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Deep Learning for Near-Surface Air Temperature
Estimation from FY-4A Satellite Data

Shanmin Yang, Qing Ren, Ningfang Zhou, Yan Zhang∗, Xi Wu∗

Abstract—Near-surface air temperature is a crucial weather
parameter that significantly impacts human health and is widely
utilized in numerical weather forecasting and climate prediction
studies. However, the most common ground-based meteorological
station observation and radar observation are often limited
by geographic and natural constraints. With the advantages
of global coverage and high spatiotemporal resolution, satellite
remote sensing has become a valuable support in overcoming
data scarcity issues related to ground-based station and radar
observations in complex geographic and natural conditions.
Although remote sensing indirectly reflects atmosphere variables
(e.g., near-surface air temperature), accurately estimating the
atmosphere variables through satellite remote sensing remains
a significant challenge. This paper introduces a deep learning
Transformer-based neural network (TaNet) for near-surface air
temperature estimation. TaNet automatically extracts informa-
tion from imageries captured by China’s new-generation geosta-
tionary meteorological satellite FengYun-4A and generates grid
near-surface air temperature data in near real-time. Extensive
experiments conducted using the state-of-the-art operational
reanalysis product ERA5 and meteorological station observations
as benchmark standards demonstrate the effectiveness and supe-
riority of TaNet. It achieves an impressive Pearson’s correlation
coefficient (CC) of 0.990 with ERA5 and 0.959 with station
observations, outperforming the other products, such as CFSv2,
CRA, and U-Net, on root mean square error (RMSE) and CC
metrics. TaNet reduces the RMSE of CFSv2, CRA, and U-Net by
a margin of 10.551% (2.594°C vs. 2.900°C), 2.261% (2.594°C vs.
2.654°C), and 5.535% (2.594°C vs. 2.746°C), respectively, using
station observations as the benchmark.

Index Terms—Near-Surface Air Temperature; Deep learning;
FengYun 4A Satellite

I. INTRODUCTION

NEAR-SURFACE air temperature, also known as the 2m
temperature, is one of the most essential weather pa-

rameters for human health. Accurate and high-resolution near-
surface air temperature is crucial for reducing loss caused by
natural disasters such as drought, and various scientific studies
such as numerical weather forecasting and climate prediction
[1], [2]. Out of the three most commonly used meteorological
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measurement methods, ground-based station observations and
radar observations may be hindered by geographical and
natural barriers [1], [3], resulting in sparse and unevenly dis-
tributed data that can not accurately reflect the true spatial and
temporal distribution of meteorological conditions. However,
satellite remote sensing offers a solution to these challenges by
providing global coverage and high temporal resolution data,
making it an invaluable tool for overcoming the limitations
of ground-based meteorological station observations and radar
observations, especially in regions with complex terrain.

In recent decades, significant advancements in satellite
remote sensing and deep learning technologies have opened
up new possibilities to produce more accurate and real-time
meteorological products based on massive satellite data and
deep learning techniques. For instance, Tao et al. [4] propose
to improve the accuracy of precipitation estimated from the
Geostationary Operational Environmental Satellite infrared
imagery with a stacked denoising autoencoder network. Sim-
ilarly, Sadeghi et al. [5] improve the accuracy of near real-
time precipitation estimation by using a U-Net convolutional
neural network (CNN), the geographical and infrared (IR)
information. Gao et al. [3] propose an attention-based U-
Net framework for precipitation estimation from FengYun
4A (FY-4A) satellite data. Hu et al. [6] present a deep
learning architecture consisting of four U-Net sub-networks
for precipitation bias correction. Jiang et al. [7] propose a
deep learning-based method to supplement the missing radar
echo data by reconstruction from satellite data. By combining
model-data-knowledge-driven and deep learning techniques,
Wang et al. [8] suggest a method to overcome the ill-
conditioned problem of land surface temperature retrieval by
combining model-data-knowledge-driven and deep learning.
Guo et al. [9] put forward a deep learning-based method
for classifying rainfall levels in Synthetic Aperture Radar
(SAR) images, with the aim of improving sea-surface wind
speed retrieval in conjunction with existing rainfall correction
models. Experiments conducted in these studies showed the
potential and advantages of utilizing deep learning methods
in meteorology. However, improvements are still needed for
practical applications.

