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Near-Field Geoacoustic Inversion Using Bottom
Reflection Signals via Self-Attention Mechanism
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Abstract—Geoacoustic inversion typically involves the collection
of far-field underwater acoustic data to obtain seabed geoacoustic
parameters using empirical formulas and matched field inversion
(MFI) techniques. However, acoustic data propagated over long
distances can introduce inevitable errors in inversion results, and
traditional MFI techniques suffer from low computational effi-
ciency. Although deep learning technologies have been applied to
geoacoustic inversion, conventional deep neural network (DNN)
models struggle to capture the long- and short-term dependencies
in bottom reflection data, leading to suboptimal inversion accuracy.
These issues present challenges in rapidly and accurately acquir-
ing geoacoustic parameters over large areas. To address this, we
propose a near-field bottom reflection signal collection method,
collecting bottom reflection signals over a wide range of grazing
angles by drifting. Utilizing the characteristics of near-field sound
propagation, we constructed the bottom reflection coefficient se-
quence dataset using the wavenumber integration method. We then
introduce a novel deep learning model, self-attention geoacoustics,
based on multihead self-attention mechanisms, which improves
inversion accuracy. In addition, we propose an adaptive-weight
multitask learning training strategy, significantly enhancing the
prediction accuracy of sound attenuation. Experimental results
demonstrate that our method outperforms conventional geoacous-
tic inversion methods based on MFI and DNNs in terms of efficiency
and accuracy, proving the superiority of our approach.

Index Terms—Geoacoustic inversion, near-field bottom
reflection signal, self-attention mechanism, wavenumber
integration.

I. INTRODUCTION

TWO primary methods exist for acquiring seabed geoacous-
tic parameters (typically refers to sound speed, density,

and sound attenuation coefficient): experimental measurement
(including in-situ measurements and sample measurements) and
geoacoustic inversion. Experimental measurement methods are
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costly and are not suitable for obtaining geoacoustic parameters
over vast areas, and they encounter challenges when acquiring
low-frequency acoustic properties [1]. In contrast, geoacoustic
inversion infers the geoacoustic parameters of a target marine
area from acoustic signals, offering a rapid and economical
method of acquisition.

Geoacoustic inversion typically involves receiving bottom
reflection signals at considerable distances (ranging from a few
miles to several tens of miles). While the far-field approach
facilitates the acquisition of geoacoustic parameters over a large
area, the signals are susceptible to the complex marine environ-
ment, resulting in data that contain a significant amount of noise.
Moreover, obtaining bottom reflection data at larger grazing
angles becomes challenging at long distances, negatively im-
pacting inversion accuracy. Therefore, collecting acoustic data
from the far field is not conducive to improving the accuracy
of geoacoustic inversion, making inversion based on near-field
acoustic data a potential solution.

After collecting actual bottom reflection data, empirical for-
mulas and matched field inversion (MFI) are generally used to
estimate the geoacoustic parameters of the target sea area [2], [3].
The empirical formulas are derived from a plethora of measured
data, encapsulating statistical relationships among different sed-
iment property parameters. However, empirical formulas lack
generalization ability, only applicable to limited maritime areas.
MFI iteratively optimizes based on a forward model of the
sound field, seeking geoacoustic parameters that best match
the measured acoustic signals. But MFI can invert geoacoustic
parameters from only one set of bottom reflection data at a time,
preventing rapid acquisition of geoacoustic parameters over a
large area and failing to account for the influence of noise.

With the rapid development of deep learning, it has also
yielded promising results in the field of ocean acoustics [4], [5].
Geoacoustic inversion based on deep learning [5], [6], [7] can be
conceptualized as a multiparameter nonlinear regression prob-
lem. The goal of training deep neural networks (DNNs) is for the
model to learn the mapping relationship from acoustic signals
to geoacoustic parameters, thereby enabling the prediction of
geoacoustic parameters based on the input of measured acoustic
signals. Compared to typical approaches, DNN models possess
superior efficiency and generalization capabilities, paving the
way for rapid acquisition of geoacoustic parameters across
extensive regions. However, we found that conventional DNNs
cannot effectively capture the long- and short-term dependencies
in bottom reflection data, resulting in limitations in accuracy.
In addition, when predicting multiple geoacoustic parameters
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simultaneously, the significant difference in sensitivity of differ-
ent geoacoustic parameters to bottom reflection data may lead to
substantial errors in the inversion results for specific parameters.

To address the aforementioned challenges in the field of
geoacoustic inversion, it is necessary to tackle several key
issues, including optimizing seabed reflection data collection
methods, constructing simulation datasets that accurately reflect
geoacoustic features, developing more effective DNN model
architectures, and devising training strategies that efficiently
balance the variability among different parameters.

Effective data collection methods are foundational for precise
geoacoustic inversion. Geoacoustic inversion research typically
collects far-field geoacoustic data, which introduces obvious
errors and is not conducive to accurately obtaining local geoa-
coustic parameters [8], [9], [10]. Moreover, geoacoustic inver-
sion studies usually employ fixed-position sound sources and
receiver arrays, making it difficult to receive bottom reflection
signals across a wide range of grazing angles. To solve these data
collection issues, we propose a method for drifting collection
of near-field bottom reflection data (NBRC). It utilizes drifting
sound sources and fixed receiver arrays to acquire bottom re-
flection data. By continuously changing the horizontal distance
between the sound source and receiver elements, we collected
bottom reflection data at a wide range of grazing angles, simulta-
neously improving the signal-to-noise ratio of the measurement
signals.

