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Contrastive Learning of Multimodal Consistency
Feature Representation for Remote Sensing
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Abstract—Feature representation is a crucial issue in multimodal
image registration. The handcrafted features extracted by tradi-
tional methods are highly sensitive to nonlinear radiation differ-
ences, while supervised learning methods are limited by deficient
labeled samples in the remote sensing field. Therefore, this article
proposes a consistency feature representation learning method for
multimodal image registration, which involves mapping data into a
common feature space to realize the accurate alignment of remote
sensing images. First, a contrastive network with a spatial attention
mechanism is driven to enhance the capability to highlight high-
level features of images. Second, a positive sample augmentation
strategy is implemented with contrastive loss, which helps the
model learn the inherent features better, and imposes constraints
on the sample similarity to optimize the feature projection. Finally,
a multimodal image registration framework is proposed to enhance
the stability of feature matching. The proposed framework achieves
accurate feature extraction and consistency feature description
for multimodal images, ensuring robustness against nonlinear ra-
diometric differences. Experimental results demonstrate that the
proposed method obtains more reliable registration results on the
SEN1-2 dataset. Furthermore, the proposed algorithm achieves
superior performance on data from other modalities, indicating
strong generalization ability.

Index Terms—Contrastive learning, feature representation,
multimodal image, remote sensing image registration.
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I. INTRODUCTION

W ITH the continuous advancement of global aerospace
and aviation remote sensing technology, relying on a

single sensor to acquire remote sensing image information no
longer suffices to meet application requirements. In order to
make up for the limited observation information acquired by a
mono sensor and the inability to adapt to complex environmental
challenges, multiple sensors are often employed in practical
applications to fully leverage remote sensing information [1].
Image registration is the necessary prerequisite for cooperative
processing of multimodal images, which aligns the spatial po-
sitions of remote sensing images captured by different sensors,
enabling comprehensive analysis and utilization of the informa-
tion. Multimodal remote sensing image registration is important
for enhancing the spatial accuracy of images and facilitating spa-
tiotemporal analysis [2], and it has found widespread application
in various fields, such as meteorology, agriculture, and geology.
However, differences in sensor imaging mechanisms [3] often
result in salient geometric and grayscale discrepancies among
remote sensing images, which exhibit different characteristics
even on the same objective, making it challenging to acquire
corresponding features.

To tackle this challenge, researchers have developed many
methods in recent years. The handcrafted remote sensing image
registration methods can be roughly divided into two cate-
gories: region-based methods and feature-based methods [4].
The region-based methods employ the global grayscale sim-
ilarity information directly to alleviate local texture interfer-
ence. CFOG [5] used the neighborhood information of chan-
nel features to carve the image structure features pixel by
pixel, and conducted template matching in the frequency do-
main. SFOC [6] designed a coarse-to-fine registration system to
cope with multimodal remote sensing images, extracting simi-
lar structural information. However, these methods are highly
susceptible to geometric deformations and imaging noise in
remote sensing imagery, and the computational cost is also high.
Feature-based methods commonly extract significant features
from two images, construct feature descriptors, and then esti-
mate the geometric transformation matrix by comparing the sim-
ilarity between the feature description. OS-SIFT algorithm [7]
facilitated synthetic aperture radar (SAR) and optical image
registration by detecting the consistency gradient with different
operators according to the characteristics of images in various
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modalities. Nevertheless, due to the variations in intensity in-
formation among heterogeneous images, gradient-based oper-
ators often bring about erroneous matching. A representative
approach is to design descriptors based on index maps that
are insensitive to radiation variations. RIFT algorithm [8] com-
bines the phase congruency feature with the maximum index
map to construct the descriptor, which improves the robustness
against the radiometric differences between multimodal images.
Xiong et al. [9] proposed the adjacent self-similarity (ASS)
feature, which leverages the minimum self-similarity map and
the index map to calculate the distribution histogram, enabling
fast heterologous image registration. But such methods tend to
design descriptors for specific practical requirements, limiting
their applicability and leading them prone to failure in complex
scenarios.

Deep learning-based methods have gradually attracted atten-
tion due to their excellent performance in feature representation.
Siamese networks [10] can measure similarity and meet the
requirements of common feature learning. R2Net [11] designed
a remote sensing framework [12] with global rectification and
decoupled registration. DDFN [13] employed a Siamese net-
work to learn dense pixel features, proposed a loss function
based on the sum of squared differences, and enhanced com-
putational efficiency. For the few-shot cases [14], PCNet [15]
parsed the support mask into subregions to further form local
descriptors. OSDescNet [16] proposed a local descriptor with
an adaptive fusion convolution module to reduce SAR noise,
and utilized DenseNet-CSP for characterization to match optical
images with SAR images. Murugan et al. [17] introduced the
deep reinforcement learning [18] to gain knowledge, registering
multimodal images with a deep Q-network. These methods are
capable to learn the intricate features of images and obtain a more
robust representation. However, the supervised methods require
a large amount of labeled sample data, which remains a rigor-
ous challenge for Earth observation. With the development of
self-supervised learning methods, novel feature representation
models are proposed for image registration. Generative adversar-
ial networks (GANs) can perform image-to-image translation,
aligning multimodal images based on similar radiation feature
information. KCG-GAN [19] input the K-means segmentation
results of an image into the network to learn the spatial location,
thereby enhancing the registration accuracy. To improve the
recognition ability, RFM-GAN [20] applied neighborhood fea-
ture representation with two discriminators to train dissimilarity
measurement networks.