For near-surface air temperature estimating, Liu et al. [10]
employ a statistical method on Landsat 8 imagery data and
auxiliary data. The estimation accuracy of several machine-
learning approaches over regions of China is evaluated by [1],
[11]. Zhou et al. [12] develop a two-stage machine learning
method to estimate near-surface air temperature from multi-
source skin temperature. Shen et al. [13] propose a deep belief
network (DBN) that estimates near-surface air temperature
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using remote sensing, socioeconomic, and assimilation data.
However, there is a lack of relevant deep learning-based
studies on near-surface air temperature estimation based on
FY-4A [1], which is still a challenging issue.

This paper presents a deep learning-based method named as
TaNet to estimate the near-surface air temperature Ta. Based
on FY-4A satellite data, TaNet can reconstruct Ta with an
advantage of near-real-time over the reanalysis products such
as ERA5, CRA, etc. Besides, experimental results demonstrate
the excellent accuracy of TaNet. It outperforms CFSv2, CRA,
and U-Net products on RMSE and Pearson’s correlation
coefficient metrics. TaNet provides a promising solution to
address the shortage problem of ground-based meteorological
observation data.

The remainder of this paper is structured as follows: Section
II describes the study area and data preparation. The proposed
method, loss function, and evaluation metrics are presented in
section III. In section IV, we conduct extensive experiments
to compare our approach with operational reanalysis products
and meteorological station observation data. We discuss the
experimental results and future research directions in section
V. Finally, we summarize this paper in section VI.

II. STUDY AREA AND DATA

A. Study Area

For our study, we selected the region between 50◦S-50◦N
and 40◦E-140◦E, according to the coverage of the FY-4A
remote sensing satellite. This region is highly diverse in
topography, climate, and vegetation. It is also characterized
by various weather phenomena, including tropical cyclones,
monsoons, and droughts, which makes it an ideal location for
evaluating the effectiveness of our proposed method across
different environments.

B. Data

1) Fengyun-4A satellite data: Fengyun-4A satellite is the
second generation of geostationary meteorological satellites
developed and launched by the China Meteorological Admin-
istration (CMA). It was put into meteorological operation on
May 1, 2018. The Fengyun-4A satellite is characterized by its
onboard Advanced Geostationary Radiation Imager (AGRI),
which captures satellite brightness temperature imageries with
spatial resolutions of 4km and temporal intervals of 15−60
minutes for full-disk image observations [14], [15]. Each
imagery captured has a total of 14 spectral channels [16]–[18],
covering visible/near-infrared (0.45∼0.90µm), short-wave in-
frared (1.36∼2.35µm), mid-wave infrared (3.5∼4.0µm), long-
wave infrared (8.0∼13.8µm), and water vapor (5.8∼7.3µm)
bands. As only the 12 and 13 channels contain surface
temperature-related information, we selected channels 12 and
13 as input in our paper, liking the existing work [1]. For
more details and (or) download of FY4A/AGRI data, please
refer to the China National Satellite Meteorological Center
(http://satellite.nsmc.org.cn).

TABLE I
LIST OF DATASETS USED IN THIS STUDY. ALL DATASETS ARE SELECTED

IN THE REGION BETWEEN 50◦S-50◦N AND 40◦E-140◦E, WITH A SPATIAL
RESOLUTION OF 0.25◦ ; THE TRAINING AND TESTING DATASETS ARE

DISJOINED.

