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Abstract—Due to the interference of multiplicative speckles, it is
challenging to accurately detect changes in polarimetric synthetic
aperture radar (PolSAR) images. Convolutional neural network
has been proven to learn rich local features from PolSAR data.
However, convolution kernels with limited receptive fields have dif-
ficulty in exploring global information. Here, a dual attention-based
global-local feature extraction network (DA-GLN) is developed
for unsupervised PolSAR image change detection (CD). First, we
use fuzzy C-means clustering on the enhanced Shannon entropy
difference image to automatically generate pseudolabeled samples
required for unsupervised CD. Subsequently, our DA-GLN uti-
lizes a deep residual shrinkage network that incorporates channel
attention mechanisms and soft-thresholding to weaken the influ-
ence of speckle noise and capture local features. Meanwhile, a
pooling-based vision transformer is adopted in DA-GLN to ex-
tract global features, which introduces pooling layers to complete
self-attention spatial information interaction with higher efficiency
than the visual transformer. Furthermore, a global-local constraint
feature fusion strategy is designed to effectively fuse local and global
features. Finally, we employ a feature constraint-focal loss function
including feature constraint loss and focal loss as the objective func-
tion of DA-GLN. Specifically, the feature constraint loss function is
constructed to eliminate feature redundancy and fully exploit the
complementarity between features, while the focal loss function is
introduced to balance the impact of the inequality between changed
and unchanged samples on the network. Numerical experiments
on five real spaceborne PolSAR datasets demonstrate that our
DA-GLN is more competitive than other state-of-the-art methods.

Index Terms—Dual attention-based global-local feature
extraction network (DA-GLN), focal loss function, polarimetric
synthetic aperture radar (PolSAR) image, pooling-based vision
transformer (PiT), unsupervised change detection.

I. INTRODUCTION

CHANGE detection (CD) aims to identify differences of
the same surface in different periods and has been widely
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utilized in remote sensing (RS) applications [1], [2], [3], [4],
[5], [6], [7]. Benefiting from the multipolarization transceiver
operation mode [8], polarimetric synthetic aperture radar (Pol-
SAR) can provide comprehensive polarization information for
object recognition. Hence, it has made advanced development
in various fields [9], [10], [11], [12], [13], [14]. Over the last two
decades, PolSAR has also been gradually applied to CD tasks
and plays an important role in disaster monitoring [15], vege-
tation assessments [16], and glacier dynamics [17]. However,
PolSAR image CD is challenging and rarely researched owing
to the complex semantic scenes as well as the inherent influence
of speckles. Therefore, it is urgent to propose a novel method
for PolSAR image CD.

Since manually labeling surface changes of PolSAR images is
time consuming and labor-intensive, unsupervised CD methods
become mainstream. Several studies have gone into developing
traditional approaches for unsupervised PolSAR image CD,
such as those based on polarization distance [18], statistical
distribution [19], [20], and polarization scattering features [15].
For example, Liu et al. [18] used the Wishart distance [21] to
detect specific changes. Akbari et al. [19] adopted the Hotelling-
Lawley trace (HLT) statistic to measure the difference between
bitemporal PolSAR images. A Shannon entropy (SE)-based
approach [20] is developed to obtain difference image (DI) and
further detect changes using the empirical test size (ETS). Mah-
davi et al. [15] introduced neighborhood variation coefficients
to guide the measurement of differences between the scattering
matrices. The above methods generate DI based on the similarity
measures and further detect changes by analyzing the DI [22].
Hence, the rationality of the similarity measurement and the
validity of the DI analysis greatly affect the final CD results.
Nevertheless, the change information may be missed during
the process of generating the DI because of the interference of
speckle noise, resulting in incomplete detection. Furthermore,
changes cannot be fully analyzed from DI utilizing global thresh-
olds, simple clustering, or weak semantic hand-crafted features.

Over the past few years, deep learning theory has been widely
applied in computer vision (CV) [23], [24], [25]. As one of
the representative models of deep learning, the convolutional
neural network (CNN) performs well in feature extraction and
is gradually being applied to SAR [26], [27], [28], [29], [30] and
PolSAR image CD tasks [31], [32], [33], [34]. For example, a
principal component analysis network (PCANet) [26] replaces
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the convolutional kernels with PCA filters to capture noise-
robust pixel neighborhood features. Campos et al. [27] used
CNN to reduce the false alarm rate of CD by distinguishing
change targets from irrelevant strong scatterers. A dual-domain
network (DDNet) [28] utilizes both frequency and spatial do-
main feature representations to mitigate scattering noise and
complete the change feature modeling. Zhang et al. [29] in-
troduced statistical texture information as auxiliary features
to effectively suppress the effect of scattering noise. Robust
unsupervised small area CD (RUSACD) [30] uses the two-stage
center-constrained fuzzy C-means (FCM) algorithm to obtain
the pseudolabeled set and mitigate the adverse effects of sample
imbalance. As for the research of PolSAR image CD, a local re-
stricted CNN [31] effectively detects changes from the discrimi-
native DI. Based on the DI generated by transfer learning, a novel
end-to-end three-channel deep neural network (TCD-Net) [32]
uses adaptive multiscale shallow blocks and residual blocks to
detect changes in an unsupervised manner. Seydi et al. [33]
proposed an end-to-end multidimensional CNN (EEMCNN)
for PolSAR image CD, which adopts multidimensional dilated
convolution to simultaneously extract change-aware features. A
novel joint CD network (NJCDN) [34] processes the amplitude
PolSAR data and covariance matrix using metric learning. Those
aforementioned CNN-based methods implicitly learn rich local
feature representations from the raw data and perform better
than traditional methods. However, CNN with limited receptive
fields has difficulty exploring global spatial correlations between
change-aware features. Besides, some change irrelevant features
from the PolSAR images may be unexpectedly captured.

In addition to purely convolution-based methods, methods
based on attention mechanisms, such as channel attention and
spatial attention, have also been applied in SAR image CD [35],
[36], [37]. For example, a deep cascade network [35] introduces
residual learning to mitigate gradient explosion and designs a
channel weight-based model to enhance the saliency of features.
Gao et al. [36] integrated multiscale feature representation using
the attention-based fusion mechanism and improved feature
discrimination through metric learning. Zhao et al. [37] inte-
grated the spatial and frequency domain features of SAR images
to suppress noise interference. The aforementioned methods
adopt attention mechanisms to reweight change-aware features
in the channel or spatial dimension, thereby noting changed
areas of interest and improving feature discriminability [38].
In addition, these methods can capture global information to
some extent [39]. Nevertheless, CNN using attention mecha-
nisms is still difficult to effectively correlate distant concepts in
space-time [40] owing to the local property of convolution.

With the ability to establish long-range correlation by inter-
acting with self-attention spatial information, transformer [41]
has been widely applied in natural language processing and CV.
As a classic application of transformer in CV, a new transformer-
based model named visual transformer (ViT) [42] is proposed for
the image classification tasks, which can model long-range de-
pendencies of tokens and learn image dependencies at different
locations. Different from CNN, ViT can capture global context
information without stacking a large number of convolutional
layers. Currently, several studies have successfully applied ViT

to SAR image CD [43], [44]. For example, a differential attention
metric-based network [43] employs the modified attention mod-
ule in ViT to enhance differential image features. Du et al. [44]
encoded contextual features to suppress noise and described the
boundary structures of the changed areas. The aforementioned
methods indicate that the ViT-based models perform well in
SAR image CD. Noteworthy, the features captured only by
ViT contain insufficient local semantic information and are not
conducive to detecting local detail information of the changed
areas. Moreover, the applicability of the ViT in PolSAR image
CD has not been validated.

