66.80±1.94 50.08±2.46 66.80±1.80 60.60±2.60 79.76±1.58 

30 51.15±2.49 72.00±2.03 52.68±2.51 69.04±1.67 62.68±2.51 80.40±1.53 
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(a) (b) 

Fig. 6. Visualization of the SPT with different number of scattering 

key points. (a) Container of 10, 15, 20, 25, and 30 scattering key 

points, respectively. (b) Tanker of 10, 15, 20, 25, and 30 scattering 

key points, respectively. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
(a) (b) 

Fig. 7. Visualization of the SPT of with different number of nearest 

neighbors. (a) Container of 1-5 nearest neighbors, respectively. (b) 

Tanker of 1-5 nearest neighbors, respectively. 

 

2) Effects of different number of nearest neighbors: In this 

section, we discuss the effects of using different numbers of 

nearest neighbors K on the performance of the SPT method. 
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Table III presents the experimental results for different 

values of K, and Fig. 7 provides a visualization of the SPT 

with varying numbers of nearest neighbors. From Table III, 

we can observe that the performance of the SPT method 

varies with the number of nearest neighbors, which indicates 

that the selection of K plays a significant role in the 

performance of the method. These observations suggest that 

an optimal number of nearest neighbors exists for each 

dataset. When the number of nearest neighbors is too low or 

too high, the performance of the model deteriorates. The 

optimal number of nearest neighbors seems to be dataset-

specific, as the best value varies between the three datasets. 

The visualization of the SPT with different numbers of 

nearest neighbors in Fig. 7 further supports these 

observations. The underlying reason for these patterns may 

be related to the trade-off between local and global 

information. A smaller number of nearest neighbors 

emphasizes local features, while a larger number of nearest 

neighbors captures more global information. It is crucial to 

find the right balance between local and global information 

to achieve the best performance in recognizing and 

classifying ships in SAR images. 

The visualizations demonstrate how the SPT changes as 

the number of nearest neighbors increases. We can see that 

with a smaller K value, the topology appears sparser, while 

with a larger K value, the topology becomes denser. This 

observation suggests that the selection of K influences the 

complexity of the SPT, which in turn affects the 

representation of the structural and shape features of the ship 

targets. 

In conclusion, the results indicate that selecting an 

appropriate number of nearest neighbors is crucial for the 

SPT method to effectively capture the structural and shape 

features of ship targets. By choosing an optimal K value, the 

method can achieve better classification and recognition 

performance. The potential pattern underlying these results 

may be that the optimal K value is dataset-dependent, 

meaning that it could be influenced by the specific 

characteristics of the dataset being used. 

3) Effects of TEB: In this section, we delve into the 

analysis of the effects of employing GCN and the MLP-

Mixer in the TEB of our proposed model. Our primary focus 

is on understanding how these components enhance the 

performance of the model, especially in scenarios where the 

SPT plays a crucial role. 

To provide some context, we began by introducing RFFA 

to the baseline model and conducted experiments. RFFA, in 

this context, operates by taking image features extracted by 

CNN as its inputs. It effectively acts as a self-attention 

mechanism, reinforcing the output features of the network. 

Our results, as shown in the second row of Table IV, 

indicated a noticeable improvement in model performance 

after adding RFFA. This improvement can be attributed to 

the ability of RFFA to enhance the discriminability of the 

model's output features. 

Building upon this, we further enhanced the model by 

introducing TEB based on the baseline with RFFA, where 

GCN was employed. As reflected in the third row of Table 

IV, this addition resulted in a significant boost in 

performance compared to when both inputs of RFFA were 

image features. The test accuracy increased by 4.95% (1-shot) 

and 10.6% (5-shot) on OpenSARship, 6.28% (1-shot) and 

12.88% (5-shot) on FUSAR-ship, and 1.56% (1-shot) and 

7.48% (5-shot) on Open-FUSAR, respectively. This 

demonstrated the effectiveness of introducing topological 

features into the model, highlighting the importance of SPT 

in the task. 