To enhance the accuracy of geoacoustic inversion, it is neces-
sary to establish a dataset that accurately reflects the character-
istics of geoacoustic features. Due to constraints in real marine
experiments, geoacoustic inversion typically relies on a forward
model for dataset construction rather than extensive marine data
collection. Geoacoustic inversion research commonly utilizes
the normal mode method [2], [3], [5] for forward modeling,
but this approach neglects the effect of tangential integration,
leading to errors when calculating the sound field at close
distances. To capture precise near-field geoacoustic features,
we employ the wavenumber integration [11], [12] method to
compute bottom reflection coefficient (BRC) at varying grazing
angles. In shallow water environments, sound waves undergo
multiple reflections off the seabed, carrying substantial informa-
tion about the geoacoustic parameters of the seabed [2]. Thus,
a certain relationship exists between the BRC sequences and
the geoacoustic parameters of the seabed. From these BRC
sequences derived from different geoacoustic parameters, we
create the BRC sequence (BRCS) dataset, which is the founda-
tion for training a DNN model.

Besides dataset construction, it is also crucial to choose an
appropriate DNN model. For geoacoustic inversion problems,
multilayer perceptron (MLP) is a common choice [5]. It updates
model weight parameters using the backpropagation (BP) algo-
rithm [13], enabling the DNN model to learn the representation
of transforming acoustic signals into geoacoustic parameters.
However, due to the relatively simple structure of MLP, there
is potential to lose contextual information within the BRC
sequence, diminishing the accuracy of geoacoustic inversion.
Convolutional neural networks (CNNs) are also employed in

geoacoustic inversion [6]. Their convolutional kernels and pool-
ing layers can reduce data dimensionality and extract features
from complex data such as images. However, as the BRC se-
quences in this study, their inherent data structure is relatively
simple, making CNNs not ideal for processing them. There-
fore, we introduce a novel geoacoustic inversion model named
self-attention geoacoustics (SAG). SAG utilizes the transformer
architecture [14], which has attracted a lot of attention in recent
years for its excellent performance in various fields [15], [16],
[17]. The multihead self-attention (MHSA) mechanism in SAG
captures both short-term and long-term dependencies among the
elements in the input sequence [14], enhancing the prediction
accuracy of geoacoustic inversion.

BRCs exhibit significant variations in sensitivity to different
geoacoustic parameters [18]. Through numerical simulations,
we observed that the influence of sound attenuation coefficients
on BRCs is relatively minimal, resulting in a noticeably lower
prediction accuracy for sound attenuation than that for sound
speed and density. Therefore, we adopted an adaptive-weight
multitask learning (AW-MTL) strategy, which notably enhances
the prediction accuracy for sound attenuation coefficients. The
AW-MTL strategy treats the prediction of different geoacoustic
parameters as distinct tasks, assigning unique weight coeffi-
cients to each task. During the training process, these adaptive
weights, along with model weights, are optimized via the BP
algorithm, dynamically adjusting the significance of individual
tasks.

In this study, we propose a near-field geoacoustic inversion
approach based on self-attention mechanism, which includes
the following procedures. We first introduce the NBRC method,
which acquires high signal-to-noise ratio bottom reflection data
across a wide range of grazing angles through drifting methods.
Then, based on the wavenumber integration method, we con-
struct the BRCS dataset that accurately reflects near-field geoa-
coustic characteristics, supporting the training of DNN models.
Since the inversion accuracy of conventional DNN models is
limited, especially the precision of sound attenuation coeffi-
cients. Thus, we propose the SAG model based on self-attention
mechanisms, capable of capturing global and local features
within the BRC sequence, significantly improving the prediction
accuracy of geoacoustic parameters. In addition, considering the
sensitivity differences among various parameters, we introduce
an AW-MTL strategy, significantly enhancing the prediction
accuracy of sound attenuation coefficients.

The rest of this article is organized as follows. First, we
introduced our NBRC method for collecting near-field bot-
tom reflection data. Then, we elucidated the forward modeling
method employed and the establishment of the BRCS dataset.

Following this, we provided a detailed description of the
SAG model structure and the AW-MTL training strategy. In
numerical experiments, we compared the performance of the
SAG with MLP and MFI on the BRCS dataset and demonstrated
the robustness of SAG against noisy data. Finally, we employed
the SAG model to predict the geoacoustic parameters of the
actual marine area and discussed some results from visualizing
the self-attention weights of SAG.
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Fig. 1. Near-flied geoacoustic inversion using BRC sequences based on deep learning.

The visualization of self-attention weights demonstrates that
our inversion method can capture long- and short-term depen-
dencies in bottom reflection data, showcasing its advantages
over traditional inversion methods and DNN models. Therefore,
our approach offers the possibility of rapidly and accurately
obtaining geoacoustic parameters over large areas based on
near-field bottom reflection data.

II. METHOD

Geoacoustic inversion infers geoacoustic parameters from ob-
served acoustic signals, essentially solving for the inverse func-
tion of the forward geoacoustic model. For deep learning-based
geoacoustic inversion, the crux lies in iteratively optimizing the
parameters of DNN models using the BP algorithm, eventually
employing the DNN to substitute the actual geoacoustic model’s
inverse function, that is, the inversion model. Specifically, the ob-
jective is to identify an optimal inversion model that minimizes
the discrepancy between the actual values and the predicted
values of the geoacoustic parameters. The optimization of the
DNN model parameters can be expressed as

arggmin J
(
FM(g, s;xr) ,d

obs (xr)
)

(1)

where J is commonly referred to as the objective function or
loss function, FM represents the forward modeling operator, g
is the predicted value of geoacoustic parameters, s is the source
function, xr is the positions of the receivers, and dobs is the
observed acoustic signals [19].

