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Soil Surface Roughness Characteristics Under
Different Agricultural Tillage Practices—A Case
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Chunmei Wang, Linghua Meng, Tianhao Guo, Jia Zheng , and Jinfeng Song

Abstract—Soil surface roughness (SSR) is an important factor
affecting soil erosion and soil nutrient transport. Human tillage
leads to increased instability in SSR, and the characteristics of
SSR caused by different tillage practices await further study.
This research utilizes terrestrial laser scanning (TLS) to measure
the SSR of six farmland plots (25 m × 25 m) and analyzes the
characteristics of SSR under different tillage practices (plowing,
harrowing, ridging, crusting, etc.). The study results show: 1) Dif-
ferent agricultural tillage practices lead to significant differences in
SSR. The plowed and harrowed plot corresponds to the maximum
(2.49 cm) and minimum (1.5 cm) root mean square height (RMSH),
respectively. Correlation length (CL) is more affected by different
tillage practices than RMSH. The difference in CL between the
ridged and harrowed plot is 2.6 times. 2) Ridging and crusting
caused significant directional variation in SSR. The SSR anisotropy
of the harrowed plot can be disregarded. 3) Under the condition
of measuring soil profile in 12 directions and randomly sampling
70 times in each direction, the profile length must be at least 3 m
to ensure that the measurement error of SSR is better than 5%
compared to the “true” value. TLS can measure two-dimensional
SSR. Therefore, it is only necessary to ensure that the measurement
range is at least 3 m × 3 m. The study results provide a reference
for the high-precision measurement of SSR (RMSH and CL) under
different agricultural tillage practices.
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I. INTRODUCTION

SOIL surface roughness (SSR) is a topic of interest to various
disciplines concerned with natural processes. As a basic

physical property of soil, SSR is an important influencing factor
for soil erosion, soil moisture distribution, and soil nutrient
transport [1], [2]. Greater roughness increases the exposure of
the soil surface, accelerating the erosion process of water flow
and wind on the soil [3]. In addition, SSR is a key parameter in
the microwave remote sensing inversion of soil moisture [4]. In
some cases, its impact on the microwave signal may be greater
than that of soil moisture [5]. Accurate monitoring of SSR is of
great significance for the establishment of soil erosion process
models, hydrological process simulation, and microwave remote
sensing inversion of soil moisture [6].

SSR is usually measured by the root mean square height
(RMSH) and correlation length (CL) in vertical and horizontal
directions [7]. In addition, the autocorrelation function (ACF) is
also an important parameter for describing SSR, including expo-
nential and Gaussian functions. Agricultural soils are typically
assumed to follow an exponential function [8].

The field measurement of SSR has evolved from one-
dimensional profile measurement (pin profiler, board profiler,
one-dimensional laser profiler) to two-dimensional surface mea-
surement [photogrammetry, light detection and ranging (Li-
DAR), etc.] [9], [10], [11]. The two-dimensional methods for
parameterizing SSR are much more accurate than traditional
one-dimensional profile methods. They can accurately char-
acterize the surface while meeting the basic assumptions of
stationarity required by most backscatter models, which one-
dimensional profile methods usually cannot achieve [12], [13].
LiDAR technology uses laser scanners and distance sensors to
obtain the surface morphology of the target. Depending on the
sensor payload platform, it is divided into spaceborne LiDAR,
airborne LiDAR, and terrestrial laser scanning (TLS), etc. [14].
Spaceborne and airborne LiDAR, due to the coarse resolution of
the laser spot, struggle to meet the measurement needs of field
roughness at the centimeter scale. TLS, with its high point cloud
density, fast speed, and millimeter-level ranging accuracy, can
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extract and analyze the periodic and random characteristics of
SSR, providing the possibility for scale decomposition of SSR
information [15].

The feasibility and accuracy of contact SSR measurement
methods (pin profilers and roller chains, etc.) and noncontact
SSR measurement techniques (one-dimensional laser profilers,
TLS, stereophotogrammetry, Xtion Pro method, etc.) have been
evaluated previously [10], [15], [16], [17], [18], [19]. The results
show that TLS not only ensures the highest accuracy and res-
olution in outdoor environments but also creates representative
three-dimensional images containing more information.