Visualizations using t-SNE on the Open-FUSAR dataset, 

as shown in Fig. 8, further corroborate our experimental 

findings. Baseline feature embeddings exhibit aliasing issues 

(Fig. 8(a) and (b)), which are alleviated to some extent with 

the addition of RFFA (Fig. 8(c) and (d)). However, it's only 

when we incorporate both RFFA and TEB (including GCN 

and MLP-Mixer) that clear boundaries between different 

categories emerge in the feature embeddings (Fig. 8(e) and 

(f)). This suggests that MLP-Mixer significantly enhances 

the discriminative capabilities of the feature embeddings, 

making it easier to distinguish between different classes. 

This also proves that the role of MLP-Mixer in addressing 

the issue of input feature point order in the SPT embedding  

is noteworthy. By facilitating communication between 

different spatial locations, MLP-Mixer enables the 

comprehensive fusion of feature attributes from scattering 

key points located in different areas. This ultimately results 

in a more robust SPT embedding that is less dependent on 

the specific positions of scattering points. Consequently, the  

Table III 

EFFECTS OF DIFFERENT NUMBER OF NEAREST NEIGHBORS. 

K 

OpenSARShip FUSAR-Ship Open-FUSAR 

1shot 5shot 1shot 5shot 1shot 5shot 

1 

2 

48.80±2.70 

47.80±2.22 

69.70±2.46 

70.95±2.30 

50.64±2.37 

51.72±2.44 

70.68±1.62 

69.44±1.46 

57.92±2.29 

57.28±2.28 

79.72±1.67 

77.08±1.57 

3 47.75±2.47 68.55±2.36 55.76±2.28 68.04±1.64 59.48±2.61 81.48±1.59 

4 47.20±2.12 63.10±2.43 54.08±2.41 67.80±1.54 59.84±2.79 75.28±1.69 

5 48.05±2.17 62.60±2.23 49.76±2.46 70.96±1.42 59.28±2.34 78.48±1.67 
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Table IⅤ 

ABLATION FOR KEY COMPONENTS PROPOSED IN SPT-FSC. 

RFFA 

TEB OpenSARShip FUSAR-Ship Open-FUSAR 

GCN 
MLP-

Mixer 
1shot   5shot 1shot 5shot 1shot    5shot 

× × × 35.85±2.00 43.40±2.04 31.68±1.56 37.32±2.00 48.78±2.24 60.52±1.84 

√ × × 39.55±1.95 53.50±2.31 39.40±1.87 50.08±1.86 50.56±2.31 68.00±1.76 

√ √ × 44.50±2.38 64.10±2.53 45.68±2.27 62.96±1.82 52.12±2.14 74.12±1.93 

× √ √ 35.90±2.18 37.70±1.89 30.32±1.65 35.28±1.81 49.12±2.22 62.40±1.67 

√ √ √ 47.75±2.47 68.55±2.36 55.76±2.28 68.04±1.64 59.48±2.61 81.48±1.59 

inclusion of MLP-Mixer in the TEB contributes significantly to 

the overall enhancement of the model's performance across all 

datasets and scenarios. 

Visualizations using t-SNE on the Open-FUSAR dataset, as 

shown in Fig. 8, further corroborate our experimental findings. 

Baseline feature embeddings exhibit aliasing issues (Fig. 8(a) 

and (b)), which are alleviated to some extent with the addition 

of RFFA (Fig. 8(c) and (d)). However, it's only when we 

incorporate both RFFA and TEB (including GCN and MLP-

Mixer) that clear boundaries between different categories 

emerge in the feature embeddings (Fig. 8(e) and (f)). This 

suggests that MLP-Mixer significantly enhances the 

discriminative capabilities of the feature embeddings, making it 

easier to distinguish between different classes. This also proves 

that the role of MLP-Mixer in addressing the issue of input 

feature point order in the SPT embedding  is noteworthy. By 

facilitating communication between different spatial locations, 

MLP-Mixer enables the comprehensive fusion of feature 

attributes from scattering key points located in different areas. 

This ultimately results in a more robust SPT embedding that is 

less dependent on the specific positions of scattering points. 

Consequently, the inclusion of MLP-Mixer in the TEB 

contributes significantly to the overall enhancement of the 

model's performance across all datasets and scenarios. 

4) Effects of RFFA: The main goal of RFFA is to enhance 

the discriminative power of the fused features by considering 

the reciprocal relationships and contributions of the features 

from different sources, allowing the model to focus on the most 

relevant and informative parts of each feature set.  