The essence of geoacoustic inversion based on deep learning
is to train a DNN model to recognize geoacoustic features within
acoustic signals. To achieve this, we need to accomplish three
tasks. First, we need to collect actual bottom reflection signals
that have a high signal-to-noise ratio and contain sufficient
geoacoustic features. Second, we establish a dataset rich in
geoacoustic features. Third, we identify an effective DNN model
and train it to extensively learn these geoacoustic features. Fig. 1

Fig. 2. Schematic diagram of NBRC.

illustrates our approach for near-field geoacoustic inversion
based on deep learning.

Furthermore, the actual marine environment is complex and
noisy. There is a notable difference between simulated and actual
BRC sequences. Training the DNN model solely on simulated
data results in errors in predicting actual geoacoustic parame-
ters. Hence, we also conduct noise tests to assess the model’s
performance on noisy BRC data.

A. NBRC Method

Our near-field BRC acquisition method employs a vertical
receiver array consisting of 96 units, along with a low-frequency
sound source mounted beneath the transmission ship, as illus-
trated in Fig. 2, where θ1 is the upper limit of grazing angles
and θ1 is the lower limit of grazing angles. The bottom end of
the vertical receiving array is anchored to the seabed, whereas
the top is subjected to upward pulling forces by floats, thereby
maintaining an approximately vertical orientation. Prior to the
collection of bottom reflection data, the engine is first started to
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Fig. 3. Grazing angle range of the bottom reflected signal.

move the vessel near the top of the vertical receiving array. Then,
the engine is shut down, and as the ship begins to drift, the sound
source is activated, and the vertical receiving array collects the
bottom reflection signals. Shutting OFF the engine avoids noise
generation, thus enhancing the quality of the collected data.
As the ship drifts, the horizontal distance between the sound
source and the elements of the vertical receiving array changes,
leading to variations in the grazing angle of the bottom reflection
signals. For instance, at a water depth of 50 m, the range of
grazing angles for the bottom reflection signals changes with the
horizontal distance between the sound source and the receiving
array, as shown in Fig. 3. Consequently, our data collection
method allows for the simple and efficient observation of a wide
range of grazing angles for bottom reflection signals, while also
improving the signal-to-noise ratio.

An example of the raw acoustic signals collected during the
marine experiment is shown in Fig. 4(a), which displays the
multipath arrival peaks of a single pulse emitted by the sound
source as received by receiver number 19 at a certain moment.
Fig. 4(b) presents the actual signal after high-frequency noise
has been removed via wavelet transformation.

According to the experimental records of the signals in Fig. 4,
the depth of the sound source Sd was approximately 30 meters,
the depth of receiver Rd was 32.5 meters, and the horizontal
distance between the receiver and the sound source Rr was
23.5 meters. The multipath arrival structure can be computed and
simulated using the ray-based Bellhop program [20], as shown in
Fig. 5. By comparing Figs. 4 and 5, the different arrival paths in
the actual acoustic signal can be distinctly identified, allowing
for the extraction of the amplitudes of the direct and bottom-
reflected waves.

The actual BRCs were calculated as follows:

R (θ) =
PrDr

PdDd
(2)

wherePr is the intensity of the bottom reflection wave,Pd is the
intensity of the direct wave, Dr represents the path length of the
bottom reflection wave, andDd represents the path length of the
direct wave. Pr and Pd can be represented by the amplitudes of
the actual signal, whereas Dr, Dd and the grazing angle θ can
be calculated using simple geometric relationships. Based on the

Fig. 4. Example of actual acoustic signals collected in marine experiments.
(a) Raw signal. (b) Low-pass-filtered signal by wavelet transform.

Fig. 5. Multiway arrival structure simulated by ray model. The horizontal
axis represents the arrival time of sound waves in each path. The vertical axis
represents the relative amplitude calculated by Bellhop.

BRCs at different grazing angles, we obtained the actual bottom
reflection curve of the experimental area, as shown in Fig. 6.

B. BRCS Dataset

The wavenumber integration method is a numerical computa-
tion approach designed for horizontally layered media models,
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Fig. 6. Actual BRC curve of a certain test area.

Fig. 7. Horizontally layered media model.

applicable in environments that are invariant with distance, with
layer properties solely dependent on depth, as depicted in Fig. 7.

In cylindrical coordinates, if horizontal layering is disre-
garded, the sound field satisfies the Helmholtz equation

[
�2 + k2m (z)

]
ψm (r, z) = fs (z, ω)

δ (r)

2πr
(3)

where fs(z, ω) represents the source function, and km(z) de-
notes the wavenumber of the medium in the mth layer

km (z) =
ω

c (z)
. (4)

For layers devoid of sound sources, fs(z, ω) equals zero.
The essence of the wavenumber integration method is to apply
the Hankel transform to (3), transforming the original four-
dimensional partial differential equation into a series of ordinary
differential equations in terms of depth coordinates[

d2

dz2
− [

k2r − k2m (z)
]]
ψm (kr, z) =

fs (z)

2π
(5)

where the horizontal wavenumber kr represents the component
of the wavenumber km(z) in the horizontal direction within
the mth layer. Equation (5) is then analytically solved within
each layer, followed by the computation of the inverse integral
transform to determine displacements and stresses.

Unlike the normal mode method [3] typically employed in
forward modeling, the wavenumber integration method directly
performs numerical integration to solve for the spectral integral.

Fig. 8. BRC curve in numerical simulation.

This approach has the advantage of not neglecting the influence
of branch cut integrals, thereby yielding more accurate calcula-
tions of the near-field sound field compared to the normal mode
method.