In addition, the estimation of SSR by laser scanners has been
evaluated on different payload platforms such as ground-based,
airborne, etc. [14], [20], [21], [22], [23]. Turner et al. [14] proved
that the RMSH estimated by airborne LiDAR is accurate enough
to track the temporal variation of SSR in the vertical direction.
However, CL estimates derived from airborne LiDAR cannot
serve as an effective substitute for field measurements of CL.
It was confirmed in [23] that pin profilers could be replaced by
TLS for the accurate characterization of SSR.

The measurement and preprocessing methods of SSR have
been quantitatively analyzed, including factors such as sampling
interval, sampling profile length, number of repeat samplings,
directionality of one-dimensional profile sampling, point cloud
measurement density, and point cloud data interpolation meth-
ods [7], [24], [25], [26], [27]. For example, the study by Zheng
et al. [27] concluded that under the conditions of more than 20
repeat samplings, a sampling interval of less than 10 mm, and
a profile length of 200 times the CL, the measurement accuracy
of field SSR is about 80%. Similarly, according to Bryant et al.
[28], considering the heterogeneity of natural surfaces, at least
20 three-meter-long profile length should be collected to obtain
a representative RMSH measurement.

However, SSR is both dominated by tillage (plowing tools
and tillage practices) and constrained by soil aggregate structure
and various external natural forces (rainfall, wind erosion, grav-
itational settling) [29]. Under modern agricultural production
practices, tillage often leads to increased instability in SSR. The
diversity of traditional tillage, conservative tillage, and organic
tillage practices also poses new challenges in understanding the
characteristics of field SSR. In some traditional agricultural ar-
eas, traditional tillage practices such as plowing, harrowing, and
ridging are still commonly used [20]. In addition, conservation
tillage practices such as no-till and reduced-till, which aim to
reduce soil disturbance, are also advocated [30]. The application
of any tillage practice is directly related to the improvement of
soil physical properties (soil structure and SSR), and in turn,
affects crop growth and yield.

The impact of agricultural tillage practices on the foreign
farmland SSR has been studied. For example, Thomsen et al.
[15] used TLS to measure the SSR of 1 m2 agricultural plots
in southern Norway under different tillage practices (plowing,
harrowing, forest, and direct seeding on stubble). Davenport
et al. [20] used airborne LiDAR data to identify the RMSH
of different tillage plots without quantitative comparison with
ground measurements. It is worth noting that the farmland
SSR under different tillage practices has scale differences and

TABLE I
SUMMARY OF PLOT CHARACTERISTICS FROM GROUND MEASUREMENTS

regional differences. SSR measured in small areas locally usu-
ally cannot well represent the surrounding environment [14].
Furthermore, due to differences in geographical locations and
climatic conditions, agricultural tillage practices vary signif-
icantly among different countries, leading to substantial dif-
ferences in SSR. There is limited research on the SSR under
different tillage practices in the black soil region of Northeast
China. We aim to examine the effects of different tillage prac-
tices, including plowing, harrowing, ridging, and crusting, on
the SSR characteristics of representative large farmland plots
(25 m × 25 m). This study seeks to enhance the accuracy of
erosion and microwave remote sensing soil moisture models, as
well as deepen the understanding of the relationship between
soil properties and agricultural tillage practices.

II. MATERIALS AND METHODS

A. Experiments

Friendship farm (FF) is a modern agricultural experimental
area located in the southeast of Heilongjiang Province, China. It
is the largest mechanized state-owned farm in China, primarily
cultivating crops like corn, soybeans, and rice. FF is considered
representative of the agricultural areas in Northeast China, with
an average elevation of 78 m. The terrain is mainly plain, the
soil type is black soil, and the annual precipitation is about
514 mm.