The incorporation of RFFA in our model is aimed at 

elevating the discriminative power of fused features by 

considering the reciprocal relationships and contributions of 

features from diverse sources. This strategic approach enables 

the model to prioritize the most relevant and informative 

aspects of each feature set. The impact of RFFA on the 

network's output features is clearly evident from the second row 

of the table, where RFFA is applied to the Baseline model. In 

this scenario, RFFA operates on two inputs, which are the 

image features initially extracted by the CNN. The test accuracy 

experiences substantial improvements, with gains of 3.7% (1-

shot) and 10.1% (5-shot) on OpenSARShip, 7.72% (1-shot) and 

12.76% (5-shot) on FUSAR-ship, and 1.78% (1-shot) and 7.48% 

(5-shot) on Open-FUSAR, respectively. These results 

underscore the significant enhancement effect that RFFA has 

on the model's output features. 

Fig. 8 (g) and (h) present t-SNE visualizations of the output 

features fused by simple concatenation on the Open-FUSAR 

dataset. In this context, the feature embedding of Baseline with 

TEB, including GCN and MLP-Mixer, exhibits substantial 

aliasing, similar to the Baseline. This observation underscores 

that while SPT embedding contains a wealth of feature 

information, it primarily pertains to topological features, which 

are inherently different from the visual features extracted by the 

CNN. Directly concatenating these visual and topological 

features may not efficiently leverage the topological 

information and could potentially hinder the extraction of visual 

features. In contrast, the t-SNE visualizations for both 1-shot 

and 5-shot scenarios (Fig. 8 (i) and (j)) demonstrate that features 

fused by RFFA are more discriminative and better separated 

compared to those fused by simple concatenation. Clear 

boundaries between different categories emerge, resulting in 

significantly improved classification performance. 

Consequently, the integration of RFFA for feature fusion plays 

a pivotal role in effectively amalgamating these distinct 

modalities and substantially enhancing the model's overall 

performance. 

E. Comparison with State-of-the-Art Methods 

To validate the effectiveness of SPT-FSC, we compared our 

method with eight state-of-the-art few-shot classification 

methods in the three datasets, as shown in Table V . The 

backbone for all the compared methods utilizes ResNet-12, and 

the training and testing parameters align with those employed 

in this paper. To ensure a fair comparison, all hyperparameters 

for our method and other methods are set to their default values. 

In comparison with state-of-the-art methods, the number of 

scattering key points (N) is fixedly set to 20, and the number of 

nearest neighbors (K) is fixedly set to 3. The parameter 

temperature of the Cosine classifier in Baseline++ is set to 10. 

The parameter margin in NegMargin is set to -0.01. The relation 

module of RelationNet consists of two convolutional blocks 

and two fully connected layers. Each of convolutional block is 

a 3 × 3 convolution followed by batch normalisation, ReLU 

non-linearity and 2 × 2 max-pooling. MAML use Adam as the 

meta-optimizer with a fixed step size α = 0.01. These settings 

are essential for consistency in our evaluations. 
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Based on the experiment results presented in the table, we 

can provide an in-depth analysis of the performance of various 

few-shot classification methods, including meta-learning and 

transfer learning strategies, on the OpenSARShip, FUSAR-

Ship, and Open-FUSAR datasets. For the OpenSARShip 

dataset, the proposed SPT-FSC method significantly 

outperforms all other methods in both the 1-shot and 5-shot 

scenarios, achieving 47.75% (±2.47) and 68.55% (±2.36) 

accuracy, respectively. This demonstrates the effectiveness of 

the SPT, TEB and RFFA in capturing detailed information from 

SAR images. Similarly, on the FUSAR-Ship dataset, SPT-FSC 

also achieves the best performance in both the 1-shot and 5-shot 

settings, with accuracies of 55.76% (±2.28) and 68.04% (±1.64), 

respectively. The results again showcase the strength of our 

proposed method in handling high-resolution SAR images with 

accurate ship position and identification information. In the 

case of the Open-FUSAR dataset, the SPT-FSC method 

maintains its superior performance, achieving the highest 

accuracy in both the 1-shot and 5-shot scenarios, with 59.48% 

(±2.61) and 81.48% (±1.59), respectively. This highlights the 

benefits of combining the OpenSARShip and FUSAR-Ship 

datasets to create a more diverse and fine-grained ship 

classification dataset. In general, our proposed SPT-FSC 

method demonstrates superior performance across all datasets 

and few-shot settings. This can be attributed to the effective 

integration of SPT information and RFFA mechanism, which 

enhances the network's adaptability to the imaging mechanism 

and alleviates the imaging variability inherent in SAR images. 