In this study, we treat sound waves as plane waves and
obtain equations related to depth for several discrete horizontal
wavenumbers at selected receiver depths. Numerical calcula-
tions are then performed on the sound field integral expressions
to derive the relationships between sound field, distance, and
depth. For sound waves incident at different grazing angles θ,
the complex amplitude of the reflected waves can be calculated,
yielding the BRC for that grazing angle as

R (θ) =
A− (kmcosθ)
A+ (kmcosθ)

(6)

whereA+(kmcosθ) andA−(kmcosθ) respectively represent the
complex amplitudes of the incident and reflected waves at the
interface of the mth layer.

In actual marine experiments, it is typically possible to acquire
BRCs only within a certain range of grazing angles [θ1, θ2]. By
uniformly selecting several angles within [θ1, θ2], and subse-
quently arranging the reflection coefficients of all angles in order,
a BRC sequence is obtained. For each combination of geoa-
coustic parameters including sound speed(v), density(ρ), and
attenuation coefficient (α), the corresponding BRC sequences
can be calculated, with Fig. 8 displaying a BRC curve obtained
through numerical simulation.

Deep learning-based geoacoustic inversion essentially in-
volves teaching the model the relationship between input vector
X(x1, x2, . . . , xi) and output vector Y (y1, y2, . . . , yj). Conse-
quently, we treat BRC sequences as the X vector and geoacous-
tic parameters as the Y vector. The dimensions of X and the
parameter range of Y are then determined based on the needs
of the specific problem. All corresponding [X, Y] pairs together
constitute the BRCS dataset.
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Fig. 9. Architecture of SAG.

C. SAG Model Architecture

Our proposed DNN model SAG consists of three main com-
ponents: the embedding layer, MHSA encoder, and regression
decoder, as illustrated in Fig. 9. The embedding layer is designed
to map each element of the BRC sequence to a token vector with
a dimension of dimE . The MHSA encoder computes attention
scores between all token vectors, capturing a global feature
vector that represents the entire sequence. This feature vector
is then fed into the regression decoder, which maps the global
feature to the space of geoacoustic parameters. Finally, the
output of the regression decoder is the predicted values of the
three geoacoustic parameters.

In the embedding layer, a fully connected (FC) layer maps
each element of the input BRC sequence to an embedding
vector of length dimE , a process referred to as input embedding.
Given that the MHSA mechanism inherently does not consider
the order within the sequence, it is imperative to incorporate
position embeddings within the embedding layer. This enables
the model to capture the positional information of elements in the
BRC sequence, which corresponds to the grazing angle of each
reflection coefficient. The position embeddings are generated
using a sine and cosine embedding function [14]

PE (pos, 2i) = sin

(
pos

10000
2i

dimE

)
(7)

Fig. 10. (a) MHSA encoder block structure. (b) Regression decoder structure.

PE (pos, 2i+ 1) = cos

(
pos

10000
2i

dimE

)
(8)

where pos is the position of a specific element within the BRC
sequence and i is the dimension of the embedding vector. Each
element thus obtains a position vector of length dimE . For every
element in the BRC sequence, its embedding vector is summed
with its position vector, resulting in a token vector of length
dimE . Through this process, each element of the BRC sequence
is transformed into a token vector, encapsulating information
about both the reflection coefficient and the grazing angle.
The original BRC sequence of dimension L, upon processing
through the embedding layer, yields L token vectors each of
dimE dimensions. We initialize a feature token vector of the
same dimE dimensions randomly, analogous to the CLS token
in Bert [16].

The MHSA encoder is comprised of multiple identical MHSA
encoder blocks stacked together. The structure of each MHSA
encoder block is depicted in Fig. 10(a). The MHSA mechanism
multiplies all token vectors by the learnable transformation
matricesWQ,WK, andWV to produce theQ (query),K (key),
and V (value) matrices, respectively. The attention weights are
then computed using the Softmax function, and this calculation
process can be described as

Attention (Qh,Kh,Vh) = Softmax

(
QhK

T
h√

dimE

)
V (9)

where variable h denotes the attention head, which serves to
divide the token vector into different parts, each undergoing a
distinct transformation with its own set of Wh

Q, Wh
K, and Wh

V

matrices. This arrangement enables the application of diverse
linear transformations to the token vectors, yielding richer repre-
sentations. To prevent issues of gradient vanishing and exploding
gradients, residual connections are employed within the MHSA
encoder blocks. In addition, dropout layers are utilized in the
MLP to mitigate the risk of overfitting.

After processing through multiple MHSA encoder blocks,
all token vectors encapsulate rich dependency relations with
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other tokens. The feature token, having computed attention
weights with every element of the input sequence, incorporates
information from all elements of the original BRC sequence, as
well as their interdependencies. Consequently, we use the feature
token as the global feature vector of the input BRC sequence for
subsequent geoacoustic parameter prediction.

The regression decoder is tasked with learning the nonlinear
mapping relationship between the feature token vector and the
three geoacoustic parameters. Its architecture comprises two FC
layers, an activation function layer, and a dropout layer, as shown
in Fig. 10(b). We utilize the Gaussian error linear unit [21] as the
activation function to enhance the model’s nonlinear represen-
tational capacity and employ dropout to prevent overfitting. The
input to the regression decoder is the global feature vector, and its
output is the predicted values for the corresponding geoacoustic
parameters.