In FF, a 54 km × 32 km area was selected as the research area
(see Fig. 1), including corn fields, soybean fields, and rice fields.
In October 2022, a multisource remote sensing monitoring ex-
periment involving satellite, aircraft, and ground components
was conducted at FF. In this experiment, TLS was used to
measure the SSR of six different farmland plots (combinations
of different tillage practices and crop types), and corresponding
basic data such as surface soil moisture, ridge direction, and
ridge structure were obtained. Fields #117, #81, and #102 are
corn fields, while #106, #D20, and #99 are soybean fields. Field
#117 underwent plowed treatment. Fields #102 and #99 were
subjected to ridged treatment, whereas #81 and #D20 received
harrowed treatment. Field #106 was in a crusted state. Detailed
information about the measured fields can be found in Table I.

B. Point Cloud Measurement Based on TLS and Data
Preprocessing

All farm plots were scanned using the Trimble TX8 TLS.
This device has an effective scanning range of 0.6 to 120 m and
ensures scanning accuracy of less than 1 mm. When scanning a
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Fig. 1. Geographic location of the research area and distribution of six agricultural field sample plots based on Sentinel-2 false-color imagery. Photographs of
the field measurement work for plots #117, #D20, and #102 are displayed at the bottom.

plot, the scanning radius was set at 25 m with a point spacing
of about 5.7 mm. The device’s horizontal field of view covers
0°–360°, while the zenith field of view is between 30° and
130°. As the scanning distance increases, the point cloud density
gradually decreases. To obtain a sufficiently dense point cloud
within the measurement area, scanning is typically carried out
at four different positions to cover the 25 m × 25 m farm soil
surface [31]. Furthermore, all four scanning positions are located
using the global positioning system to ensure high-precision ge-
ographical location information for the measured point clouds.

For each plot, the iterative closest point algorithm was used
to register point cloud data from the four sites [25], [32]. Sub-
sequently, moving least squares was applied to remove point
cloud noise that might affect soil surface elevation information,
thereby smoothing the point cloud data. To facilitate the calcula-
tion of SSR and reduce computational resource consumption, we
used ArcGIS 10.8 software to perform bilinear interpolation on
the preprocessed point cloud data, generating a digital elevation
model (DEM) for each plot. Considering the SSR measurement
requirements, we set the interpolated DEM’s spatial resolution
to 1 cm [7]. The Hodrick–Prescott filter was used to remove
the trend component from each profile (25 m) to eliminate the
influence of local terrain slope (see Fig. 2).

C. Surface Roughness Parameters Calculation

The RMSH and CL of the random rough surface quantitatively
describe the SSR in the vertical and horizontal directions, respec-
tively. These are two key parameters for analyzing fluctuations
in random surface heights. The RMSH [7] is defined as

RMSH =

√
1

N

∑N

i=1

(
Zi − Z̄

)2
(1)

Fig. 2. Comparison of soil profile data before and after detrending. The
harrowed plot (#81) is displayed in the 25-m profile data at 30°.

where N is the number of samples on each profile length. Zi is
the surface height corresponding to record i. Z̄ is the average
height of Zi over the profile length.

When calculating the CL, the experimental ACF of each
independent profile length is first computed based on each profile
[7], [33]

R(h) =

N(h)∑
i=1

ZiZi+h

/
N∑
i=1

Zi
2 (2)

where R(h) represents the experimental ACF at lag h, describing
the correlation between two points at a horizontal distance and
their surface elevations. N(h) is the number of pairs considered
in each lag h. Zi+h is the height of another point located at a lag
distance h from it (Zi).

Then, the theoretical ACF (C(h)) is chosen to fit the experi-
mental ACF (R(h))

C (h) = exp(−(h/cl)n). (3)
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Fig. 3. Schematic diagram for extracting subprofiles from a 25-m profile data.

n = 1 (and 2) denotes the exponential (and Gaussian) function.
when C(h) equals 1/e, the distance (h) between these two points
is the CL.

In this study, based on the due north direction, 25 m soil
profiles were extracted from the 25 m×25 m plot’s DEM at
30° intervals clockwise (a total of 12 directions). To analyze the
impact of profile length on roughness parameters, 12 subprofiles
(1, 3, 5, …, 21, 23 m) were obtained from the detrended 25-m
soil profile data in each direction (see Fig. 3). Here, 1 m serves
as the minimum subprofile length, with subsequent subprofiles
acquired at 2 m intervals. Each subprofile data were sampled 70
times at random within the 25 m profile, and the average SSR
was taken as the measurement value of that subprofile data.