To avoid the limitations of using CNN- and transformer-
based models alone for unsupervised PolSAR image CD, we
develop a novel dual attention-based global-local feature ex-
traction network (DA-GLN). It combines the advantages of
channel attention, self-attention, CNN, transformer, constraint
feature fusion, and focal loss function. First, the pseudolabeled
samples can be constructed from the enhanced SE DI using
the FCM clustering, avoiding the manual labeling of training
samples. Second, the developed DA-GLN can simultaneously
capture global and local change-aware features from bitemporal
PolSAR images. Furthermore, a global-local constraint feature
fusion strategy (GLCFF) is designed in DA-GLN to efficiently
integrate the above features with different attributes. Finally,
a feature constraint-focal loss (FC-F loss) function including
feature constraint loss and focal loss function is designed as
the objective function of DA-GLN, which considers the consis-
tency and difference constraints between features with different
attributes and the sample imbalance in CD. To the best of our
knowledge, we first apply the transformer-based structures to the
PolSAR image CD tasks. In this article, the main contributions
are as follows.

1) The DA-GLN is developed for the final CD, which com-
bines the advantages of CNN for learning local spatial con-
text and transformers for modeling global long-range cor-
relation. It employs the DRSN based on channel attention
to adaptively filter irrelevant features affected by speckle
noise and focus on capturing local features. Moreover, self
attention-based pooling-based vision transformer (PiT) is
also adopted in the network for extracting global features
with efficient spatial information interaction efficiency.

2) The GLCFF strategy is designed in DA-GLN to obtain
compact and nonredundant fusion features. Based on the
consistency and the difference between global and lo-
cal features, GLCFF constructs a feature constraint loss
function to constrain the learning process of features,
thus removing feature redundancy and fully exploiting
the complementarity between features with different at-
tributes.

3) The FC-F loss function is employed to supervise the
training process of DA-GLN. In addition to the feature
constraint loss constructed in GLCFF, the focal loss func-
tion is also introduced as part of the FC-F loss function to
balance the impact of the inequality between changed and
unchanged areas on the network.

The rest of this article is organized as follows. Section II
presents related works. Section III details the methodology.
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Section IV describes the datasets, experiment settings, eval-
uation indicators, ablation study, discussion, and experimen-
tal comparisons in detail. Finally, Section V concludes this
article.

II. RELATED WORK

A. ViT

As a successful exploration of applying the pure Transformer
structure to CV tasks, ViT [42] has received widespread attention
in image processing and provided new ideas for subsequent
research. It contains only the Transformer encoder and utilizes
stacked MSA to explore the global relationships between tokens.
As a result, ViT can fully explore the global contextual infor-
mation as well as the long-range dependencies of images [45].

Currently, ViT has been extensively applied to RS image
processing, such as image classification [46], scene classifi-
cation [47], image segmentation [48], target detection [49],
and CD [50], [51]. For example, Xue et al. [46] designed a
transformer-based structure to capture the long-range dependen-
cies and hierarchical spatial features. On this basis, multimodal
features are effectively fused for the accurate classification of
multimodal RS data. Considering the geometric information as
well as the channel information of the image, a spatial-channel
feature preserving ViT [47] effectively enhances the classifi-
cation ability of ViT. After innovatively converting the 2-D
features extracted by ViT into 3-D features. Wang et al. [48]
fused the generated multiscale features with rich context infor-
mation to improve the segmentation accuracy. Zhou et al. [49]
designed a Transformer-based detector to effectively represent
dense objects and alleviate the semantic gap between multiple
scales. Wang et al. [50] proposed a joint spectral, spectral, and
temporal transformer for hyperspectral image CD. Dai et al. [51]
designed a MobileViT-based network to capture the spatial
features of planetary images and improve the distinguishability
of change-aware features.

B. Global-Local Feature Extraction Networks for RS Image
Processing

Due to the limited receptive field of the convolution kernels,
CNN-based models focus on capturing local features, thus ignor-
ing global contextual information. To address this issue, several
studies have combined CNN with advanced models capable
of capturing global structural information for RS image down-
stream tasks, such as image classification [52], [53], [54], [55],
[56], object detection [57], [58], semantic segmentation [59],
and CD [60], [61]. For example, Zhuo et al. [52] simultaneously
utilized multiscale CNN and multihop GCN to capture multi-
scale features containing local-global structural relationships. A
novel global-local transformer network [53] learned local spatial
features using multiscale aggregated CNN and extracts global
spectral sequence properties using ViT. Taking global spatial
context into account, [54] learned discriminative spatial features
by overcoming the limitation of the receptive field and develops
a dual-view spectral aggregation model to capture short- and
long-view spectral features. Liu et al. [55] adopted CNN to

learn the local features and ViT for the extraction of the global
context information. Duan et al. [56] designed two different
branches to learn the deep aggregation features and extracted the
global structural features through grafting regular spatial con-
volution. Teng et al. [57] mined global contextual information
by encoding the image from a global perspective and designed a
clip-long short-term memory to learn local correlations of image
features. ATC-Net [58] captured global-local context features
from Transformer and CNN and enhanced the fused features
using attention mechanisms. A dual-branch backbone network
of CNN-transformer [59] adopts self-attention and cross-fusion
mechanisms to fuse extracted global-local features. As for the
CD tasks, [60] employed the transformer to capture local-global
semantic features by encoding the patches from the CNN feature
maps. Li et al. [61] used the parallel-branch ConvTrans block
as the basic component to fully capture multiscale global-local
information.

III. PROPOSED METHOD

The architecture of the proposed method is shown in Fig. 1.
A SE DI is first generated and then refined to acquire an
enhanced DI (EDI). Then, pseudolabeled samples for training
DA-GLN are constructed based on the EDI. Finally, uncertain
samples are classified by the trained DA-GLN to obtain the CD
result.

In our implementations, the DA-GLN can simultaneously
capture global-local features and efficiently fuse them using the
GLCFF strategy, as shown in Fig. 2. Moreover, we design the
FC-F loss to supervise the training process of our DA-GLN.
In Sections III-D and III-E, we will introduce the proposed
DA-GLN and the FC-F loss function in detail.

A. Preprocessing

In the acquisition of PolSAR data, external uncertainties
may make the PolSAR data inaccurate, resulting in the loss of
credibility of CD results. Therefore, before extracting difference
information and detecting changes from bitemporal PolSAR im-
ages, the original Gaofen3 PolSAR data should be preprocessed,
including the following steps.

1) Geometric correction is first employed to maximize the
alignment of the acquired PolSAR images with the real
geographic coordinates.

2) Radiometric correction with DEM is applied to correct the
radiation in different regions to the same energy level.

3) The filtering method proposed by Cui et al. [62] was
used to effectively suppress speckle noise and increase
the signal-to-noise ratio of the PolSAR images.

4) As an extended application of SAR-SIFT [63] on PolSAR,
PolSAR-SIFT is developed to register bitemporal PolSAR
images into the same coordinate system.

5) The Z-score normalization is used to normalize the nine
elements of each polarimetric covariance matrix, thus
obtaining PolSAR data with the same metric scales and
improving the convergence speed of the model.
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Fig. 1. Architecture of the proposed method.

Fig. 2. Illustration of the proposed DA-GLN.

B. Generation of DI

Since the proposed method detects changes in an unsuper-
vised manner, DIs need to be first generated by measuring the
degree of difference between the bitemporal PolSAR images.
Based on the DI, the high-confidence pseudolabeled set required
for unsupervised CD can be easily constructed. In a multilook
processed PolSAR image, each pixel is expressed by an average
polarimetric covariance matrix C, which is defined as

C =
1

L
L∑

l=1

ΨlΨ
H
l =

⎡
⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦ (1)

whereL is the nominal number of looks used for averaging,Ψ ∈
C3 is the complex scattering vector expressed in SLC format,
and (·)H is the Hermitian transposition operator.