Datasets Variables Spatial*/ Time
Resolution Usage

FY-4A/AGRI bands 12 4km hourly training, testing
bands 13 4km hourly testing

ERA5 2m temperature 0.25° hourly training, testing
CRA 2m temperature 0.25° daily testing

CFSv2 2m temperature 0.25° hourly testing
Station Observation 2m temperature - daily testing
* The approximate conversion between degree and km is: 1° ≈ 111 km

2) Reanalysis Data: ERA5 is the fifth generation global
reanalysis data product provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) [19]. It
has become one of the most accurate global reanalysis data
products, providing a wide range of climate factors such as
temperature, pressure, humidity, wind speed, and precipitation.
The ERA5 dataset is publicly available and widely used
in climate research, weather forecasting, etc. For our study,
ERA5 data in the region between 50◦S-50◦N and 40◦E-140◦E
is selected, with a spatial resolution of 0.25◦× 0.25° and
a temporal resolution of one hour. For more details about
the ERA5 data, please refer to https://www.ecmwf.int/en/
forecasts/dataset/ecmwf-reanalysis-v5.

CRA is China’s first-generation global atmospheric reanal-
ysis product, which provides a comprehensive view of the
Earth’s atmosphere from 1979 to the present. The CRA
dataset includes a wide range of atmospheric variables such
as temperature, pressure, precipitation, etc. These variables are
available from the ground to an altitude of 55 kilometers [20],
at time resolutions of 3 hours, 6 hours, daily, and monthly.
Specifically, the daily CRA dataset is selected for testing in
this paper. For more details about and download the CRA
product, please refer to China Meteorological Data Service
Centre (http://data.cma.cn/).

In addition, the NCEP Climate Forecast System Reanalysis
(CFSR) product is introduced and analyzed in this paper.
CFSR is a global climate reanalysis dataset produced by the
National Centers for Environmental Prediction (NCEP), pro-
viding a comprehensive view of the Earth’s climate from 1979
to the present. It was initially completed between 1979 and
2009 and extended to March 2011 [21]. On March 30, 2011,
the CFSR dataset was upgraded to a new version (CFSv2)
[22]. CFSv2 dataset with hourly temporal resolution and
0.25◦ × 0.25◦ spatial resolution is selected in this study. For
more details about CFSv2, please refer to https://rda.ucar.edu/.

3) Meteorological Observation Station Data: Meteorolog-
ical observation station data is used as a benchmark in this
study at the testing stage. In detail, meteorological station
observation data from 2231 stations (between 50◦S-50◦N and
40◦E-140◦E), in January, April, July, and October of 2020
year, are used to measure the performance of the proposed
method in this paper. And these data are provided by the China
Meteorological Data Service Centre.
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Fig. 1. Framework of TaNet model. BT12 and BT13 are the 12 and 13 spectral bands of FY-4A/AGRI satellite imagery, respectively; the light blue and gray
boxes are the output in each layer at the encoding and decoding stages, respectively; the deep blue boxes are the output of the Channel-wise Cross Fusion
Transformer; and the numbers are the input/output shape size (height, width, and channels respectively).

C. Data Preprocessing

All data used in this study are listed in Table I. Before send-
ing to the proposed framework, imageries of the twelve and
thirteen bands of FY-4A/AGRI are converted to equal latitude
and longitude projection and aligned with the ERA5 data (with
0.25◦×0.25◦ resolution, and 401 × 401 pixels) through spatial
interpolation using the nearest-neighbor interpolation method.
For matching with the ERA5 data in temporal, the latest 15-
minute observations within one hour are selected. That is, one
frame of FY-4A/AGRI data in every hour is chosen in this
study.

Overall, the input data consists of 12 and 13 channels of FY-
4A/AGRI data, with a spatial resolution of 0.25◦×0.25◦ and a
temporal resolution of one hour. Data from April 2021 to May
2022 (training set) are used for deep model training; and data
from January, April, July, and October 2020 (test set) are used
for performance verification. In addition, the ERA5 data and
station observations are introduced as reference benchmarks
for the grid and site values, respectively.