In this study, the average RMSH (CL) over all directions of
the 25-m profile length was taken as the “true” SSR value of the
plot. Detailed results can be seen in Section III-A.

III. RESULTS

A. Point Cloud and DEM Measurement Results

Fig. 4 shows the elevation fluctuation characteristics of farm-
land under different crop types and tillage practices, which are
closely related to SSR. Through such analysis, we can better
understand the characteristics of SSR under different tillage
practices. The left picture (first column) shows the on-site photos
of different plots, each with different agricultural tillage prac-
tices at the same period. The second column is a point cloud map
of farmland surface elevation obtained with TLS, representing
the three-dimensional structure of the farmland terrain. The
change in colors indicates different heights on the farmland
surface. Colors transition from blue to red, representing the
change from low to high points. The third column is a DEM
map based on point cloud data, representing the degree of high
and low undulations in the farmland terrain. By comparing the
degree of color change in the point cloud map and DEM map,
it can be intuitively seen that the DEM map can better restore
the point cloud data’s description of the differences in farmland
surface elevation.

The right picture is the elevation cumulative probability dia-
grams of different plots, with curves in the graph showing how
ground height variations are distributed throughout the plot. The
blue (red) line represents the elevation statistical distribution of
the point cloud (DEM) data. By comparison, it is found that the
elevation cumulative probability curves of point cloud data and
DEM data are basically consistent. The steeper the curve, the
more concentrated the elevation change. The elevation change

of the plots in this study is mainly concentrated between -0.1
and 0.1 m.

In addition, we calculated the SSR of different plots, including
RMSH and CL (exponential and Gaussian forms) (see Fig. 5).
The average SSR obtained from the 25-m profile data of each
plot (including 12 orientations) was used as the overall SSR
of the entire plot. Fig. 5(a) shows the RMSH of six typical
plots. Among the corn plots, the plowed plot (#117) showed
the greatest vertical roughness, with an RMSH of 2.49 cm.
This was followed by the ridged plot (#102) (RMSH: 2.02 cm).
The harrowed plot (#81) showed a smaller RMSH (1.81 cm)
compared to the first two types of plots. Among the soybean
plots, the crusted (#106) and ridged (#99) plots exhibited similar
RMSH (2.07 and 2.15 cm, respectively). The harrowed plot
(#D20) had the smallest RMSH (1.5 cm). Fig. 5(b) shows the
CL in exponential form, describing the characteristics of SSR in
the horizontal direction. Among the corn plots, the ridged plot
(#102) had the longest CL (15.42 cm). The harrowed plot (#81)
had the shortest CL (9.63 cm). The soybean plots showed the
same conclusion, with the ridged (#99) and harrowed (#D20)
plots having the longest (14.48 cm) and shortest (5.93 cm)
CL, respectively. In addition, a similar pattern was found for
exponential- and Gaussian-based CL among different tillage
practices [see Fig. 5(b) and (c)]. The maximum RMSH produced
by the plowed plot (#117) and the minimum RMSH produced by
the harrowed plot (#D20) had a difference of 0.98 cm, with a ratio
of 1.65 times. CL is more affected by different tillage methods
than RMSH. For example, the maximum CL in exponential form
(15.42 cm) caused by the ridged plot (#102) compared to the
minimum CL in exponential form (5.93 cm) corresponding to
the harrowed plot (#D20) had a difference of 9.49 cm, with the
ratio reaching as high as 2.6 times.

Overall, RMSH and CL provided us with the characteristics
of farmland SSR in the vertical and horizontal directions under
different tillage practices. Plowed plots produce higher RMSH,
and the CL value is relatively higher as well. Ridged plots lead
to higher CL in farmlands. Harrowed plots, by breaking up the
soil blocks, result in smaller RMSH and CL values for farmland
roughness.

B. Anisotropy of SSR Under Different Agricultural Tillage
Practices

In this study, RMSH and CL for the 25-m profile length
data were calculated corresponding to different azimuth angles.
Fig. 6 displays the variation of RMSH and CL (exponential
form) under different azimuth angles for farmland plots with
different agricultural tillage practices. In addition, Table II lists
the average value, standard deviation (SD), and the ratio of the
maximum to minimum value (referred to as RMM) of RMSH
or CL between different azimuth angles of the plots.