On the assumption thatC obeys the complex Wishart distribu-
tion, [20] employed the SE operator to measure the difference
between bitemporal PolSAR images and generate the SE DI
DIS, which is defined as

DIS =
N

[
HS

(
φ̂A

)
−HS

(
φ̂B

)]2
σ2

(
φ̂A

)
+ σ2

(
φ̂B

) (2a)

HS

(
φ̂A

)
= E {− log pC (C1)} (2b)

HS

(
φ̂B

)
= E {− log pC (C2)} (2c)

Where C1 and C2 represent the pre- and postchanged covari-
ance matrices, pC(C) is the probability density function of C,
E{·}denotes the statistical expectation operator, φ̂ represents the
maximum likelihood estimation of φ, φ denotes the parameter
vector of pC(C), HS(φ̂) represents the SE of φ̂, N [·] is the
sampling size, and σ2(φ̂) represents the variance of φ̂.

Since entropy is an effective measure of the concentration
trends in data, the SE method can suppress the detrimental
effects of noise by capturing the average information of the
pixels in bitemporal images. However, the generatedDIS cannot
preserve the critical change edge information and its overall
discriminability needs to be further enhanced. In [64], an EDI
DIE improved by the DIS was designed to enhance bound-
ary localization and difference discrimination. It combines the
gamma correction principle with the edge information contained
in the bitemporal PolSAR images. In this article, we utilize
the generated DIE to obtain the pseudolabeled set and provide
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critical difference information. The EDI DIE is expressed as

DIE = DIγS (3a)

γ =

{
β(1 + Ē), β ≥ 1

β(1− Ē), β < 1
(3b)

β = (1− Ē)10TDIS
−DIS (3c)

where TDIS is the average of the thresholds generated by binary
segmentation of theDIS using the conventional Ostu and Kittler-
Illingworth threshold methods, and Ē is the edge information
extracted from the bitemporal PolSAR images.

C. Construction of Pseudolabeled Samples

Since the proposed method is unsupervised, we perform
FCM clustering to divide DIE into a pseudolabeled set Ω =
{Ωch,Ωuch,Ωuc} containing the changed class Ωch, the un-
changed class Ωuch, and the uncertain class Ωuc. In Ω, Ωch and
Ωuch can provide high-confidence labels for training samples,
whereas the classes of the pixels belonging to Ωuc need to be
further determined by classification. Notably, the number of Ωch

and Ωuch in the training samples is imbalanced, with the former
usually having a smaller number than the latter. This is mainly
attributed to two factors: 1) changed areas are more difficult to be
detected and thus have fewer labels than unchanged areas; and
2) the changed areas are often much smaller than the unchanged
areas in actual ground object scenes. Hence, considering the
sample imbalance issue is necessary when designing the network
for CD.

After that, considering that both covariance matrices
C1 and C2 in (1) are symmetric matrices and the
diagonal elements are real, we use a 9-D real vec-
tor [C11,�(C12),�(C13),C22,�(C23),C33,�(C12),�(C13),
�(C23)] as the original feature of the monotemporal PolSAR
image. �(·) and �(·) represent the real and imaginary parts of
the complex number. For CD tasks, the bitemporal images I1,
I2 ∈ RW×H×9 are usually stacked as the input information of
the network, where W and H represent the width and height
of the bitemporal images. However, speckle noise in PolSAR
images may interfere with the ability of the network to capture
change-aware features. Consequently, DIE ∈ RW×H×1 con-
taining rich difference information is concatenated with I1 and
I2 as the input information IInput ∈ RW×H×19. The introduction
of difference information can enhance feature discrimination
and thus accelerate the convergence of the network. After that,
we extract multichannel stacked patches with size m at the same
position of XInput ∈ Rm×m×19.

D. DA-GLN for CD

In order to generate the final CD results, the DA-GLN is
proposed as a classifier to accurately predict the pixel classes
in Ωuc. As shown in Fig. 2, DA-GLN simultaneously utilizes
the CNN- and transformer-based feature extractors to capture
both local and global features. In addition, the GLCFF strat-
egy is also designed to fuse global-local features and obtain
nonredundant and compact fusion features. Before extracting

Fig. 3. (a) Structure of the PiT. (b) Pooling layer. (c) Transformer encoder.

global and local features, the DA-GLN first feeds pseudolabeled
samples into the initial convolution module to obtain shallow
features XBase. The change discrimination of shallow features
is more salient compared to the raw input information. Two
alternating 3 × 3 convolutional layers, batch normalization (BN)
layers, and ReLU activation layers are included in the initial
convolution module. The amounts of filters in the convolution
layer are 32 and 64. The generated XBase is further fed into the
two subsequent branches for extracting global-local features.

1) Global Feature Extraction Network: To address the short-
coming that the CNN-based structure cannot effectively explore
the global spatial correlation of features, we first design a global
feature extraction network as a branch of the DA-GLN for ex-
tracting global features. Based on the self-attention mechanism,
ViT can adaptively model the semantic relationships between
any pixel pairs in space-time to capture global contextual infor-
mation. Inspired by the design principles of CNN, Heo et al.[65]
proposed a novel PiT based on the ViT. The PiT embeds pooling
layers into transformer-based structures and transforms features
in the spatial dimension, which is similar to CNN. The intro-
duction of the pooling layer effectively improves the efficiency
of self-attention spatial information interaction (similar to the
receptive field of CNN), thereby improving the performance
and generalization of ViT. Besides, PiT computes faster than
ViT. In summary, PiT can capture more discriminative global
features from bitemporal PolSAR images with complex feature
components and chaotic region features. The structure of the
whole PiT is shown in Fig. 3(a). Since the transformer takes the
feature sequence as input, we further divide XBase into N small
pieces of s× s and vectorize these pieces as Xt ∈ RN×(s2·C),
where N = m×m/s2 and C denotes the number of feature
channels. Then, patch flatten is performed on Xt and mapped
to a dD patch embedding X0 ∈ RN×d using a trainable linear
projection layer. Furthermore, the learnable location features
can be obtained from the added patch embedding. The above
process can be described as

X0 =
[
X1

t P;X2
t P; . . . ;XN

t P
]
+Ppos (4)

where X1
t , X

2
t , . . . , X

N
t represent the vectorized pieces, P ∈

R(s2·C)×d denotes the trainable projection transform, Ppos ∈
RN×d.
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In contrast to ViT which directly feeds the embedded features
into the transformer encoder, PiT first transforms the embedded
features in the spatial dimension using the pooling layer. As
shown in Fig. 3(b), the pooling layer first reshapes the spatial
2-D token featuresX0 ∈ R(w·h)×d into 3-D token features X̂0 ∈
Rw×h×d with spatial structure. Then, a 3× 3 convolution layer
is used to obtain the feature X̂p

0 ∈ R
w
2 ×h

2 ×2 d that the spatial di-
mension is halved and the channel dimension is doubled. Finally,
reshape X̂p

0 into a 2-D token feature Xp
0 ∈ R(w

2 ·h2 )×2 d. Since
the cls token used for classification is independent of spatial
features, the mapping is performed using a fully connected (FC)
layer to expand the channel dimensions.

Furthermore, the features Xp
0 obtained from the pooling layer

are fed into the transformer encoder with L layers. The structure
of a transformer encoder layer is shown in Fig. 3(c), which
consists of MSA, multilayer perceptron (MLP), and LayerNorm
(LN). The output representation of the lth transformer Xp

l is
defined as

Xp′
l = MSA

(
LayerNorm

(
Xp

l−1

))
+Xp

l−1 (5a)

Xp
l = MLP

(
LayerNorm

(
Xp′

l

))
+Xp′

l (5b)

where l = 1, 2, . . . , L. As the core of the transformer, MSA
provides an effective modeling approach for capturing global
context information. Multiple headers allow the transformer to
learn multiple dependencies from various representation sub-
spaces in different locations. The process can be described as

MSA(Q,K,V) = Concat (head1, .., headu)W
O (6a)

headi = softmax

(
QiK

T
i√

dk

)
Vi (6b)

where Qi = XiW
q
i , Ki = XiW

k
i , and Vi = Wv

i denote key,
query, and value. WO, Wq, Wk, and Wv represent the learn-
able parameter matrices corresponding to output, query, key, and
value. Xi is the ith head of the feature matrix, u is the number
of multiheads, and dk is the dimensions of Q and K.