D. AW-MTL Strategy

In addition to the dataset and model, setting an appropriate
training objective, often called a loss function, is also crucial.
Geoacoustic inversion requires the model to predict multiple
parameters simultaneously. During the training process, it is
common practice to add the errors of different parameters to-
gether to form the total loss, with mean squared error (MSE),
root mean squared error, and mean absolute error (MAE) being
commonly used loss functions. In this study, we adopt MSE to
calculate the loss as

Los sMSE =
1

k

k∑
i=1

(yi
pred − yitrue)

2
(10)

where k is the number of geoacoustic parameters, yi
pred is the

predict value of the ith geoacoustic parameter, and yitrue is the
true value of the ith geoacoustic parameter.

However, different geoacoustic parameters usually exhibit
varying influence on the same acoustic signal, resulting in
noticeable discrepancies in the model’s predictive accuracy for
different parameters. To address this variability, we treat the pre-
diction of multiple parameters as a multitask learning problem,
considering the prediction of each parameter as a subtask. By
introducing a weight coefficient for each subtask, the model’s
gradient updates will be more inclined towards tasks with larger
weights [22]. The weight coefficients for all tasks can be set as
fixed values or variable parameters

Los svari =
1

k

k∑
i=1

wi(y
i
pred − yitrue)

2
+ λ ·R (w) (11)

where wi is the variable weight of the kth geoacoustic param-
eter and R(w) serves as a penalty term for the task weights,
utilized for regularization purposes to prevent the task weights
from diminishing too small. λ is the regularization parameter,
dictating the strength of regularization. The task weights wi in
(11) are learnable parameters, capable of evolving throughout
the training process.

Fig. 11. Discrepancies exist in the sensitivity of different geoacoustic param-
eters to the simulated BRC curve. (a) ρ = 1.8 g/cm2 and α = 0.5 dB/λ. (b) v
= 1600 m/s and α = 0.5 dB/λ. (c) v = 1600 m/s and ρ = 1.8 g/cm2.

In our study, numerical simulations have revealed that sound
attenuation has a noticeably weaker influence on BRCs com-
pared to sound speed and density, as depicted in Fig. 11. This
disparity between parameters poses challenges for predicting
sound attenuation. To significantly enhance the model’s focus
on sound attenuation during the training process, we propose a
multitask loss function incorporating adaptive weights

Loss AW−MTL =

k∑
i=1

μ
ηi

i (yi
pred − yitrue)

2
+ λ ·R (μ,η) (12)

where the uncertainty parameter μ and the exponent parameter
η are adaptive parameters that can be dynamically adjusted, and
the equation also includes a regularization term. Throughout the
training process, all adaptive parameters are updated iteratively
alongside the model parameters.

To ensure the stability of the training process, we have also
employed the Softplus activation function to constrain the values
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Fig. 12. Pseudo-code of the AW-MTL training strategy.

of the adaptive parameters as⎧⎨
⎩

μout = Softplus (μin) + b1
ηout = Softplus (ηin) + b2

Softplus (xout) = log (1 + exin)
(13)

where μin and ηin are the original adaptive parameters,
μout and ηout are the activated adaptive parameters, and b1
and b2 are bias terms. The Softplus function yields outputs
close to zero for negative inputs, providing a smoother transition
compared to the commonly used ReLU activation function. By
applying (13), we guarantee that the values of the adaptive
parameters μ and η remain consistently greater than b1 and b2.
This ensures that the optimization of the adaptive parameters
stays within a controllable range during the training process.
We adopt an adaptive moment estimation (Adam) optimizer
to update both model weights and adaptive weights. Fig. 12
illustrates the pseudo-code for our AW-MTL training strategy.

III. NUMERICAL EXAMPLES

In this study, actual near-flied bottom reflection data was
collected in the South Yellow Sea. The test area is located
roughly 210 km southeast of Qingdao, in the central part of the
Yellow Sea continental shelf. The seabed of our data collection
site is composed primarily of clayey sand. The water depth in
the experimental area ranges from approximately 40–50 m, and
the seabed terrain is relatively flat.

In our numerical examples, the BRC sequences in the BRCS
dataset also encompass the BRCs for 51 grazing angles ranging
from 10° to 60°, consistent with the actual measured data.
The source frequency is set to 500 Hz, with the sound speed
and seawater density in the water being 1500 m/s and 1000
kg/cm3, respectively. Subsequently, we determined the approx-
imate range of geoacoustic parameters within the BRCS dataset
by referring to the results of MFI and experimental measure-
ment data from the same sea area [23]. In addition, based on
empirical formulas, a positive correlation exists among the three
geoacoustic parameters [24].

To ensure that the training data reflect this pattern, we di-
vided the BRCS dataset into three parts: high sound speed
zone, medium sound speed zone, and low sound speed zone, as

TABLE I
BRCS DATASET SETTINGS

TABLE II
NUMERICAL EXPERIMENTS CONFIGURATIONS

shown in Table I. Within each zone, we uniformly sampled the
geoacoustic parameters and calculated the corresponding BRC
sequences using the wavenumber integration method, followed
by the removal of some duplicate data. In this manner, we
obtained a total of 24 400 samples. Each sample [X, Y] includes
a BRC sequence (x1,x2, . . . ,x51) and the corresponding three
geoacoustic parameters (y1,y2,y3). All of the [X, Y] samples
constitute the BRCS dataset used in this example. The numerical
experiments in this study were conducted under the same hard-
ware and software configurations, as illustrated in Table II.

A. Inversion Results of SAG

We utilize the AW-MTL strategy to train SAG on the BRCS
dataset. Initially, all the geoacoustic parameters in the dataset
were subjected to min-max normalization, ensuring that their
values ranged between 0 and 1. This normalization process
aimed to prevent the disparities in the numerical values of
geoacoustic parameters from impacting the training process.
During the training process, we observed that a larger batch
size could improve hardware utilization efficiency, but it makes
gradient updates more challenging, leading to a slower model
convergence rate. Conversely, a smaller batch size facilitated
quicker gradient updates but failed to fully utilize the computa-
tional resources. After testing, we set the batch size to 300 and
the number of training epochs to 500. The initial learning rate is
set at 0.001, and the Adam optimizer is used for optimization.