III. METHOD

A. Problem Formulation

Our method takes the twelve and thirteen bands of FY-
4A/AGRI satellite imageries as input data. Let BT12 and
BT13 represent the above-mentioned twelve and thirteen
bands, the near-surface air temperature estimation process can
be formulated as:

T̂a = Gf (x;ϕf ) (1)
x = Concat(BT12, BT13) (2)

where Concat(., .) means combing the multiple input sources
along the channel dimension; x ∈ Rc×h×w (c, h, w are

the number of channels, height, and width) represents the
merged input data; Gf is the near-surface air temperature
estimation deep neural network parameterized by ϕf ; T̂a is
the reconstructed near-surface air temperature results.

B. Model Structure

Deep learning technologies have attracted increasing at-
tention from the meteorological community in recent years.
As a classical encoder-decoder deep neural framework, U-
Net [23] is known for combining low-level details with high-
level semantic features and has been widely studied and
demonstrated potential in many meteorological tasks, such
as precipitation nowcasting [24] and quantitative precipitation
estimation [3]. Recently, Wang et al. [25] demonstrate that
not all skip connections in U-Net framework are beneficial
because of the potential semantic inconsistency between fea-
tures of the encoder and decoder paths. To overcome this issue,
Wang et al. [25] propose a framework named UCTransNet.
UCTransNet replaces the skip connections of the vanilla U-
Net framework for concatenating encoder and decoder features
with two modules. The first is a Channel-wise Cross Fusion
Transformer (CCT) module designed to adaptively model
dependencies between multi-scale encoder features from the
channel-wise perspective for feature refining. The second is
a Channel-wise Cross Attention (CCA) module, presented
to fuse these refined encoder features with features learned
during decoding and eliminate potential semantic inconsis-
tency between them. Consistent performance improvements
on three benchmark medical image segmentation tasks suggest
the superiority of UCTransNet.

Inspired by [25], we adopt UCTransNet as the backbone of
our TaNet framework, as shown in Fig. 1. In this framework,
conv 1∗1 represents a convolutional layer with a kernel size
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of 1×1; Maxpool2d 2∗2 represents a 2D max pooling layer
with a square window size of 2×2; BN denotes a batch
normalization layer; ReLU indicates a nonlinear layer with
the ReLU activation function; and Upsample represents a
upsample layer. Details of the Channel-wise Cross Fusion
Transformer and Channel-wise Cross Attention modules are
the same as in [25].

TaNet automatically extracts near-surface air temperature-
related features from the input data through five encoding
stages (the left path of the TaNet framework). The embedding
features learned from the last encoding stage are used as input
to the decoder (the right path of the TaNet framework), and
the multi-scale features extracted at the first four encoding
stages are directed into the CCT module. The CCT module
refines these features through multi-scale feature fusion and
multi-head channel-wise attention, which captures relation-
ships between each input and the fused feature. Subsequently,
the refined features are connected to the corresponding level
of decoding feature with the help of the CCA module, which
focuses on eliminating potential semantic inconsistencies.

C. loss function

The loss function used in this paper is a combination of
mean square error (MSE) and mean absolute error (MAE),
defined as follows:

L = λ1 ×
1

n

n∑
i=1

∣∣∣Ti − T̂i

∣∣∣+ λ2 ×
1

n

n∑
i=1

(
Ti − T̂i

)2

(3)

Where, Ti represents the ground-truth near-surface air temper-
ature; T̂i is the network estimation result; n is the number of
samples; λ1 and λ2 are two parameters designed to balance
the role of MSE (the second item) and MAE (the first item).
By optimizing the overall loss function shown in Equation (3),
the network aims to minimize the discrepancies between its
predictions and the ground-truth values.

D. Evaluation Metrics

Similar to previous works such as [3], [5], [13], root mean
square error (RMSE) and Pearson’s correlation coefficient
(CC) are adopted in this study as evaluation metrics. These
metrics are defined as follows:

CC =

∑n
i=1(T̂i − ¯̂

T )(Ti − T̄ )√∑n
i=1(T̂i − ¯̂

T )2
√∑n

i=1(Ti − T̄ )2
(4)

RMSE =
1

n

n∑
i=1

√
(T̂i − Ti)2 (5)

where, T̄ is the average of all target value Ti;
¯̂
T is the average

of all predict vaule T̂i. By comparing the values of RMSE
and CC against state-of-the-art products methods, we can get
insights into the effectiveness of our approach in accurately
estimating the near-surface air temperature.