In addition, the transformer includes a MLP that can enhance
its nonlinear transform capabilities. The MLP is composed of
two linear transform layers, with a Gaussian error linear unit in
the middle, which can be expressed as

MLP(x) = max (0,xW1 + b1)W2 + b2 (7)

where x is the input features of the MLP, W1 and W2 are the
learnable weight matrices of the two linear transform layers, and
b1 and b2 are the biases of the two linear transform layers.

After the above process, we can obtain the global features
XGlobal corresponding to the shallow features XBase.

2) Local Feature Extraction Network: Affected by the inher-
ent speckle, purely convolution-based structures cannot com-
pletely extract local change-aware features and eliminate ir-
relevant features affected by speckle noise. Hence, we utilize
the deep residual shrinkage network (DRSN) [66] to focus on
capturing local features. The DRSN has been applied to im-
age denoising with good performance [67], [68]. It embeds
soft thresholds as a trainable shrinkage function into the CNN

Fig. 4. Structure of the RSBU-CW.

to force unimportant features to zero, thereby weakening the
adverse effect of noise and learning more discriminative lo-
cal features. The core of the DRSN is the residual shrinkage
building unit with channel-wise thresholds (RSBU-CW) that
can adaptively estimate thresholds in soft-thresholding. Note-
worthy, RSBU-CW is an extended application of the squeeze-
and-excitation networks (SENet) [69], and both obtain chan-
nel weights through the channel attention mechanism. Unlike
SENet, RSBU-CW further sets thresholds for each channel of
the learnable feature mapping based on the channel weights. As
shown in Fig. 4, the RSBU-CW with channel thresholding first
simplifies the input features into 1-D vectors through absolute
value operation and global average pooling (GAP) layer, and
then further propagates them to two FC layers. The number of
neurons in FC layers is equal to the number of channels of the
input feature, which is set to 64 in this article. The output value
of the latter FC layer is converted to a scale parameterα ∈ (0, 1)
using the Sigmoid function. Based on this, the thresholds can be
calculated by

τc = αc · average
m,m

|xm,m,c| (8)

where τc is the threshold for the cth channel corresponding to the
feature map, and m and c are the indexes of the side length and
channel of the features x, respectively. Finally, the optimized
features can be obtained by summing x with the soft threshold
shrunken features using the identity shortcut.

As shown in Fig. 2, the proposed local feature extraction
branch consists of four stacked RSBU-CW modules, a GAP
layer, and a FC layer with 2 d neurons. In this way, the shallow
features XBase can be converted into the local features XLocal by
the aforementioned local feature extraction network.

3) Global-Local Constraint Feature Fusion (GLCFF): The
above two branches can learn rich local space contexts and
remote dependencies. However, it is challenging to integrate
global features XGlobal and local features XLocal with high qual-
ity. Although the local feature extraction branch focuses on
extracting local features using the local connection attributes
of convolution, the stacked multiple convolution layers and
channel attention mechanism have been proved to improve
the receptive field and thus model the global information to a
certain extent [39]. As a result, there may be redundancy in
the features captured by the two branches receiving the same
input. To address this issue, we design the GLCFF strategy to
obtain nonredundant and compact fusion features. Based on the
consistency between shared features and the difference between
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Fig. 5. Illustration of the proposed GLCFF.

complementary features under different attributes, as well as the
difference between shared and complementary features under
specific attributes, the GLCFF strategy effectively eliminates
feature redundancy and fully exploits the complementarity be-
tween different attribute features.

As shown in Fig. 5, the proposed GLCFF strategy em-
ploys four feature learning branches to learn the shared fea-
ture representation Xn

Sha and the complementary feature rep-
resentation Xn

Com between the global and local attributes n =
{Global, Local}. Each branch is composed of two alternating
FC layers with 64 and 32 neurons and a ReLU activation function
to facilitate training. Considering the consistency and difference
between features, two loss functions named the consistency
constrain loss function LCon and the difference constrain loss
function LDif are constructed to constrain the feature learning
process of the above branches. Among them, LCon represents
the consistency between the shared features under different
attributes. As for LDif, it measures the difference between the
shared features and complementary features under specific at-
tributes. In addition, the correlation between XGlobal

Com and XLocal
Com

is also constrained in LDif, thus further eliminating feature
redundancy more thoroughly. Concretely, to ensure that the
acquired shared features are adequately similar, the normalized
Pearson distance is adopted to express LCon. Moreover, since
the shared features and complementary features as well as the
complementary features under different attributes are different
and cannot be separated automatically, we use the normalized
Pearson correlation coefficients to represent LDif, which ensures
sufficient discrimination between features and avoids mutual
contamination. The Pearson correlation coefficient centralizes
the vectors to better measure the correlation between two random
variables. On this basis, the feature constraint loss function can
be expressed as

LFC = LCon + LDif (9a)

LDif =
∣∣ρ (XGlobal

Sha ,XGlobal
Com

)∣∣
+
∣∣ρ (XLocal

Sha ,XLocal
Com

)∣∣+ ∣∣ρ (XGlobal
Com ,XLocal

Com

)∣∣
(9b)

LCon = 1− ∣∣ρ (XGlobal
Sha ,XLocal

Sha

)∣∣ (9c)

ρ(X,Y) =
E [(X− μX) (Y − μY)]

σXσY
(9d)

where LFC denotes the feature constraint loss function, ρ(·)
represents the calculation of the Pearson correlation coefficient,
| · | denotes the absolute value, μ denotes the mean, and σ
denotes the standard deviation.

For theXGlobal
Sha andXLocal

Sha , we first calculate the average value
XAve

Sha and maximum valueXMax
Sha of both and concatenate them to

obtain the initial shared feature representationX′
Sha . Moreover, a

FC layer with 128 neurons as well as a ReLU activation function
are used to further eliminate the redundancy of the X′

Sha and
generate the final shared feature representation XSha. After that,
the XGlobal

Com and XLocal
Com are concatenated with XSha to obtain the

global-local constraint fusion features. The above process can
be described as

XGLCFF = Concat
(
XSha ,X

Global
Com ,XLocal

Com

)
(10a)

XSha = fReLU
(
fFC (X′

Sha )
)

(10b)

X′
Sha = Concat

(
XAve

Sha ,X
Max
Sha

)
(10c)

XAve
Sha = average

(
XGlobal

Sha ,XLocal
Sha

)
(10d)

XMax
Sha = max

(
XGlobal

Sha ,XLocal
Sha

)
(10e)

where XGLCFF represents the global-local constraint fusion
features, Concat(·) denotes the connection operation, fFC(·)
denotes the FC layer, fReLU(·) denotes the ReLU activation
function, average(·) denotes the average value, and max(·)
denotes the maximum value.

To obtain the classification results of changed and unchanged
samples, the XGLCFF is sequentially fed into two FC layers
containing 64 and 2 neurons as well as the ReLU activation
function.

E. Feature Constraint-Focal (FC-F) Loss Function

GLCFF strategy constructs the LFC to eliminate feature re-
dundancy and fully exploit the complementarity between global
and local features, thereby obtaining nonredundant and com-
pact fused features. However, as mentioned in Section III-C,
the sample imbalance issue prevents the training process from
adequately learning critical change features. Some studies [30],
[70] generate a smaller number of changed virtual samples to
make the samples balanced. Admittedly, such approaches may
not guarantee the quality of the virtual samples and incur high
computational costs. To address this issue, we introduce the
focal loss function [71] to form a novel FC-F loss function
together with the LFC for supervising the training process of the
DA-GLN. From the perspective of sample difficulty classifica-
tion, the focal loss function evolved from the cross-entropy loss
function and focuses on improving the classification accuracy
of a small number of changed samples. The binary classification
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focal loss function is applicable to the binary CD tasks studied
in this article, which is defined as

LF = − (1− pt)
γ log (pt) (11)

where LF represents the focal loss function, pt denotes the
output value of the corresponding change class, − log(pt) is
the initial cross-entropy function value, and γ ∈ [0,+∞) is the
focusing coefficient.