The BRCS dataset is randomly divided into training, vali-
dation, and test sets in certain proportions. In each epoch, the
model is trained on the training set, followed by validation
on the validation set, where the validation loss is calculated.
After training, the model weight corresponding to the minimum
validation loss is selected as the final model weight, and the
performance of the final model is subsequently tested on the test
set. This approach helps to prevent overfitting and enhances the
model’s generalization ability.

We test the performance of SAG models with varying numbers
of MHSA blocks (N ), MSHA heads (H), and embedding vec-
tor dimensions (dimE) across the entire test set. Experimental
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TABLE III
INVERSION PERFORMANCE OF SAG VARYING WITH THE STRUCTURAL

HYPERPARAMETERS

results reveal that the structural hyperparameters of the SAG
model significantly influence the inversion accuracy. The MAE
between the predicted and true geoacoustic parameters for all
samples of SAG with different structural hyperparameters is
presented in Table III. The inversion accuracy first increased and
then decreased with the rise ofN , peaking atN = 5. An increase
in H improved the model’s prediction accuracy for different
geoacoustic parameters. However, whenH increased from 12 to
16, the model’s performance barely improved and even slightly
declined, indicating that more MSHA heads do not always result
in a better model. In terms of dimE , the inversion accuracy was
highest when it was set to 192; both smaller and larger dimE

values were detrimental to the model’s performance.

B. Comparison of Inversion Models

Unlike DNN models, MFI requires the constant invocation of
the forward model to assess the fitness of the inversion result,
performing the inversion on one BRC sequence at a time. In this
study, we adopt the genetic algorithm (GA) for MFI. GA is a
search heuristic that simulates the process of natural selection.
Drawing inspiration from the mechanics of natural genetics
and Darwin’s theory of evolution, the algorithm is designed to
find solutions to optimization and search problems. Traditional
optimization techniques can get trapped in local minima, but

TABLE IV
COMPARISON OF DIFFERENT INVERSION MODELS

TABLE V
ADAPTIVE PARAMETERS INITIALIZATION

TABLE VI
COMPARISON OF DIFFERENT TRAINING STRATEGY

GAs, with their inherent randomness, can search the space more
thoroughly and find global or near-global optima [23].

To compare the inversion accuracy of different inversion
models, we randomly selected a subset of samples from the
test set and conducted inversions using MFI, MLP, and SAG.
Subsequently, we calculated the average relative error (ARE)
for each parameter, with the results presented in Table IV. The
results clearly demonstrate that the inversions from DNN models
outperform those from MFI. Specifically, our proposed SAG
model exhibits higher inversion accuracy than MLP, showcasing
the superiority of the MSHA mechanism.

C. Superiority of AW-MTL Strategy

We employ the AW-MTL strategy to train the SAG model,
aiming to balance the variability in prediction difficulty across
different parameters. Before the commencement of training, the
uncertainty parameter μ, exponent parameter η, and their bias
terms in (13) are initialized as shown in Table V. During the
training process, the Adam optimizer is utilized to simultane-
ously optimize the adaptive parameters μ and η, ensuring that
the value of μ > 1, and the value of η > 0.1.

In the early stages of training, the prediction accuracy for
sound speed and density rapidly improved, leading to a decrease
in their adaptive parameters. Consequently, the direction of the
total loss gradient descent gradually shifted toward minimizing
the error in sound attenuation. We trained the same SAG model
using both the AW-MTL strategy, direct MSE loss, and the
variable MSE loss (VMSE) in (11), the inversion results are
presented in Table VI. The AW-MTL strategy, with its adaptive
parameters dynamically adjusting the weights of different tasks,
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Fig. 13. Loss curve of SAG trained with AW-MTL strategy.

made the training smoother and significantly enhanced the in-
version accuracy for sound attenuation. We showcased the loss
curve of the model trained with the AW-MTL strategy when N
= 5, H = 12, and di mE= 192 in Fig. 13.

D. Robustness Against Noisy Data

The marine environment is replete with substantial noise.
Even with denoising procedures applied to the original obser-
vational data, it is impossible to fully eliminate the effects of
noise. Thus, it is necessary to introduce noise into the dataset
used for training the SAG model to examine the model’s ro-
bustness to noisy data. The most natural approach would be
to inject noise directly into the raw acoustic signals collected
by the receivers, as this carries clear physical implications.
However, training DNN models requires extensive datasets;
in this study, we utilized a dataset of 24 400 samples, each
containing an independent BRC curve. Given the limitations of
data collection in marine experiments and the data processing
workload involved in converting raw acoustic signals to BRC
curves, it is quite challenging to directly add noise to the raw
acoustic data in this research. In Section II-B, we introduced
the wavenumber integration method used for forward modeling,
which can rapidly compute simulated BRC sequences for a set
marine bottom environment, making the construction of a BRCS
dataset feasible. Therefore, we opted to introduce Gaussian noise
at varying signal-to-noise ratio (SNR) into the BRC sequences
within the BRCS dataset. We regard reflection coefficients as
the signal, and the SNR can be represented as follows:

SNR = 10 log10
Psignal

Pnoise
= 10log10

1
L

∑L
i = 1R(i)