The t-SNE visualization of the output features in the Open-

FUSAR dataset provides valuable insights into the performance 

of various methods, as illustrated in Fig. 9. When the image 

classification model has effectively learned meaningful features 

from the data, the t-SNE visualization tends to reveal distinct 

separations between different classes within the embedding 

space. Notably, in Fig. 9(a), the feature embedding of ProtoNet 

for 1-shot learning and in Fig. 9(d), Baseline++ for 5-shot 

learning display highly concentrated distributions with the 

presence of outliers. Conversely, in Fig. 9(b), the feature 

embedding of ProtoNet for 5-shot learning and in Fig. 9(c), 

Baseline++ for 1-shot learning exhibit more dispersed 

distributions, but with a notable degree of overlap among 

classes. Moving on to Fig. 9(e), the feature embedding of SPT-

FSC for 1-shot learning and Fig. 9(f), SPT-FSC for 5-shot 

learning demonstrates even more scattered distributions, with 

clear boundaries between different class embeddings, 

significantly mitigating the issue of overlap. It's worth 

highlighting that Fig. 9(f), representing SPT-FSC for 5-shot 

learning, exhibits fewer instances of overlap compared to Fig. 

9(e), representing SPT-FSC for 1-shot learning, indicating that 

the number of support set samples has an impact on model 

performance, which aligns with the accuracy results presented. 

In direct comparison among ProtoNet, Baseline++, and SPT-

FSC, it becomes evident that the proposed SPT-FSC method 

consistently leads to superior separation of different classes, 

whether in the 1-shot or 5-shot learning settings. These results  

 

  
(a) (b) 

  
(c) (d) 

   
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Fig. 8. t-SNE visualization of the output features on Open-FUSAR 

Dataset. (a) Baseline for 1-shot. (b) Baseline for 5-shot. (c) Baseline 

with RFFA for 1-shot. (d) Baseline with RFFA for 5-shot. (e) Baseline 

with RFFA and TEB including GCN for 1-shot. (f) Baseline with 

RFFA and TEB including GCN for 5-shot. (g) Baseline with TEB 

including GCN and MLP-Mixer for 1-shot. (h) Baseline with TEB 

including GCN and MLP-Mixer for 5-shot. (i) SPT-FSC for 1-shot. (j) 

SPT-FSC for 5-shot. The numbers 0-5 in the legend represent 

ContainerShip, GeneralCargo, oil_ChemicalTanker, PilotVessel, 

Tanker-HazardA  and Unspecified, respectively. 
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TABLE V 

COMPARISON WITH STATE-OF-THE-ART METHODS. 

 

Method 

OpenSARShip FUSAR-Ship Open-FUSAR 

1shot 5shot 1shot 5shot 1shot 5shot 

MatchingNet [35] 

ProtoNet [14] 

RelationNet [36] 

MAML [18] 

Baseline [41] 

30.20±1.66 

32.00±1.97 

29.64±2.04 

29.60±2.13 

35.85±2.00 

33.30±1.70 

37.35±2.19 

30.60±1.73 

33.10±1.87 

43.40±2.04 

31.88±1.96 

30.64±2.01 

31.12±1.53 

31.32±1.81 

31.68±1.56 

34.00±1.44 

35.40±1.68 

31.12±1.53 

32.40±1.71 

37.32±2.00 

46.41±2.26 

40.44±2.04 

43.63±2.27 

42.68±2.39 

48.78±2.24 

56.86±1.98 

52.95±1.96 

47.01±1.84 

52.28±1.86 

60.52±1.84 

Baseline++ [41] 

NegMargin [63] 

35.35±2.09 

36.15±2.15 

40.90±1.84 

41.05±1.86 

31.96±1.79 

30.68±1.91 

35.64±1.83 

35.68±1.89 

46.36±2.35 

35.68±1.89 

60.32±1.80 

59.96±1.82 

MetaBaseline [42] 32.51±2.03 38.60±1.86 30.32±1.88 34.52±1.83 47.59±2.21 58.68±1.87 

SPT-FSC(ours) 47.50±2.47 71.05±2.48 55.76±2.28 68.04±1.64 59.48±2.61 81.48±1.59 

 

 

underscore the critical role of feature in enhancing 

classification accuracy. 