On this basis, the proposed FC-F loss function includes LF

and LFC, which can be expressed as

LFC−F = LF + λ × LFC (12)

where LFC−F represents the designed FC-F loss function, and
λ is the balance parameter.

IV. EXPERIMENTS

In this section, the measured PolSAR data, experimental
settings, evaluation indicators, ablation study, discussion, and
experimental comparison are reported in Sections IV-A–IV-E.

A. Experimental Datasets

Five multiscenario PolSAR datasets are tested to evaluate the
performance of the proposed method. Each dataset is multilook
processed and corresponds to a specific scene of the ground,
including the airport, Jinsha River, and the city of Los Angeles.
Multiscenarios help to verify the wide suitability of the proposed
method. The details of the above datasets are described as
follows.

1) Airport Dataset: The first dataset used in our experiment
corresponds to an airport scene in China. It was taken from the
multipolarization SAR imaging satellite Gaofen3. The Pauli-
RGB images of this dataset are shown in Fig. 6. Several earth
surfaces are contained in this dataset, such as airport runways,
vegetation, and buildings. Since the size of the original image is
too large and most areas remain unchanged, it is challenging to
show the CD results in the actual experiment [31]. As a result,
two densely changed subareas are cropped from the original
images as testing datasets, i.e., Datasets R1–R2, as shown in the
areas circled by the red block in Fig. 6.

2) Jinsha River Dataset: The second dataset was taken in
Jinsha River, China. Like the first dataset, it was also captured
from the Gaofen3 satellite. The Pauli-RGB images of this dataset
are shown in Fig. 6. Rivers, mountains, and geological landslides
constitute the earth surfaces of this dataset. The main changes
are caused by landslides around the river. Similar to the airport
dataset, we select two subareas with dense changes (i.e., Datasets
R3–R4) from this dataset to conduct our experiments.

3) Los Angeles Dataset: The third dataset (i.e., Dataset R5)
was taken in the city of Los Angeles. It was acquired by the
UAVSAR satellite. The Pauli-RGB images of this dataset are
shown in Fig. 7. Changes caused by the transformation of the
city are recorded in this open-source dataset [32].

In summary, the whole dataset consisted of five image pairs,
totaling ten images. The five datasets R1–R5 and their ground-
truth images are shown in Fig. 7. In the ground-truth images
of Datasets R1–R5, the white areas represent changed, and the

Fig. 6. Pauli images of the experimental datasets in large scenes.

TABLE I
DETAILS OF THE FIVE DATASETS

black areas represent unchanged. Table I records the detailed
information of each dataset, including band, resolution, acqui-
sition time, and size.

B. Experimental Settings and Evaluation Indicators

All experiments are conducted on a PC with a 2.10 GHz
Intel(R) Core(TM) i7-12700 CPU and 24 GB of RAM. The gen-
eration of EDI and the acquisition of pseudolabeled samples are
implemented on the CPU and MATLAB R2020b platform. The
training and prediction process of the DA-GLN is implemented
on NVIDIA GeForce RTX 2060 s GPU with 8 GB memory and
PyTorch 1.12.0 software.

When training the DA-GLN, an Adam optimizer with a
constant learning rate of 0.001 is employed, the batch size is
set to 150, and the number of epochs is empirically set as 20
for all datasets. In the global feature extraction branch of the
DA-GLN, we set the amounts of pieces N to 16, the dimension
of the generated patch embedding d is set to 384, the number of
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Fig. 7. Experimental datasets.

layers in the transformer encoder L is set to 6, and the number
of multiheads u is set to 8. Besides, the focusing parameter
γ is set to 2 in the focal loss function. We select 80% of the
entire samples as the training set and the remaining samples
for network validation. The entire samples are constructed with
7 pixels as the sampling interval. The patch sizem is set to 14 for
the airport dataset and 10 for the Jinsha River and Los Angeles
datasets. For the balance parameter λ in the proposed FC-F loss
function, we set λ = 0.7 for Dataset R1, λ = 0.8 for Datasets
R2 and R3, λ = 0.1 for Dataset R4, and λ is set to 0.4 for Dataset
R5. We will discuss and choose the suitable patch sizes m and
λ values for Datasets R1–R5 in Sections IV-D2 and IV-D3.

To evaluate the proposed CD method quantitatively, six eval-
uation indicators are utilized to evaluate the CD performance:
Precision (Pre), recall (Rec), overall errors (OE), F1 score (F1),
percentage correct classification (PCC), and Kappa coefficient
(κ× 100).

Fig. 8. Comparison models for ablation analysis. (a) Module 1. (b) Module 2.
(c) Module 3.

C. Ablation Study

The proposed DA-GLN includes the following four modules:
1) the CNN-based branch is adopted to extract local features;
2) the PiT is introduced for global feature extraction;
3) the GLCFF strategy is designed to remove redundancy and

efficiently integrate global-local features;
4) the focal loss is adopted to alleviate the adverse effects of

the sample imbalance.
To analyze the effectiveness of the above modules more

clearly, we conduct the following ablation experiments, includ-
ing Local, Global, GLCFF, and Focal loss. Concretely, five
experiments are designed by adding modules incrementally and
trained according to the parameters in Section IV-B.

In the ablation experiments, Model 1 only employs the local
feature extraction branch for CD. The PiT is introduced in
Model 2 to focus on modeling long-range contextual patterns
and extracting global features. Based on the structure of Models
1 and 2, Model 3 integrates dual branches based on CNN and
transformer to capture both global and local features simulta-
neously. Noteworthy, a simple concatenation fusion strategy is
adopted to fuse the global and local features in Model 3. Models
1–3 use the cross-entropy loss function as the objective function
and their structures are shown in Fig. 8(a)–(c). Unlike Model
3, the GLCFF strategy is designed for feature fusion in Model
4. The structure of Model 4 is the same as shown in Fig. 2. In
addition to the cross-entropy loss function, the LFC in GLCFF is
also used to supervise the training process of Model 4. The only
difference between Model 5 (i.e., the proposed DA-GLN) and
Model 4 is the introduction of focal loss instead of cross-entropy
loss as part of the proposed FC-F loss function. Table II presents
the experimental results.

The results on five datasets indicate that each module raises
the detection accuracy of the models and the complete model has
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TABLE II
COMPARISON ABLATION OF EACH MODULE ON FIVE DATASETS

the highest accuracy. Specifically, by comparing Models 1 and
2, the branch that focuses on extracting local features performs
better than the branch that extracts global features. This is be-
cause the local branch consisting of stacked RSBU-CWs forces
change-independent features to zero and takes advantage of the
induction bias. As can be seen from Models 1–3, the combination
of the two branches outperforms the performance of a single
branch, which proves that the fusion of global-local features
helps to capture more complete features related to the changes
in interest. Noteworthy, employing simple concatenation to fuse
the two branches may cause feature redundancy and restrict
the maximization of global-local feature dominance. Compared
with the concatenation strategy used in Model 3, Model 4
employs the more efficient GLCFF strategy to remove feature
redundancy and mine the complementarity between features,
thus performing better than the concatenation fusion strategy
as well as a single branch on all datasets. The improvement of
Model 5 relative to Model 4 illustrates that the introduction of
focal loss can attenuate the effect of unbalanced samples and
further improve the ability of the network.