2

Pnoise
(14)

wherePsignal andPnoise respectively denote the average power of
the signal and noise. Here,R(i) represents the ith element in the
BRC sequence, and L is the length of the sequence. Therefore,
the introduction of noise into the nth element R(n) of the BRC
sequence can be expressed as

Rnoise (n) = R (n) +Noise ·
√
Pnoise

TABLE VII
SAG PERFORMANCE ON NOISY DATA WITH DIFFERENT SNR

TABLE VIII
ACTUAL INVERSION RESULTS OF DIFFERENT SAG MODELS

= R (n) +Noise ·
√

1
L

∑L
i = 1R(i)

2

10
SNR
10

. (15)

Rnoise(n) is the element after adding noise, Noise is a ran-
dom variable with Noise ∼𝒩(0, 1). The BRC sequence after
adding noise was used for training and testing of the SAG model.
We demonstrated the MAE of the SAG model’s inversion results
under various SNR conditions in Table VII. It can be observed
that even under low to medium SNR conditions, the results from
the SAG model remain relatively accurate. This underscores the
robustness of our model, highlighting its applicability to real
BRC sequences containing a certain level of noise.

E. Actual Inversion Results

In this study, although the actual reflection data has been
stripped of high-frequency noise, it may still contain a small
amount of low-frequency noise. Therefore, we conducted in-
versions using models with SNR = 20, and SNR = 10, SNR
= 5, respectively, and the prediction results are displayed in
Table VIII.

It can be observed that the results for sound speed and density
are relatively close, while there is a slightly larger difference in
sound attenuation. Referring to the experimental measurement
and MFI results in the same sea area [23], the SAG model
provides fairly accurate results for sound speed and density. In
addition, considering that in the actual marine environment, a
difference of about 0.1 in sound attenuation has a negligible im-
pact on the BRC. Therefore, our proposed SAG model performs
excellently not only on simulated datasets but is also effective
for geoacoustic inversion of actual measurement data. In Fig. 14,
we present the BRC curves calculated using the inversion results
and compare them to the actual BRC curves.
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Fig. 14. BRC curve of inversion results by SAG trained with different SNR.

IV. DISCUSSION

A. Performance of SAG and AW-MTL

Through numerical experiments, we have confirmed the su-
periority of the SAG model over MLP. In addition, the AW-
MTL strategy facilitates the model in dynamically adjusting the
importance of different tasks, notably enhancing the prediction
accuracy for sound attenuation compared to other loss functions.
We will now delve into the reasons for the excellent performance
of SAG and AW-MTL in near-field geoacoustic inversion using
BRC sequences.

During geoacoustic inversion, the MLP model directly learns
the mapping relationship between BRC sequences and geoa-
coustic parameters through its multilayered network structure.
In contrast, the SAG model initially utilizes the embedding layer
and MHSA encoder depicted in Fig. 9 to extract the global
feature representing the original BRC, subsequently learning the
relationship between this global feature and the geoacoustic pa-
rameters. This distinction represents the core difference between
MLP and SAG. Initially, the SAG model transforms each ele-
ment in the original BRC sequence into a token vector of length
dimE through the embedding layer. This process elevates the
data’s dimensionality, granting the model access to a richer set of
information. We then input the sequence of all token vectors into
the MHSA encoder. Unlike the convolution window in CNN, the
MHSA mechanism can compute relationships between any two
elements in a sequence while simultaneously extracting global
and local features.

After processing through the MHSA encoder, the feature
token encapsulates information from all elements in the original
BRC sequence and their interrelationships. The commendable
performance of SAG validates that performing geoacoustic in-
version using global features extracted from the original BRC
sequences through the MHSA mechanism can significantly im-
prove prediction accuracy. This outcome underscores the effi-
cacy of the MHSA mechanism in extracting sequential features.

Compared to MSE and VMSE loss functions, our proposed
AW-MTL views the prediction of each geoacoustic parameter as
a distinct task, flexibly adjusting weights for different parameters
during training. As depicted in Fig. 12, the AW-MTL strategy
considers both adaptive parameters and DNN model parameters

as aspects of optimization updates, distinguishing it entirely
from common loss functions. For the uncertainty parameter μ
and the exponent parameter η of sound attenuation, we assign
relatively large initial values. At the beginning of training, the
model is more likely to focus on the errors of sound speed and
density, rapidly improving the predictive accuracy for these two
parameters. As training progresses, the direction of gradient
updates gradually shifts towards minimizing the regularization
term for sound attenuation, resulting in an increased weight for
sound attenuation and thereby directing more of the model’s
attention to minimizing its error. By adopting the AW-MTL
strategy, the model can focus on different tasks at various stages
of training, ultimately achieving high accuracy for all tasks.
In addition, the use of the uncertainty parameter μ and the
exponent parameter η allows for more flexibility in the direction
of gradient updates, smoothing the training process.

B. Analysis of Self-Attention Weights

The core of MSHA is to calculate the self-attention weights
of the input sequence, that is, the Attention(Qh,Kh,Vh) in
(9). The self-attention weights of different elements in the
sequence reflect the interdependencies among elements within
the sequence. During training, different Heads in MSHA have
different WQ, WK, and WV transformation representations,
resulting in different self-attention weights. Concatenating the
outputs of each head together yields the output of the MSHA
block, allowing the model to learn richer attention representa-
tions.