To provide a more comprehensive illustration of the 

experimental results, Fig. 10 presents the confusion matrices for 

ProtoNet, Baseline++, and SPT-FSC applied to the 

OpenSARship Dataset. Analyzing Fig. 10(a)-(d), it becomes 

evident that the classification accuracy is notably higher for the 

"Pilot" and "Passenger" categories, while it is relatively lower 

for the "Dredging" and "Search" categories. Notably, the 

overall accuracy for the "Search" category is particularly low. 

This disparity in accuracy may be attributed to the inherent 

challenges posed by the small size of ships within the "Search" 

category, making them difficult to distinguish. However, in Fig. 

12(e) and (f), we observe significant improvements in the 

recognition accuracy across all categories. For the four 

categories of "Dredging," "Pilot," "Passenger," and "Search," 

the accuracy has increased substantially, with gains exceeding 

14.8%, 9.4%, 15.4%, and 9.0% for the 1-shot scenario, 

respectively, and even more remarkable gains of 32.4%, 28.6%, 

26.2%, and 33.4% for the 5-shot scenario. Notably, SPT-FSC 

outperforms in the 5-shot scenario across all four categories, 

achieving classification accuracies exceeding 70% in each. 

Furthermore, the classification accuracy for "Dredging" and 

"Search" categories surpasses that of the "Pilot" and 

"Passenger" categories in SPT-FSC. This observation 

highlights SPT-FSC's proficiency in capturing and leveraging 

fine-grained local features, enabling it to excel in distinguishing 

small and intricate targets. In essence, these findings underscore 

the effectiveness of SPT-FSC in improving classification 

accuracy and its potential for enhancing the model's 

performance in scenarios with challenging and intricate visual 

distinctions. 

Comparing the meta-learning approaches (MatchingNet, 

ProtoNet, RelationNet, and MAML) with transfer learning 

methods (Baseline, Baseline++, and MetaBaseline), we observe 

that transfer learning-based methods generally perform better. 

This indicates that transfer learning is more suitable for 

handling the scarcity of labeled examples in few-shot scenarios, 

especially for the SAR image of ship domain. Among the meta-

learning methods, MAML shows relatively consistent 

performance across the three datasets. MatchingNet, ProtoNet, 

RelationNet, and MAML perform similarly across all datasets, 

with a slight variation in performance. This suggests that these 

meta-learning approaches have comparable abilities in learning 

discriminative features from few-shot examples. However, 

their performance is still outperformed by the transfer learning-

based methods, particularly our proposed SPT-FSC approach. 

Baseline and Baseline++ demonstrate improved performance 

compared to meta-learning approaches, especially in 5-shot 

classification tasks. This indicates that transfer learning-based 

methods are more effective in few-shot classification tasks. The  

Baseline++ method outperforms the Baseline method, showing 

the importance of fine-tuning pre-trained models on the small 

support set and utilizing the cosine similarity metric to enhance 

the distance metric learning process. The NegMargin method 

shows a similar performance to Baseline++ in 5-shot 

classification tasks but has slightly worse performance in the 1- 

shot classification tasks. This suggests that although it is an 

effective approach, it might not be as robust as Baseline++ in 

few-shot classification tasks. MetaBaseline shows competitive 

performance compared to Baseline and Baseline++, but it still 

falls short of our proposed SPT-FSC method. This indicates that 

incorporating meta-learning techniques and auxiliary loss 

functions can improve few-shot classification performance but 

might not be sufficient to address the challenges posed by SAR 

image classification tasks. Our proposed SPT-FSC method 

outperforms all other methods across all datasets and both 1-

shot and 5-shot classification tasks. This indicates that 

incorporating the SPT, SPT embedding, and RFFA 

significantly enhances the model's ability to learn 

discriminative features from few-shot examples in SAR images. 