D. Discussion

1) Discussion of the Computational Cost: In this subsection,
we count the computational cost of the proposed method and
the other relevant methods in recent years. Concretely, the time
cost of comparison methods on Datasets R1–R5 is listed in
the last column of Tables VIII–XII. Moreover, Fig. 9 presents
the number of training parameters (Params.) and floating-point
operations per second (FLOPs) of the end-to-end deep learning
methods. As can be seen from Fig. 9, the lightweight DDNet
consisting of a small number of convolutional layers, linear
layers, and discrete cosine transforms has the lowest parameters
and FLOPs (i.e., 12.1 K and 0.02 G). This allows it to generate

Fig. 9. Parameters and FLOPs of different methods.

CD results in a relatively short time among deep learning meth-
ods. The proposed DA-GLN has higher parameters and FLOPs
(i.e., 53.3 M and 2.10 G) than other CNN-based methods owing
to the introduction of transformer-based structures. However,
our network can converge quickly in fewer training epochs and
thus has the lowest run time compared with the aforementioned
approaches, which makes the effect of the added parameters
negligible. In conclusion, our method can accurately detect
changes in a few minutes and is practicable.

2) Discussion of the Patch Size m: The proposed DA-GLN
can simultaneously capture global-local features efficiently by
employing CNN- and transformer-based branches, thus improv-
ing the accuracy of CD. Nevertheless, choosing the suitable
patch size to generate satisfactory CD results is challenging.
Generally, small patch sizes allow for better retention of change
details. In addition, the training time of the network will increase
with the increase of the patch size [72]. As a result, small sizes
can complete network training at a low time cost. However, too
small a size may constrain the network from capturing more
comprehensive global information and is even ineffective in es-
tablishing remote dependencies. From this perspective, it seems
that larger patch sizes should be selected as much as possible to
explore the global spatial correlation of change-aware features.
Unfortunately, too large size inevitably contains more interfering
and redundant information, leading to performance degradation.
Meanwhile, the higher cost of training time may also limit the
practical applicability of the network. Therefore, we conduct
experiments to test and analyze the CD performance of each
dataset at different patch sizes, thus ensuring that the patches
are semantically rich and contain low-redundancy information.
Specifically, the patch sizes vary in a range between 8 and 18.
Fig. 10 presents the CD accuracy for different patch sizes on the
five datasets.

As seen from Fig. 14, the CD performance gets progressively
better as the size becomes larger. This indicates that the suitable
patch size already contains enough spatial context for optimal
CD performance. Concretely, the optimal accuracy for Datasets
R1 and R2 is achieved when patch sizem = 14. Simultaneously,
from Tables VIII and IX we can see the time cost (i.e., 150.37
and 159.22 s) is appropriate. For the other Datasets R3–R5, the
optimal CD indicators can be obtained when m = 10. As shown
in Tables X–XII, the time cost for these three larger datasets has
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Fig. 10. Experimental results of different patch sizes m on five datasets.
(a) R1. (b) R2. (c) R3. (d) R4. (e) R5.

TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT BALANCE PARAMETERS λ ON FIVE

DATASETS

increased compared to Datasets R1 and R2, but is still within
the acceptable range (i.e., 318.32, 297.27, and 426.80 s). Based
on this, we conduct our experiments with patch size m = 14 for
Datasets R1 and R2 and m = 10 for Datasets R3–R5.

3) Discussion of the Balance Parameter λ: The balance
parameter λ of the FC-F loss function LFC−F impacts the
CD performance. Hence, we design experiments to discuss its
effect on the CD results and set the suitable values for five
datasets. Specifically, λ varies in the range from 0 to 1. Table III
summarizes the numerical results on five datasets. Apparently,
different λ produces the best performance on different datasets.
The proposed method achieves optimal performance when λ is
set to 0.7 on Dataset R1. For Datasets R2 and R3, the three
comprehensive evaluation indicators are highest when λ = 0.8.
When λ is set to 0.1 and 0.4, the F1, PCC, and κ× 100 are

Fig. 11. Structure of the PCNN.

TABLE IV
COMPARISONS BETWEEN PCNN AND RSBU-CW ON FIVE DATASETS

the highest on Datasets R4 and R5, respectively. On this basis,
we set λ = 0.7 for Dataset R1, λ = 0.8 for Datasets R2 and
R3, λ = 0.1 for Dataset R4, and λ = 0.4 for Dataset R5 in our
experiments.

4) Application of the RSBU-CW: In our DA-GLN, the
designed local feature extraction branch employs the DRSN to
adaptively filter irrelevant features affected by speckle noise and
extract more discriminative local features. As shown in Fig. 2,
the local feature extraction branch consists of four stacked
RSBU-CWs, which are the core components of the DRSN.
To verify the effectiveness of combining the channel attention
mechanism with soft thresholding to eliminate irrelevant
features affected by speckle noise, we design experiments to
compare RSBU-CW with conventional convolutional layers.
Concretely, channel attention, soft thresholding, and identity
shortcut contained in RSBU-CWs are removed. As a result, each
RSBU-CW of the local feature extraction branch is replaced
by two alternating 3 × 3 convolutional layers with 64 filters,
BN layers, and ReLU activation layers. Fig. 11 and Table IV
present the structure of the pure CNN (PCNN) and the accuracy
indicators of the comparison experiments. As shown in Table IV,
the adopted RSBU-CW produces the highest accuracy on all
datasets than the PCNN and is more suitable for extracting local
change-aware features in PolSAR images. The RSBU-CW uses
the channel weight generated by SENet to adaptively obtain the
shrinkage thresholds. On this basis, the soft threshold is em-
ployed to force the unimportant feature to be zero. In this way, the
noise in the PolSAR images can be effectively suppressed and
the features related to the changes can be adequately captured.

5) Application of the GLCFF: DA-GLN adopts the GLCFF
strategy to integrate global and local features with different
attributes in high quality, which can effectively remove redun-
dancy and make the fusion features more compact. Several
verification experiments are conducted to discuss the validity
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TABLE V
CD PRECISION INDICATORS OF DIFFERENT FUSION STRATEGIES ON FIVE

DATASETS

and superiority of GLCFF. Specifically, we compare the CD
results obtained by the proposed GLCFF strategy with some
common fusion algorithms, such as maximum, concatenation,
and addition in the same network structure. To avoid the influ-
ence of focal loss function, the networks adopting the common
fusion algorithms are supervised by cross-entropy loss function,
while the network employing the GLCFF strategy uses both
cross-entropy loss and LFC to supervise its training process. As
listed in Table V, when applying traditional fusion algorithms
for the PolSAR image CD tasks, concatenation achieves the
highest κ× 100 on Datasets R2, R4, and R5, whereas data
addition achieves better κ× 100 for Datasets R1 and R3. How-
ever, simple data concatenation or addition may cause feature
redundancy and weaken feature discrimination, thus limiting the
further improvement of CD accuracy. Compared with the three
fusion algorithms mentioned above, the highest CD accuracy is
obtained on all datasets when using the GLCFF strategy. The
above experiments demonstrate that GLCFF can fully exploit
the global and local information in bitemporal PolSAR images
and achieve better CD performance than traditional fusion algo-
rithms.

6) Application of the EDI: The unsupervised CD method
utilizes distance measurement to generate DIs and further thresh-
olds them to obtain pseudolabeled samples required for unsuper-
vised CD. Therefore, it is crucial to choose a well-performing
DI generation method. In this article, we adopt the information
theoretic-based SE difference operator to measure the differ-
ence between bitemporal PolSAR images and enhance them to
obtain the EDI. Hence, we conduct experiments to analyze the
performance of EDI.

Fig. 12. DIs of the five methods on Datasets R1 and R4. (a) LRT. (b) WD.
(c) HLT. (d) SE. (e) EDI.