The SSR of corn plots revealed that the plowed plot (#117) had
higher average RMSH (2.49 cm) and SD (0.31 cm), indicating
significant unevenness and variability of the soil surface after
plowing. This is consistent with spikes in certain directions [see
Fig. 6(a)], such as 90°, 150°, and 180°. Harrowed plot (#81)
showed lower average RMSH (1.81 cm) and SD (0.15 cm),
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Fig. 4. Field images of agricultural plots, point cloud maps, and DEM maps (left image). Elevation cumulative probability diagrams of different plots (right
image).

Fig. 5. SSR estimation for six 25 m × 25 m plots. (a) RMSH. (b) CL based
on exponential function. (c) CL based on Gaussian function.

suggesting a flatter and more uniform soil surface. The relatively
uniform distribution of RMSH and CL in different directions on
the radar chart also reflects this characteristic. Ridged plot (#102)
exhibited high SD (0.73 and 4.76 cm) and RMM (2.99 and
2.93) for RMSH and CL, indicating significant SSR parameter
variation with direction. This suggests that ridging leads to
significant height and structural variability of the soil surface,
closely related to the direction of the ridges.

The SSR of soybean plots showed that the crusted plot with
ridges (#106) had moderate SD (0.43 cm) and RMM (1.83)
for RMSH, indicating some unevenness of the soil surface.
The peak near the 150° azimuth in Fig. 6(g) may be due
to the ridge structure. The soybean fields are structured with
ridges using agricultural machinery before planting. Although
the ridge structure evolves over time and with factors like rain-
fall events, postharvest soybean fields still exhibit some ridge
structure, which could impact the measurement of field SSR.
Harrowed plot (#D20) had low average RMSH (1.5 cm) and SD

(0.18 cm), indicating a more uniform soil surface, similar to
corn plot (#81), reflecting the flattening effect of harrowing on
the soil (or soil clods) surface. Ridged plot (#99) exhibited high
RMM (2.42 and 2.08) for RMSH and CL, with significant SSR
variation in certain directions, indicating ridging caused distinct
SSR characteristics in some directions.

Overall, harrowing (#81 and #D20) typically results in a
flatter and more uniform soil surface, with lower average RMSH
(≤ 1.81 cm) and SD (≤ 0.18 cm). The RMM of RMSH
(1.3 and 1.47) is less than the average RMM of RMSH for
all plots (1.9). The SSR anisotropy of the harrowed plot can
be disregarded. Ridging (#102 and #99) and crusting (#106)
caused significant directional variation in SSR, as shown by
the higher SD (≤ 0.73 and 4.76 cm) and RMM (≤ 2.99 and
2.93) for RMSH and CL. Plowing (#117) caused significant
changes in soil surface height, reflected in the higher aver-
age RMSH (2.49 cm). However, directional anisotropy is not
pronounced.

C. Measurement Requirements for SSR Under Different
Agricultural Tillage Practices

Fig. 7 indicates that a 1-m profile length corresponds to a
larger measurement error for RMSH and CL. Moreover, most
plots showed a trend of reduced variability in RMSH and CL
with increasing profile length, possibly because longer profiles
better represent the overall characteristics of the soil surface,
reducing the impact of local heterogeneity. The median range of
RMSH was relatively stable across the six plots with increasing
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Fig. 6. Anisotropy in RMSH and CL with a profile length of 25 m. RMSH: (a), (b), (c), (g), (h), and (i). CL: (d), (e), (f), (j), (k), and (l).
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Fig. 7. Box plots of RMSH (left panel) and CL (right panel) with different profile lengths. Each profile length corresponds to 12 directions × 70 random repeated
measurements (a total of 840 sets). (a) and (b): #117. (c) and (d): #81. (e) and (f): #102. (g) and (h): #106. (i) and (j): #D20. (k) and (l): #99.