IV. RESULTS

A. Experimental Setting

The region between 50◦S-50◦N and 40◦E-140◦E with a
resolution of 0.25◦ × 0.25◦ is selected in our experiments.
All products are spatiotemporally aligned before performance
comparison. We implement all experiments with PyTorch 1.8.0
and Python 3.7. The framework is trained with SGD optimizer
[26] with a momentum of 0.9 and a weight decay of 5e−4.
The batch size is set to 8, and the initial learning rate is set
to 0.001. The parameters λ1 and λ2 in Equation (3) are set to
1.0. All deep learning methods are trained and tested in the
same way.

B. Comparisons based on ERA5

The proposed method is firstly verified on the test dataset,
using ERA5 data as the benchmark. The traditional operational
product CFSv2 and the deep learning framework U-Net are
adopted as baselines for comparison. Results of our proposed
TaNet method against the baselines are summarized in Table
II. As can be seen, the two deep learning methods (U-Net and
our TaNet) perform better than the CFSv2 product on both
metrics. The performance gain of U-Net is 4.840% in aver-
age RMSE (1.809◦C vs. 1.901◦C) and 0.102% in Pearson’s
correlation coefficient (0.986 vs. 0.985) relative to CFSv2.
While our method reduces the average RMSE of CFSv2 by a
margin of 20.936% (from 1.901◦C to 1.503◦C), and reduces
that of U-Net by 16.915% (from 1.809◦C to 1.503◦C). At
the same time, it improves Pearson’s correlation coefficient
(CC) with ERA5 by 0.406% (0.990 vs. 0.986) and 0.508%
(0.990 vs. 0.985) compared to U-Net and CFSv2, respectively.
These performance improvements suggest the effectiveness
and superiority of our proposed method.

TABLE II
COMPARSION RESULTS ON RMSE AND PEARSON’S CORRELATION

COEFFICIENT (CC) USING STATION OBSERVATIONS AS THE BENCHMARK
(THE UP ARROW INDICATES THAT A LARGER VALUE IS BETTER, WHILE

THE DOWN ARROW SIGNIFIES THAT A SMALLER VALUE IS BETTER; BOLD
VALUES INDICATE THE BEST PERFORMANCE).

Methods/Products RMSE (◦C) CC
Value ↓ Gain Value ↑ Gain

CFSv2 1.901 - 0.985 -
U-Net 1.809 4.840% 0.986 0.102%

TaNet (Ours) 1.503 20.936% 0.990 0.508%

Figure 2 presents the hourly evolutions of RMSE for
products CFSv2, U-Net, and our TaNet. The lower curve
indicates the smaller RMSE (the smaller, the better). It can
be seen that all these products exhibit relatively more stable
and smaller RMSE values in July 2020 (as shown in Figure
2c) than in January, April, and October. We speculate that this
observation can be attributed to the influence of hot weather
conditions in July, which results in higher temperatures and
greater atmospheric stability. Still, CFSv2 (represented by
the blue curves) achieves the largest RMSE in July, with
values around 2.2◦C. In addition, CFSv2 also shows the
highest RMSE in almost all periods of January and July 2020
compared with the other products. In contrast, our proposed
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(a) RMSE in January 2020 (b) RMSE in April 2020

(c) RMSE in July 2020 (d) RMSE in October 2020
Fig. 2. Hourly evolutions of RMSE of CFSv2, U-Net, and TaNet (Ours) during the verification period (compared to the ERA5 benchmark).

(a) CC in January 2020 (b) CC in April 2020

(c) CC in July 2020 (d) CC in October 2020
Fig. 3. Hourly evolutions of Pearson’s correlation coefficient for CFSv2, U-Net, and Our TaNet during the verification period (with the ERA5 data).
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(a) RMSE of CFSv2 (b) RMSE of Unet (c) RMSE of Ours
Fig. 4. Spatial distribution of RMSE for products CFSv2, U-Net, and our TaNet during the verification period (compared to the ERA5 benchmark).