Fig. 13. CD results of the five DI methods using Otsu thresholding on Datasets
R1 and R4. (a) Ground-truth image. (b) LRT. (c) WD. (d) HLT. (e) SE. (f) EDI.

Five DI generation methods are compared in the experiment:
HLT [19], WD [73], LRT [74], SE [20], and EDI [64]. The visual
results for Datasets R1 and R4 are shown in Fig. 12. Compared
with other DIs, EDI suppresses outliers caused by speckle noise
and enhances edge information. This is due to the fact that the
entropy value measures the central tendency of the data and the
edge information of the PolSAR images is also introduced to
enhance the DI.

For the sake of fairness and to eliminate the influence of
the network, we utilize the classical OSTU method to segment
the above DIs and obtain CD results, as shown in Fig. 13
and Table VI. The EDI outperforms other methods in CD and
has the highest accuracy. The other methods perform unsatis-
factorily on the five datasets. Concretely, HLT, WD, and LRT
measure the similarity between isolated pixels, which makes it
possible to describe local detail information well but sensitive
to noise, especially on datasets with high-level noise. SE uses
entropy to measure data concentration and capture important
spatial information, thus effectively suppressing speckle noise.
However, it is ineffective in accurately describing the details
of changes, and some nonnegligible areas are also missed. As
an improvement of SE, EDI utilizes the principle of gamma
correction and introduces edge information to suppress noise,
enhancing the edge information and separability between the
changed areas and the background.

E. Performance Comparison

To demonstrate the superiority of the proposed DA-GLN, we
compare it with eight relevant methods in recent years. They are
the traditional methods 1)–2) and deep learning-based methods
3)–8). Comparison of our method with traditional methods al-
lows for exploring the advancement and efficacy of deep learning
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TABLE VI
CD PRECISION INDICATORS OF FIVE DI METHODS USING OTSU

THRESHOLDING ON FIVE DATASETS

theory, while comparison with deep learning-based methods
can verify the effectiveness of extracting local-global features
by combining CNN and transformer. Among them, 5)–7) are
proposed to detect changes in SAR images. In this article,
polarization data is uniformly used as the input of these networks
to detect changes from the EDI.

The added part with a detailed description of the above
comparison experiments is as follows.

1) HLT [19] used the HLT statistic to measure the difference
between covariance matrices and estimated the sampling
of HLT from the FisherSnedecor distribution. On this
basis, the constant false alarm rate is used to generate the
CD results.

2) SE [20] obtained the DI using the information entropy
and further detected changes using the ETS based on the
chi-square distribution.

3) TCD-Net [32] used adaptive multiscale convolutional
blocks and residual blocks to capture the change-aware
features of objects with different sizes.

4) EEMCNN [33] uniformly utilized multidimensional di-
lated convolution layers to extract deep features from
bitemporal images and change deep features.

5) DDNet [28] took the characteristics of the discrete co-
sine transform domain into account, and integrated the

TABLE VII
EXPERIMENTAL PARAMETER SETTINGS OF THE DEEP LEARNING-BASED

COMPARISON METHODS

reshaped DCT coefficients as the frequency domain
branches into the proposed model.

6) PCANet [26] used PCA filters as convolutional filters and
exploited the representative neighborhood features of each
pixel.

7) RUSACD [30] designed a two-stage center-constrained
FCM algorithm to obtain the pseudolabeled set from
DIs. Moreover, a deep convolution generative adversarial
network and a convolutional wavelet neural network are
adopted to deal with the sample imbalance issue and detect
changes.

8) NJCDN [34] used metric learning and incorporates low-,
mid-, and high-level features to capture high-resolution
change features in both the covariance matrix and ampli-
tude PolSAR data.

For the two traditional methods, both are analyzed directly
on the generated DIs to obtain CD results, making them simple
in structure and have low computational complexity. However,
due to the interference of speckle noise, the rationality of the
similarity measurement and the validity of the DI analysis
significantly affect the final CD results. Unlike our DA-GLN
which combines transformer with CNN to capture both global
and local features, the deep learning-based methods all attempt
to improve CD performance by optimizing conventional CNN
for capturing multidimensional or multilevel local features.

The aforementioned deep learning-based methods are imple-
mented using the default parameters provided in their original
papers. Table VII records the experimental parameter values
for these comparison methods, including patch size (Patch),
batch size (Batch), training epochs (Epoch), and learning rate
(LR). Noteworthy, all of the above methods employ an Adam
optimizer for training. As for PCANet with more parameters,
we set the patch size as 5. In Gabor feature extraction, the
orientation and scale of the Gabor kernel are set to 8 and 5,
respectively. The maximum frequency kmax = 2π is utilized.
For fairness, we have performed the same preprocessing as
described in Section III-A on all Gaofen3 PolSAR images. The
CD performance comparison of the aforementioned methods on
Datasets R1–R5 is as follows.

1) Performance on Dataset R1: In Dataset R1, the major
change regions include newly built airport runways and a small
number of irregular buildings. The detection accuracy evaluation
of different methods on Dataset R1 is listed in Table VIII. The
proposed DA-GLN achieves the highest detection accuracy. The
comprehensive indicators F1, PCC, and κ× 100 increased by



XU et al.: DUAL ATTENTION-BASED GLOBAL-LOCAL FEATURE EXTRACTION NETWORK FOR UNSUPERVISED CHANGE DETECTION 10855

Fig. 14. CD results of different methods on Dataset R1. (a) Prechanged image. (b) Postchanged image. (c) Ground-truth image. (d) HLT. (e) SE. (f) TCD-Net.
(g) EEMCNN. (h) DDNet. (i) PCANet. (g) RUSACD. (k) NJCDN. (l) DA-GLN.

TABLE VIII
QUANTITATIVE COMPARISON PERFORMANCE OF DIFFERENT METHODS ON

DATASET R1

more than 2.03%, 0.53%, and 2.47 over other state-of-the-art
methods.

The visual results of different methods on Dataset R1 are
shown in Fig. 14. Among the traditional methods, HLT adopts
the HLT statistic to measure the similarity between isolated
pixels, which makes it sensitive to speckle noise. As shown
in Fig. 14(d), HLT recognizes most of the unchanged pixels
in the background as noise (areas farmed in red). However, it
can describe the local detail information well. SE suppresses
noise more effectively than HLT (as shown in the red boxes)
by measuring the concentration of data and capturing impor-
tant spatial information. Unfortunately, SE cannot accurately
describe the change details and misses some changed areas.
As for the deep learning-based methods, the visual results of
TCD-Net, EEMCNN, and DDNet cover the major changed areas
and retain the change details; however, the background noise
widely distributed on them is still nonnegligible, as shown by
the regions framed in red. Although PCANet, RUSACD, and
NJCDN perform better than the aforementioned methods, their
ability to describe the change details still needs to be improved.
The visual results of the proposed DA-GLN have better regional
homogeneity and can suppress background noise (highlighted by

TABLE IX
QUANTITATIVE COMPARISON PERFORMANCE OF DIFFERENT METHODS ON

DATASET R2

the red boxes), validating the effectiveness of fusing global and
local features. Fig. 14 and Table VIII demonstrate that our dual
attention-based method performs better than other traditional
and purely CNN-based methods on Dataset R1.

2) Performance on Dataset R2: Dataset R2, which belongs to
the same overall dataset as Dataset R1, is also utilized to validate
the validity of the DA-GLN. The major changes in Dataset
R2 are the result of airport expansion, including red runways
in the horizontal direction and irregular discontinuous aprons
in the vertical direction. The changed areas below the runway
are also included. The CD evaluation indicators on Dataset R2
are listed in Table IX. The F1, PCC, and κ× 100 increased by
more than 1.02%, 0.21%, and 1.15, respectively, which validates
the superiority of our DA-GLN.