profile length. The median distribution of CL generally increased
with profile length, especially on plots #102 [see Fig. 7(f)] and
#99 [see Fig. 7(l)], indicating that longer profiles reveal longer
spatial correlations. In addition, the study analyzed the impact
of different agricultural tillage practices on the accuracy of SSR
measurements. Plots with plowing treatment [#117, Fig. 7(a)]
appeared to have greater variability in RMSH, possibly due to
the plowing making the soil surface rougher. Harrowed plots
[#81, Fig. 7(c) and #D20, Fig. 7(i)] exhibited smaller SSR and
more stable RMSH distributions. Ridged plots [#102, Fig. 7(f)
and #99, Fig. 7(l)] showed a more pronounced growth trend
in CL, possibly because ridging created periodic soil structures
more easily observed over longer profile lengths.

For farmland under different agricultural tillage practices, this
study analyzed how long the sampling profile length needs to
be to accurately obtain SSR (RMSH and CL). Figs. 8 and 9
present the average values of RMSH (and CL) calculated using
different profile lengths. It is worth noting that the SSR value
for each profile length is the average of 12 directions × 70
repeated measurements (a total of 840 sets). The red dashed

line is the RMSH at a 25-m profile length as the reference value
for the entire plot. The green (blue) dashed lines are the 5%
error upper (lower) limits of the 25-m profile length RMSH (and
CL). The results suggest that a profile length of at least 3 m is
needed to ensure that the measured RMSH (and CL) has an error
better than 5% relative to the plot reference value. For plowed
[see Fig. 8(a)] and harrowed plots [see Fig. 8(b) and (e)], the
RMSH values at a 3-m profile length already had a small error
relative to the reference value, and increasing the profile length
did not significantly reduce the error. For crusted [see Fig. 8(d)]
and ridged plots [see Fig. 8(c) and (f)], the error between the
RMSH values at different profile lengths and the reference value
fluctuated more. Overall, as the profile length increased, the error
between the measured values and the reference value decreased.
This is because the crusted and ridged plots in this study have
periodic structures and longer profile length measurements bet-
ter represent the elevation fluctuation characteristics of the plot.
At a 1-m profile length, CL measurements exhibited greater
uncertainty, especially for crusted and ridged plots. When the
profile length measurement exceeded 3 m, CL measurements
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Fig. 8. Measurement accuracy of RMSH varies with different profile length. Plowing: #117. Harrowing: #81 and #D20. Ridging: #102 and #99. Crusting (with
ridge): #106.

Fig. 9. Measurement accuracy of CL varies with different profile length. Plowing: #117. Harrowing: #81 and #D20. Ridging: #102 and #99. Crusting (with
ridge): #106.

fluctuated around the reference value but met the 5% error
accuracy requirement for CL measurements. Therefore, when
using TLS to measure the SSR of farmland under different
agricultural tillage practices, a measurement range of at least
3 m × 3 m should be ensured.

IV. DISCUSSION

A. How Do Different Agricultural Tillage Practices Affect
SSR?

Soil tillage, a necessary measure in crop production, affects
soil’s physical properties crucial for plant growth, such as soil
porosity, permeability, and SSR [34]. Different agricultural

tillage practices impact farmland SSR because these practices
change the soil’s physical structure and surface characteris-
tics. Traditional tillage in the Northeast black soil agricultural
area mainly includes plowing, harrowing, and ridging. Plowing
usually involves using a plow to turn and break up the soil.
This increases SSR due to the upturned soil clods and furrows
changing the soil surface’s uniformity. Harrowing is used to
further refine soil particles, usually performed after plowing.
It can reduce SSR by helping to flatten the soil and reduce
large clods. Ridging creates ridges and furrows between rows,
significantly increasing SSR. The ridged soil surface becomes
uneven due to the shape of the ridges and furrows. In addition,
the surface state of the soil after crop harvesting and before
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TABLE II
STATISTICAL INDICATORS OF SSR FOR DIFFERENT PLOTS

any mechanized treatment is referred to as “crusting.” Crusting
refers to a tight, hardened layer formed on the soil surface,
typically caused by rain impact and subsequent drying. This
phenomenon might decrease roughness, as the crusted surface
is smoother than uncrusted soil. However, due to the influence of
periodic structures, crusted surfaces with ridge structures might
have higher roughness values.