(a) CC of CFSv2 (b) CC of Unet (c) CC of Ours
Fig. 5. Spatial distribution of Pearson’s correlation coefficient (CC) for CFSv2, U-Net, and TaNet (ours) during the verification period (with the ERA5
benchmark).

TaNet (represented by the red curves) exhibits relatively lowest
RMSE values throughout the entire verification period, with
a significant performance gain observed in July. These results
demonstrate the effectiveness and superiority of our proposed
TaNet method.

Furthermore, Figure 3 presents the hourly evolutions of
Pearson’s correlation coefficient for products CFSv2, U-Net,
and our method TaNet. The higher curve reflects the more
significant correlation (the larger, the better) with ERA5 data.
It is evident that the curves in Figure 3a are more stable and
closer to 1.00 than curves in Figure 3b, 3c, and 3d. This ob-
servation suggests that meteorological conditions and seasonal
fluctuations may have some influence on the performance of all
these methods, to a certain extent. Nevertheless, our proposed
TaNet method (represented by the red curves) consistently
outperforms both CFSv2 (represented by the blue curves)
and U-Net (represented by the green curves) throughout the
verification period. These results demonstrate the remarkable

stability and exceptional performance of our approach.

Figure 4 shows the spatial distribution of RMSE for CFSv2,
U-Net, and our TaNet in the study area. The warm color
indicates a large RMSE, while the cold color indicates a
small RMSE. We can see that the colormap displayed in
Figure 4a are overall warmer than that in Figure 4b and
Figure 4c, which reveals the relatively larger and more widely
distributed RMSE of the CFSv2 product compared to the
other two methods. Furthermore, Figure 4b shows that the
RMSE in the mid-high latitude region (e.g., 50◦N) is higher
than in other areas. In contrast, the colormap generated by
our TaNet framework, as shown in Figure 4c, is relatively
the coolest color. That is especially true for regions with
challenging climate conditions, such as the mid-high latitude
region and the Qinghai-Tibet Plateau. These results suggest the
promising performance of our TaNet method in reconstructing
near-surface air temperature.

Figure 5 illustrates the spatial distribution of Pearson’s
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TABLE III
COMPARISON RESULTS ON RMSE AND PEARSON’S CORRELATION

COEFFICIENT (CC) USING STATION OBSERVATIONS AS THE BENCHMARK
(THE UP ARROW INDICATES THAT A LARGER VALUE IS BETTER, WHILE

THE DOWN ARROW SIGNIFIES THAT A SMALLER VALUE IS BETTER; BOLD
VALUES INDICATE THE BEST PERFORMANCE, AND VALUES WITH

UNDERLINES INDICATE THE SECOND-BEST PERFORMANCE).

Methods/Products RMSE (◦C) ↓ CC ↑
CFSv2 2.900 0.957
U-Net 2.746 0.954
CRA 2.654 0.955
ERA5 2.249 0.969

TaNet (ours) 2.594 0.959

correlation coefficient for CFSv2, U-Net, and our TaNet within
the study area. The warmer colors indicate a higher correlation
with the ERA5 benchmark data. It is worth noting that in
the equatorial ocean region between 10◦S and 10◦N, all three
products exhibit lower correlation coefficients compared to
other regions. Still, our method (as shown in Figure 5c) shows
an advantage over the CFSv2 and U-Net products.