Additionally, the integration of OpenSARShip and FUSAR-

Ship datasets helps the model address the limited diversity in 

training data and further improves classification performance. 
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In order to conduct a comprehensive comparison of various 

methods employed in the few-shot SAR image classification 

task, we assessed several approaches, namely, the conv-

BiLSTM prototypical network (CBLPN) [64], hybrid inference 

network (HIN) [65], and mixed loss graph attention network 

(MGA-Net) [66]. These methods were evaluated using the 

OpenSARship dataset, with experiments consistently 

employing 3-way-1shot and 3-way-5shot settings for 

consistency and comparability. The specific configurations of 

base categories and novel categories are presented in Table VI. 

In contrast to other few-shot SAR ATR methods, SPT-FSC has 

made specific parameter choices by setting the number of 

scattering key points (N) to 30 and the number of nearest 

neighbors (K) to 2. These parameter selections were informed 

by the thorough analysis of the effects of varying N and K, 

which were examined in ablation experiments performed 

previously on the OpenSARShip dataset.  Upon analyzing the 

results in Table VII, it becomes evident that the proposed 

method, denoted as SPT-FSC, achieved the highest average 

accuracies, reaching 70.80% in the 3-way 1-shot scenario and 

88.80% in the 3-way 5-shot scenario. These results represent a 

significant improvement over existing few-shot SAR ATR 

(Automatic Target Recognition) methods, surpassing them by  

at least 0.51% and 9.11%, respectively. Notably, SPT-FSC 

demonstrates substantial advantages in the 3-way 5-shot 

scenario, indicating its robust performance. Furthermore, it is 

worth noting that CBLPN, HIN, and MGA-Net also exhibit 

competitive performance. CBLPN utilizes long short-term 

memory (LSTM) to integrate sequence information from SAR 

images after embedding, while HIN and MGA-Net employ 

graph networks to model relationships among samples. 

However, a limitation of these methods is their failure to 

explore fine-grained features thoroughly, resulting in biased 

feature distribution estimation for novel categories. This 

suggests that there is room for improvement in these existing 

approaches to further enhance their performance in few-shot 

SAR image classification tasks. 

TABLE VI 

OPENSARSHIP DATASET SETTINGS FOR FEW-SHOT SAR ATR 

METHODS. 

 

Base Classes Novel Classes  

Cargo Dredgin 

Tanker Tug 

Others fishing 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 9. t-SNE visualization of the output features on Open-FUSAR 

Dataset. (a) ProtoNet for 1-shot. (b) ProtoNet for 5-shot. (c) 

Baseline++ for 1-shot. (d) Baseline++ for 5-shot. (e) SPT-FSC for 

1-shot. (f) SPT-FSC for 5-shot. The numbers 0-5 in the legend 

represent ContainerShip, GeneralCargo, oil_ChemicalTanker, 

PilotVessel, Tanker-HazardA  and Unspecified, respectively. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 10. Visualization of the results by confusion matrixes on 

OpenSARship Dataset. (a) ProtoNet for 1-shot. (b) ProtoNet for 5-

shot. (c) Baseline++ for 1-shot. (d) Baseline++ for 5-shot. (e) SPT-

FSC for 1-shot. (f) SPT-FSC for 5-shot.  
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TABLE VⅡ 

COMPARISON WITH FEW-SHOT SAR ATR METHODS. 

 

Method 3-way 1-shot 3-way 5-shot 

CBLPN [64] 67.51±3.14 78.89±1.15 

HIN [65] 60.59±2.42 77.29±0.91 

MGA-Net [66] 70.29±2.20 79.69±0.41 

SPT-FSC (ours) 70.80±2.58 88.80±2.00 

V. DISCUSSION 

In this paper, we introduced the SPT-FSC method, which 

addresses the challenges of few-shot ship classification in 

SAR images by leveraging SPT based on scattering key 

points. While our approach shows promise, it's essential to 

acknowledge its potential limitations and suggest directions 

for further improvement. 

One of the key limitations of our method is the parameter 

selection process. The choice of parameters, such as the 

number of scattering key points and nearest neighbors, plays 

a crucial role in optimizing the model's performance. 