Different soil tillage practices result in a combination of direc-
tional, periodic structures and uncertain random variations for
SSR in three-dimensional space, posing significant challenges
to SSR measurement. For instance, when ridges and furrows are
well developed, SSR measurements are highly sensitive to the
orientation of the profile relative to the tillage structure. This
sensitivity is particularly severe in CL measurements. For farm-
land with ridge structures, measurements parallel to the ridges
mainly reflect the random components of SSR. When measured
perpendicular to the rows, the periodic characteristics introduced
by the rows should be removed from the obtained SSR profiles
and considered separately in the modeling of microwave remote
sensing’s backscatter coefficient [35].

B. Relationship Between RMSH and CL Under Different
Agricultural Tillage Practices

This study analyzed the linear relationship between RMSH
and CL under different tillage practices (see Fig. 10). SSR of
each plot in 12 azimuth directions (considering only 25-m profile
length) was included in the analysis. The results show ridged
plots (#99 and #102) cause a wide range of RMSH and CL
values. Plowed plot (#117) results in generally higher RMSH
values. Harrowed plots (#D20 and #81) have lower RMSH

Fig. 10. Relationship between RMSH and CL under different agricultural
tillage practices. Plowing: #117. Harrowing: #81 and #D20. Ridging: #102 and
#99. Crusting (with ridges): #106. The lines in the figure represent the trend
lines of the scatter plot of RMSH and CL for different plots and are marked with
the corresponding fitting formula and R2 in the legend. Note that the red line
represents the trend line for all plots. Different colored filled areas for each type
of plot indicate the confidence interval of the trend line.

values. Crusted plot (#106), due to the residual ridge structure,
still has a wide fluctuation range of RMSH and CL.

The differences in R2 values between plots with different
tillage practices may indicate the varying impacts of these
treatments on soil properties. The trend lines and R2 of the
relationship between RMSH and CL for plots with different
agricultural tillage practices were calculated and analyzed. The
results show a positive linear correlation between RMSH and CL
in different agricultural tillage practices. The R2 between RMSH
and CL for all plots is 0.44. Different agricultural tillage prac-
tices significantly affect the relationship between RMSH and
CL. The linear explanatory degree of the relationship between
RMSH and CL is highest in harrowed plots, with R2 ≥ 0.68.
Next are the ridged plots (R2 ≥ 0.53). The plowed plot has the
poorest fit of RMSH and CL, with R2 = 0.22. This may be due to
the severe disruption of soil structure by plowing, affecting the
relationship between RMSH and CL. Although different tillage
practices affect the specific relationship between RMSH and CL,
the overall trend line and higher R2 values for all plots provide a
comprehensive perspective, generally showing a positive linear
correlation.

C. Prospects for Measuring SSR Under Different Agricultural
Tillage Practices

As agricultural production practices evolve, farming practices
exhibit diverse characteristics, including traditional, conserva-
tive, and organic tillage. Traditional tillage typically involves
plowing and harrowing with tools like plows and harrows, which
help to loosen the soil and facilitate seed sowing. However,
frequent soil tillage may lead to increased soil roughness, de-
struction of soil structure, loss of organic matter, and soil and
water erosion [20]. In some traditional agricultural areas, tradi-
tional tillage remains widespread. Conservative tillage includes
practices such as no-till and reduced-till, aimed at reducing
soil disturbance, leading to different soil structures and SSR.
These practices are particularly popular in arid or semiarid
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regions because they help to reduce erosion and improve wa-
ter retention capabilities [30]. In addition, conservative tillage
includes returning crop straw to the field, and the crop straw
cover on the soil surface also affects SSR measurements. Each
tillage practice has a different impact on soil structure and SSR.
Soil structure and SSR parameters significantly influence the
radiation or reflection of electromagnetic waves in microwave
remote sensing. For example, the direction of tillage rows and
whether the field has been plowed have a significant impact on
the microwave remote sensing inversion of surface soil moisture.
Therefore, identifying the direction of ridges and the plowing
status of fields through optical or microwave remote sensing
means is crucial for accurately generating large-area, bare SSR
of farmland [14]. In addition, future investigations of SSR should
include more detailed periodic roughness components. This is
beneficial for quantifying the contribution of periodic compo-
nents in microwave remote sensing backscatter modeling [36].