C. Comparisons based on Station Observations

This section further evaluates the proposed method using
station observations as the benchmark. We choose four prod-
ucts as the baselines for comparison: ERA5, CRA, CFSv2,
and U-Net. As presented in Table III, ERA5 obtains the
results with an RMSE of 2.249◦C and a correlation coefficient
of 0.969, outperforming all other products on both metrics.
Furthermore, among the other products (except for ERA5),
our proposed method TaNet achieves the closest performance
to ERA5. TaNet outperforms CRA, CFSv2, and U-Net, re-
ducing the RMSE of CFSv2 (2.900◦C), CRA(2.654◦C), and
U-Net(2.746◦C) by 10.551% (CFSv2), 2.261% (CRA), and
5.535% (U-Net), respectively. Meanwhile, it improves the
correlation coefficient of CFSv2, CRA, and U-Net by 0.209%,
0.419%, and 0.524%, respectively. These results validate the
effectiveness and promising performance of our proposed
TaNet method.

Figure 6 shows the hourly evolution of the average RMSE
of all compared methods during the verification period. We
can see that the purple line is always the lowest, which
indicates the relatively best performance of ERA5. The RMSE
performance of our method TaNet (represented by the red
lines) is lower than that of U-Net (denoted by the light blues)
almost all the time, demonstrating the improvement of our
TaNet network over the U-Net baseline network. Especially
in July, our method continuously outperforms CFSv2, CRA,
and U-Net methods. These results indicate the superiority of
our proposed method.

Figure 7 shows the hourly evolution of Pearson’s correlation
coefficient (CC) during the verification period. In detail, the
curves presented in Figure 7a are significantly closer to the
upper bound line (maximum cc value of 1.00) than the
corresponding ones in Figure 7b-7d, revealing the relatively
better performance of these products in January 2020 than that
in April, July, and October. Remarkably, each product exhibits
a correlation coefficient with the station observations larger
than 0.975. However, these products’ correlation coefficients

were relatively low in July 2020 (as shown to be furthest from
the upper bound). Still, our method TaNet outperforms CFSv2,
CRA, and U-Net noticeably in July 2020.

Figure 8 illustrates the spatial distribution of RMSE for
ERA5, CRA, CFSv2, U-Net, and our method TaNet in the
study area. The color represents RMSE with station obser-
vations, and the colder the color, the smaller the RMSE. It
shows in Figure 8 that the color of each product in the mid-
high latitude area is warmer than that in the other areas,
which indicates the larger RMSE of all products in the mid-
high latitude area. Still, our method TaNet shows promising
performance. The RMSE of TaNet is lower (colder color) than
that of CFSv2, CRA, and U-Net.

Figure 9 summarizes the spatial distribution of Pearson’s
correlation coefficient of ERA5, CRA, CFSv2, U-Net, and our
method TaNet in the study area. Each color map denotes the
correlation coefficient with station observation in the study
area, with warmer colors indicating stronger correlations. It
shows that the correlation coefficient of CFSv2, CRA, and
U-Net in India and Myanmar are relatively lower (indicated
by cooler colors) than other areas. In contrast, our method
(as shown in Figure 9e) exhibits relatively better than CFSv2,
CRA, and U-Net.

V. DISCUSSION

In this work, we propose a deep-learning neural network
TaNet. It estimates near-surface air temperature in near real-
time using FY-4A satellite data, providing timely and accurate
near-surface air temperature data for regions lacking station
observations. Two kinds of experiments are conducted to
verify the performance of TaNet, using the operational product
ERA5 and station observations as the benchmark standard, re-
spectively. Based on the experimental results, our discussions
are as follows:

Estimating near-surface air temperature from FY-4A satel-
lite imagery based on deep learning is effective. As the three
most common meteorological measurements, satellite remote
sensing, ground-based radar, and station observations can
reflect the same weather condition from different perspectives
(corresponding to different data sources). So, there must be
certain relationships between the three meteorological data
sources. It is possible to model the relationships between the
three meteorological data sources with deep learning networks
and thus estimate anyone source data using the data from
another or two sources, as deep learning networks are famous
for approximating arbitrary functions with arbitrary accuracy.
Extensive experiments conducted in this paper demonstrate the
promising performance of the two deep learning models, U-
Net and our proposed TaNet. Especially, TaNet achieves 0.990
and 0.959 on Pearson’s correlation coefficient with the oper-
ational product ERA5 and station observations, respectively,
outperforming the operational products CFSv2 and CRA.