However, these optimal settings may not be universally 

applicable and can vary depending on the specific dataset 

and task at hand. To mitigate this limitation, future research 

should focus on developing automated techniques for 

parameter adaptation. These techniques can reduce the 

reliance on manual fine-tuning and enhance the model's 

adaptability to different scenarios. 

The introduction of SPT, TEB and RFFA has positive 

impacts on the model's training process, enhancing its ability 

to understand topological information and potentially 

reducing the number of training epochs required for 

convergence. However, these improvements come with 

negative impacts as well, including increased computational 

burden during training due to additional computations for 

SPT and RFFA, which can extend training times, particularly 

when dealing with complex SAR data or large datasets and 

model architectures. 

Expanding the applicability of the SPT concept is another 

promising avenue for improvement. While the SPT-FSC 

method is tailored for ship classification, it's worth exploring 

the extension of the SPT approach to classify a broader range 

of objects in SAR images. Investigating the adaptability and 

generalization of SPT to different targets can enhance the 

versatility and utility of the method. One of the primary 

motivations for introducing SPT in the realm of few-shot 

classification is the inherent challenge posed by a limited 

number of training samples. In such scenarios, traditional 

deep learning networks often encounter difficulties in 

thoroughly learning the distinctive features and 

characteristics of the target class during the training phase. 

Consequently, these networks may exhibit suboptimal 

performance when tested on unseen data. The incorporation 

of SPT directly addresses this limitation by enriching the 

network's knowledge base with additional information, 

thereby bolstering its capacity to learn and generalize 

effectively. While the potential application of SPT to general 

image classification is a noteworthy consideration, its impact 

may be more pronounced in few-shot classification settings. 

This distinction arises from the substantial differences in data 

availability between these two scenarios. General image 

classification typically benefits from access to extensive 

datasets, enabling deep learning networks to acquire 

comprehensive feature representations through an 

abundance of training samples. In such cases, the existing 

feature extraction mechanisms within the network are 

already relatively well-equipped to handle the classification 

task. Consequently, the introduction of SPT may not yield as 

substantial an improvement in standard image classification 

scenarios, as the network's inherent feature learning 

capabilities are relatively robust. 

Furthermore, integrating the SPT-FSC method with SAR 

object detection techniques represents a significant 

opportunity for future research. The current trend in deep 

learning networks often combines object detection and 

classification. By incorporating SPT based classification 

techniques into object detection networks, we can enhance 

the accuracy of object recognition in SAR imagery. This 

integration can lead to more precise and robust target 

identification, particularly when dealing with SAR images 

captured under varying conditions and from different angles. 

Moreover, leveraging the topological information 

encoded by SPT can improve SAR object detection itself. 

For example, it can facilitate more accurate target 

localization, which is crucial for applications like tracking 

and situational awareness. Additionally, SPT can assist in 

distinguishing genuine targets from false alarms, thereby 

elevating the overall accuracy of object detection in SAR 

images. 

 

Ⅵ. CONCLUSIONS 

 

In summary, this paper presents a novel framework named 

SPT-FSC to tackle the unique challenges associated with 

few-shot classification in SAR images. Our main 

contributions include the development of scattering point 

topology, the creation of a TEB to acquire SPT embedding, 

the design of a RFFA mechanism, and the assembly of a 

refined ship classification dataset. The experimental results 

highlight the efficacy of the proposed SPT-FSC method for 

ship classification in SAR images. The SPT captures the 

essential structural and shape features of ship targets, while 

the TEB enables the network to leverage the inherent 

information of each scattering point. The RFFA mechanism 

bolsters the discriminative power of the fused features by 

taking into account the reciprocal relationships and 

contributions of features from different sources. Additionally, 

the construction of a refined ship classification dataset allows 

the network to more effectively tackle the few-shot ship 

classification problem in SAR images. A series of analysis  
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provide insights into the contribution of each component to 

the overall performance of our proposed model. These 

studies confirm the importance of each component in 

enhancing the overall performance and offer valuable 

insights into the model's behavior. By addressing the 

imaging variability, training data diversity, and the need for 

specific adaptations and modifications to existing few-shot 

classification methods, our proposed SPT-FSC method 

demonstrates considerable improvement in few-shot ship 

classification in SAR images.  
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