With the development of sensors and sensor platforms, SSR
measurement has evolved from early contact methods (pin
profilometers) to modern noncontact techniques such as op-
tical measurements and LiDAR. Optical measurements uti-
lize high-resolution cameras and image processing software
for SSR analysis. LiDAR employs laser scanning to capture
three-dimensional data of surfaces. For instance, one of the
main advantages of TLS in characterizing SSR is its three-
dimensional measurement capability. Using TLS data, the SSR
in any direction for any point within an effective area can be
calculated. TLS can replace pin profilometers for characterizing
SSR. Moreover, TLS allows for the parameterization of SSR
on a three-dimensional scale [23]. This method offers higher
measurement precision and efficiency, especially effective in
large-scale and complex terrain measurements.

There are two main trends in the forefront of using LiDAR
scanning for farmland SSR measurement: miniaturization and
portability, and commercialization and large-scale application.
For example, integrating LiDAR into smartphones makes the
device not only portable but also easy to operate. This ap-
proach enables farmers and researchers to measure farmland
SSR precisely and conveniently. However, the challenge with
such miniaturized devices is ensuring measurement accuracy
and range. On the other hand, utilizing LiDAR on spacecraft
or satellites for large-scale farmland SSR measurement can
provide large-scale data, which is very useful for regional studies
and long-term monitoring. The current challenge is improving
the resolution of LiDAR on these platforms to meet the needs
for precise farmland SSR measurement. Addressing this issue
may require higher technological innovation, such as improving
LiDAR scanning techniques or adopting more advanced data
processing methods to enhance resolution.

However, current SSR measurement technologies face chal-
lenges in very dense vegetation areas, as imaging the soil surface
becomes difficult. In such situations, developing more advanced
imaging techniques (such as multiwavelength and multiangle
imaging) and utilizing advanced data processing algorithms to
separate vegetation and ground surface information emerges as a
solution. In addition, employing machine learning and artificial
intelligence algorithms to analyze complex datasets, thereby

inferring SSR in vegetated areas, represent a potential research
direction. The development of these technologies will enable the
measurement of SSR in areas with dense vegetation.

V. CONCLUSION

Farmland SSR is a significant influencing factor in soil
erosion, soil moisture distribution, and soil nutrient transport.
Tillage activities have led to increased instability in farmland
SSR. This study used TLS to measure the SSR of six farmland
plots (combinations of different tillage practices and crop types)
in the black soil region of Northeast China and analyzes the
characteristics of farmland SSR under different agricultural
tillage practices (plowing, harrowing, ridging, crusting, etc.).
The study shows the following results.

1) Different agricultural tillage practices result in signifi-
cant differences in the farmland SSR. The plowed (#117)
and harrowed plot (#D20) correspond to the maximum
(2.49 cm) and minimum (1.5 cm) RMSH, respectively.
The difference in their RMSH is 0.98 cm, with a ratio
of 1.65 times. CL is more affected by different tillage
practices than RMSH. The maximum (15.42 cm) and
minimum (5.93 cm) CL differ by 9.49 cm, with a ratio
of 2.6 times, corresponding to the ridged plot and the
harrowed plot, respectively.

2) Ridging and crusting caused significant directional vari-
ation in SSR, as shown by the higher SD (≤ 0.73 and
4.76 cm) and RMM (≤ 2.99 and 2.93) for RMSH and
CL. The SSR anisotropy of the harrowed plot can be
disregarded.

3) Under the condition of measuring soil profile in 12 direc-
tions and randomly sampling 70 times in each direction,
the profile length must be at least 3 m to ensure that
the measurement error of SSR (RMSH and CL) is better
than 5% compared to the “true” value. TLS can measure
two-dimensional SSR. Therefore, it is only necessary to
ensure that the measurement range is at least 3 m × 3 m.
These conclusions help to understand the impact of dif-
ferent agricultural tillage practices on SSR, providing ref-
erences for agricultural production practices, soil erosion
modeling, and microwave remote sensing inversion of soil
moisture.
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