We input actual BRC sequences into SAG and showcase
the self-attention weight maps of the SAG model after Soft-
max function processing in Fig. 15. Each pixel represents the
attention weight of one element in the sequence to another,
with larger values indicating more concentrated attention. In
SAG, each MSHA block at different layers generated different
attention weights, indicating that different MSHA blocks in the
model focused on different interdependencies among elements,
extracting both global and local features from the sequence.
Specifically, the fifth MSHA block is the last layer of the MSHA
encoder, and its 0th row corresponds to the visualization of the
feature token vector in Section II-B. It can be seen that as the
global feature vector of SAG, its attention weights are mainly
distributed over the 0th–20th tokens, suggesting that this part
of the BRC sequence is especially important for geoacoustic
inversion. This portion of the sequence roughly corresponds to
the BRCs at grazing angles of 10°–30°. Observing the simulated
BRC curve in Fig. 8 and the actual BRC curve in Fig. 6, the
BRC curve changes most dramatically around grazing angles
of 10°–30°. The results of the BRC curve and attention vi-
sualization corroborate each other. Therefore, we believe that
for near-field geoacoustic inversion in this study, the BRCs at
grazing angles of 10°–30° are relatively important. Similarly,
this also demonstrates MSHA’s ability to identify the most
critical parts of the input sequence for the task.

In addition, each MHSA block may represent a different level
of processing strategy within the model. For instance, the initial
blocks may focus more on the local features of the sequence,
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Fig. 15. Self-attention weight visualization of different MSHA blocks in the
same SAG model. The brightness of individual pixels illustrates the distribution
of attention weights across elements in the BRC sequence, with the ith row
representing the ith query and the jth column representing the jth key, as
mentioned in (9). A pixel located at coordinate (x, y) with higher brightness
indicates a greater attention weight between the yth element (query) of the BRC
sequence and the xth element (key), and vice versa.

whereas the deeper blocks might learn more abstract global
features of the sequence. This is evidenced in Fig. 13 by the
more dispersed attention distribution in the initial blocks and
the more concentrated attention in specific regions in the deeper
blocks. The differences between blocks reveal the SAG model’s
stratified information processing strategy, demonstrating how
the model incrementally abstracts and integrates the input data.

C. Noise Patterns in Self-Attention Weight Maps

The self-attention weight map can reflect the strength of
interrelationships between different elements in the sequence,
allowing us to identify elements that are more critical for the
inversion task. Besides, another interesting observation on the
self-attention visualization is that SAG trained with noisy data
shows noticeable differences from that obtained with noise-free
data, as shown in Fig. 16. In the noise-free attention map
Fig. 16(a), we can clearly see that the attention distribution
forms clear stripes. This indicates that for noise-free data, certain
specific elements in the sequence are particularly important for
geoacoustic inversion. On the other hand, in the noisy attention
map Fig. 16(b), the distribution of attention is more chaotic,
making it difficult to discern the importance of specific elements.
This suggests that the self-attention mechanism model can detect
anomalies in seabed observation data, potentially offering new
approaches for denoising ocean exploration data and monitoring
the marine environment.

Fig. 16. Self-attention weight visualization of SAG models trained by original
BRC sequences and noisy BRC sequences.

As we introduced in Section II-C, it is very challenging to
invert sound attenuation using BRC sequences. We believe that
sound attenuation is sensitive to changes in BRC sequences,
and even slight variations in the BRC sequence could lead to
significant changes in the predicted results for sound attenuation.
Therefore, when the BRC sequence contains noise, the impact of
those elements that are relatively less important for geoacoustic
inversion can no longer be ignored, which may be the reason
for the chaotic distribution in the attention map. However, on
the other hand, the impact of sound attenuation on the near-
field BRC sequence in this study is relatively minor. Even if the
error in sound attenuation appears to be relatively large, it is
acceptable because it does not have a significant impact on the
BRC sequence.

Comparing the attention visualization between noisy and
noise-free data can provide references for analyzing noise in
BRC sequences. In future geoacoustic inversion research, we
hope to obtain more actual data and train the SAG model. Then,



MA et al.: NEAR-FIELD GEOACOUSTIC INVERSION USING BOTTOM REFLECTION SIGNALS VIA SELF-ATTENTION MECHANISM 10557

through the self-attention weight map, we can judge the extent of
noise impact and even analyze the patterns of noise if possible.

V. CONCLUSION

This study conducts geoacoustic inversion based on near-field
bottom reflection signals, utilizing self-attention mechanisms.
Employing the NBRC method, we collected bottom reflection
signals at a wide range of grazing angles, providing high-quality
observation data for inversion. By employing the wavenum-
ber integration method, the BRCS dataset accurately reflects
near-field geoacoustic features. The SAG model, via the MHSA
mechanism, captures both global and local features in the BRC
sequences, thus enhancing inversion accuracy. The AW-MTL
strategy allows for adaptive adjustment of the importance of
individual geoacoustic parameters during training, significantly
improving sound attenuation prediction accuracy. Experiments
show that our approach remains effective for simulated data with
random noise, making it applicable to actual noisy data.

However, the noise in real marine environments differs from
random noise, exhibiting both randomness and patterns. In
Fig. 14, we observe that within the grazing angle range of
10°–20° and 50°–60°, there is a significant discrepancy between
the actual measured BRC sequence and the simulated BRC
sequence. This mismatch may be attributed to environmental
noise during the data collection process. At small angles, the
distance between the sound source and the receiver is greater, and
the complex shallow marine environment introduces additional
noise. Conversely, at large angles, the proximity of the sound
source and receiver means that vessel noise can also affect the
signal. Furthermore, as observed in Fig. 11, the critical angle
of the BRC curve is between 20° and 30°, and the reflection
coefficients at small and large angles are relatively insensitive to
geoacoustic parameters, which may also contribute to the mis-
match. In future work, we will acquire more actual measurement
data and explore better signal-denoising methods. In addition,
we will also focus on applying a self-attention mechanism to
delve deeper into the disparities between actual and simulated
data.
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