Furthermore, choosing an appropriate deep neural net-
work helps to improve performance. The backbone of our
framework TaNet is an improvement of U-Net, by replacing
the skip connections in U-Net with a channel-wise cross-
fusion transformer (CCT) module and a channel-wise cross-
attention (CCA) module. The CCT module captures global
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(a) RMSE in January 2020 (b) RMSE in April 2020

(c) RMSE in July 2020 (d) RMSE in October 2020
Fig. 6. Evolution of the average RMSE for products U-Net, ERA5, CFSv2, CRA, and our TaNet, compared to the station observations during the verification
period.

(a) CC in January 2020 (b) CC in April 2020

(c) CC in July 2020 (d) CC in October 2020
Fig. 7. Evolution of Pearson’s correlation coefficient (CC) for products U-Net, ERA5, CFSv2, CRA, and our TaNet, with the station observations during the
verification period.
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(a) RMSE of CFSv2 (b) RMSE of CRA

(c) RMSE of ERA5 (d) RMSE of U-Net

(e) RMSE of TaNet (Ours)
Fig. 8. Spatial distribution of RMSE of ERA5, CRA, CFSv2, U-Net, and our method TaNet, compared to station observations in the study area.
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(a) CC of CFSv2 (b) CC of CRA

(c) CC of ERA5 (d) CC of U-Net

(e) CC of TaNet (Ours)
Fig. 9. Spatial distribution of Pearson’s correlation coefficient of ERA5, CRA, CFSv2, U-Net, and our method TaNet, with station observations in the study
area.
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and local spatial relationships and helps refine multi-scale
features learned at the encoding stages. The CCA module
connects these refined features with features learned at the
decoding stages, eliminating the potential semantic inconsis-
tency between them. Jointly, the two modules contribute to
the performance improvement of TaNet over U-Net. Trained
and tested in the same way, the performance gain of TaNet is
6.915% (1.503◦C vs. 1.809◦C) in RMSE and 0.406% (0.990
vs. 0.986) in Pearson’s correlation coefficient relative to U-
Net, with ERA5 as the benchmark standard. These results
demonstrate the effectiveness and superiority of our method
TaNet.

Lastly, it is important to note that meteorological conditions,
seasonal fluctuations, and geographic variations may influence
the performance of near-surface air temperature estimation.
Through extensive comparative experimental analysis, we
discover that RMSE values and Pearson’s correlation coef-
ficient of all methods vary across different months/seasons
and regions. For instance, the RMSE values in July 2020 are
generally smaller and more stable (as exhibited in Figures
2 and 6), while the CC values in January 2020 are notably
more excellent and more stable (as shown in Figures 3 and
7). Moreover, RMSE and CC values of mid to high-latitude
regions often exhibit more diverse and unstable variations (as
shown in Figures 4, 5, 8, and 9). Considering these findings,
it is crucial for future work to incorporate factors such as
latitude, longitude, topography, and climate into the estimation
process, to further improve the accuracy and reliability of near-
surface air temperature estimation.

VI. CONCLUSION

Near-surface air temperature estimation from satellite data
provides a valuable way to fill the data shortage problem of
ground-based meteorological station observation and radar ob-
servation under complex geographical and natural conditions.
In this paper, we propose a deep learning framework TaNet.
It automatically extracts information from FY-4A satellite
imagery (the twelve and thirteen bands) and estimates the
near-surface air temperature in near real-time. Specifically,
TaNet is a U-shaped encoder-decoder framework. It adaptively
refines multi-scale features learned at encoding stages using
a transformer module, then fuses these refined features with
those learned at decoding stages with an attention mechanism.
Extensive experiments and visualizations demonstrate the ef-
fectiveness and superiority of the proposed TaNet method.
It helps address the station observation lacking problem. In
future work, we will introduce more meteorological data and
incorporate additional factors such as latitude, longitude, to-
pography, and climate to improve the accuracy and robustness
of TaNet and test it over more prolonged periods.
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