Fig. 15 shows the CD results of each method on Dataset R2.
The effect of speckle noise in Dataset R2 is not as severe as in
Dataset R2 owing to the relatively concentrated changed areas.
However, HLT still cannot effectively suppress speckle noise
(areas farmed in red). SE, TCD-Net, EEMCNN, DDNet, and
PCANet attenuate the impact of noise, but miss many areas that
cannot be ignored. RUSACD and NJCDN describe the subject
changed areas and deal with isolated pixels efficiently; however,
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Fig. 15. CD results of different methods on Dataset R2. (a) Prechanged image. (b) Postchanged image. (c) Ground-truth image. (d) HLT. (e) SE. (f) TCD-Net.
(g) EEMCNN. (h) DDNet. (i) PCANet. (g) RUSACD. (k) NJCDN. (l) DA-GLN.

TABLE X
QUANTITATIVE COMPARISON PERFORMANCE OF DIFFERENT METHODS ON

DATASET R3

RUSACD omits some change details and NJCDN overdetects
some changed areas outside the newly built runway. Our pro-
posed method suppresses noise (highlighted by the red boxes)
and accurately locates edges by fully capturing spatial context
information, resulting in the best visual effect. The results of
the evaluation indicators are consistent with the visualization
results.

3) Performance on Dataset R3: To verify the broad applica-
bility of the proposed method, another landslide scenario dataset
is used to validate the broad applicability and superiority of
our method. Dataset R3 primarily records the changes caused
by landslides. The CD evaluation indicators on Dataset R3 are
presented in Table X. The proposed DA-GLN has achieved the
highest accuracy. The F1, PCC, and κ× 100 increased by more
than 3.03%, 0.48%, and 3.22, respectively.

Fig. 16 shows the visual results of each method on Dataset
R3. Since Dataset R3 suffers from a high level of noise, we can
observe that HLT fails to suppress the speckle noise. Similar
situations occur in the visual results of TCD-Net and DDNet (as
shown in the red boxes). Nevertheless, the boundary positioning
ability of the above methods is commendable. SE can describe
the subject changed areas well, but misses some changes related
to the edge structure. EEMCNN and PCANet further attenuate

TABLE XI
QUANTITATIVE COMPARISON PERFORMANCE OF DIFFERENT METHODS ON

DATASET R4

the detrimental effects of background noise highlighted by red
boxes, whereas the visual results of both suffer from overde-
tection. RUSACD and NJCDN perform better than the above
methods. However, RUSACD lost some nonnegligible areas
and NJCDN overdetects some unchanged areas. Our DA-GLN
can effectively suppress noise (areas farmed in red) and has
less overdetection. The CD evaluation indicators on Dataset R3
are listed in Table X. The results in Table X also validate the
conclusions drawn in Fig. 16.

4) Performance on Dataset R4: Similarly, we select Dataset
R4 form the Jinsha River Dataset to validate the wide appli-
cability of our DA-GLN. Table XI records the CD evaluation
indicators on Dataset R4. The F1, PCC, and κ× 100 increased
by more than 0.64%, 0.08%, and 0.68, respectively.

As shown in Fig. 17, the visual result of HLT describes the in-
formation in detail but with much background noise highlighted
by red boxes. SE attempts to further attenuate the noise (as shown
in the red boxes) but misses some of the nonnegligible edge detail
information. As for the deep learning-based methods, TCD-Net,
EEMCNN, and DDNet can accurately localize the main areas of
change and maintain edge structure information; however, these
methods still generate numerous false alarms in the background
(highlighted by the red boxes). PCANet, RUSACD, and NJCDN
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Fig. 16. CD results of different methods on Dataset R3. (a) Prechanged image. (b) Postchanged image. (c) Ground-truth image. (d) HLT. (e) SE. (f) TCD-Net.
(g) EEMCNN. (h) DDNet. (i) PCANet. (g) RUSACD. (k) NJCDN. (l) DA-GLN.

Fig. 17. CD results of different methods on Dataset R4. (a) Prechanged image. (b) Postchanged image. (c) Ground-truth image. (d) HLT. (e) SE. (f) TCD-Net.
(g) EEMCNN. (h) DDNet. (i) PCANet. (g) RUSACD. (k) NJCDN. (l) DA-GLN.

perform well and validate the superiority of the CNN-based
structures. Nevertheless, none of the aforementioned approaches
show the same performance as our DA-GLN combining CNN
with transformer. The results of Table XI are consistent with
Fig. 17, indicating that our dual attention-based method has the
optimal performance and highest accuracy.

5) Performance on Dataset R5: In addition to the aforemen-
tioned datasets describing airport and landslide scenarios, we
further use the dataset describing city scenarios to validate the
broad applicability and superiority of our method. Dataset R5
primarily records changes caused by urban transformation. The
CD evaluation indicators on Dataset R5 are listed in Table XII.
According to the observation, the proposed method has achieved
the best performance. The F1, PCC, and κ× 100 increased by
more than 0.58%, 0.28%, and 0.76, respectively.

Fig. 18 shows the visual results for each method on Dataset
R5. HLT fails to suppress the background noise highlighted in
red boxes. SE, TCD-Net, and EEMCNN attempt to mitigate

TABLE XII
QUANTITATIVE COMPARISON PERFORMANCE OF DIFFERENT METHODS ON

DATASET R5

the effects of the noise, but there are still some isolated pixels
in their backgrounds (areas farmed in red). Although RUSACD
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Fig. 18. CD results of different methods on Dataset R5. (a) Prechanged image. (b) Postchanged image. (c) Ground-truth image. (d) HLT. (e) SE. (f) TCD-Net.
(g) EEMCNN. (h) DDNet. (i) PCANet. (g) RUSACD. (k) NJCDN. (l) DA-GLN.

and NJCDN perform better than the above methods, their ability
to suppress noise as well as describe edge detail information still
needs to be improved. PCANet is effective in suppressing noise,
whereas its visual results suffer from incomplete detection.
DA-GLN is robust to noise (as shown in the red boxes) and
has the fewest missed detections, consistent with the results in
Table XII.

Taken together, our DA-GLN outperforms other methods in
both objective and visual comparisons, which proves its robust-
ness on datasets with different scenarios. Remarkably, the DA-
GLN suppresses speckle noise and accurately localizes changed
areas, demonstrating the effectiveness of global and local feature
fusion using GLCFF. Moreover, the introduction of the focal loss
function attenuates the impact of the unbalanced samples and
improves the detection accuracy. During the above experiments,
we also find some weaknesses in the proposed method. First,

DA-GLN can not effectively detect some nonnegligible changed
areas with complex scenarios or similar scattering characteris-
tics. Second, our method has higher computational complexity
than other CNN-based methods owing to the integration of PiT.
In future research, we will try to utilize model compression
methods to accurately detect changes in a shortertime.

V. CONCLUSION

In this article, we develop a novel unsupervised method based
on dual attention to tackle the PolSAR image CD tasks, which
can suppress speckle noise and improve the discrimination of
change-aware features. In the proposed method, the developed
DA-GLN extracts local-global features by DRSN and PiT, re-
spectively. The designed GLCFF strategy constructs a feature
constraint loss function to remove redundancy and exploits
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the complementarity between global and local features, thus
obtaining compact and nonredundant fusion features. The focal
loss function is introduced as part of the proposed FC-F loss
function to solve the sample imbalance problem. Ablation and
comparison experiments are tested using five real spaceborne
PolSAR datasets. Concretely, the ablation study demonstrates
the effectiveness of introducing PiT, GLCFF, and focal loss func-
tion. Furthermore, the visual results of comparison experiments
indicate that our dual attention-based approach can effectively
improve localization accuracy and efficiently suppress noise.
Quantitatively, our method can achieve up to 98.51% accuracy
on four datasets, which is higher than other related state-of-the-
art methods.

In future work, rich polarization information could be further
utilized to implement semantic CD (SCD) based on the exist-
ing binary CD (BCD) results. Compared with BCD, SCD can
provide richer land transition information.
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