However, methods based on GANs often excessively empha-
size detailed information, rendering them subject to interference.
By contrast, contrastive learning methods distinguish data in the
feature space at the semantic level, exhibiting superior gener-
alization capabilities. GLCNet [21] introduced a remote sens-
ing semantic segmentation approach based on global style and
local matching network, incorporating a matching contrastive
loss to learn pixel-level information. ContraReg [22] achieved
nonrigid multimodal image alignment by projecting the learned
multiscale local patch features into the jointly learned interdo-
main embedding domain. Li et al. [23] proposed a template

matching method based on contrastive learning, which increases
the matching number at finer details and performs intensive
learning at the pixel level. Contrastive learning methods provide
an effective solution for remote sensing tasks due to their ex-
cellent ability to learn the semantic embedding features without
mass reference data.

Therefore, our work focuses on encoding consistency features
with a contrastive learning network, and establishes a multi-
modal remote sensing image registration framework. The deep
feature mining ability of the model is improved by integrating a
spatial attention mechanism into the feature representation net-
work, and the generalization ability is developed by the proposed
sample design strategy and contrastive loss. The proposed image
registration method fully exploits the features of multimodal
images that exhibit significant radiation differences, achieving
robust and reliable registration.

The main contributions are as follows.
1) A feature representation network with spatial attention

modules is designed for embedding the consistency fea-
tures between multimodal images. By performing efficient
mapping to a common domain, the abstract semantic
information is concerned and learned.

2) A positive sample augmentation strategy is presented to
learn the intrinsic features of the data, and the robustness
of model is developed under various conditions. The im-
proved contrastive loss is proposed for the registration task
to guide the distance constraints between samples.

3) A multimodal remote sensing image registration frame-
work is proposed to effectively achieve feature extraction,
description, and matching. Experiments demonstrate the
superiority of the proposed work.

The rest of this article is organized as follows. The brief
overview on contrastive learning methods are first introduced in
Section II. Then the proposed model is explained in Section III
in detail. Sections IV and V discuss the experimental results in
various scenarios. Finally, Section VI concludes this article.

II. RELATED WORK

Annotating large datasets is laborious and costly, and this
limitation hinders the applicability of deep learning-based meth-
ods in the remote sensing field. Self-supervised learning has
become one of the effective ways to solve this problem. As a
popular method of self-supervised learning, contrastive learn-
ing improves model performance by comparing the data with
positive and negative samples in the feature space to learn
the feature representation of the data. The core idea of con-
trastive learning is to narrow the similarity of data in the
same class and to pull the encoding results of data in differ-
ent classes as far as possible. SimCLR [24] set a paradigm
for many subsequent contrastive learning research, and the re-
lated studies are mainly centered on three aspects: generation
of sample construction, encoder mapping, and loss function
constraints.

Proper selection of positive and negative samples can enhance
model performance and avoid collapse. To reduce redundant
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sampling, MoCo [25] proposed a momentum encoder to ensure
real-time accuracy of the negative sample base, thus supporting
larger sample sizes. SimCSE [26] introduced the idea of con-
trastive learning into sentence embedding, changing the dropout
mask to generate positive samples, allowing the model to learn
richer and fine-grained semantic information. In terms of en-
coder design, there are multifarious encoding networks can be
applied in contrastive learning framework for feature extraction,
such as Resnet-50 [27], U-Net [28], and Attention U-Net [29].
SCS-Co [30] applied a pretrained VGG-16 network as the style
representation extractor. DINOv2 [31] used vision transformers
as a backbone network and converted contrastive learning into
a self-distillation learning task to learn robust visual features.
CMAE [32] proposed a contrastive masked autoencoder con-
sisting of two branches, the online branch and the target branch,
aiming to improve the quality of representation and transfer
learning performance. The core idea of the loss function in
contrastive learning is to calculate the distance between repre-
sentations, constraining the minimum and maximum distances
between sample pairs. ProtoNCE [33] modified the similarity as
the distance between samples and their clustering centers, learn-
ing both the clustering centers and the vector representations.
SCL [34] introduced labels into contrastive learning, aiming to
address the issue of neural networks being sensitive to noise
labels.

These existing contrastive learning methods have reached
the level of supervised learning on common visual tasks [35],
such as classification and detection, and the powerful feature
representation capability indicates that contrastive learning has
a broader application prospect. Except for the lack of samples,
the problem of multimodal remote sensing image registration
is the representation difficulty between cross-modal features.
Therefore, as contrastive learning shows increasingly superior
characterization ability, it raises considerable attention in re-
mote sensing. Considering the spatial properties of different
modalities, Cha et al. [36] proposed a multimodal represen-
tation learning method for SAR semantic segmentation based
on contrastive multiview coding. Pielawski et al. [37] proposed
contrastive multimodal image representation for registration
model, generating MI-related dense representations by max-
imizing the mutual information noise-contrastive estimation.
DINO-MM [38] achieved SAR-optical image representation
based on DINO network, which combined heterologous image
pairs by connecting all channels to a uniform input, and enhances
the data by randomly masking out channels of one modality.
AdaSSIR [39] mined the potential features of the keypoints from
two images. It treats each keypoint as an independent category,
converting keypoints from one image to the other to construct
training and test samples, ultimately achieving image alignment.

In summary, contrastive learning has shown excellent seman-
tic embedding ability in many remote sensing tasks. By mapping
remote sensing data into the same embedded space, significant
radiation differences caused by various sensor imaging can be
decreased. So this article proposes a contrastive learning repre-
sentation method for consistency features in multimodal images,
aiming to achieve remote sensing image registration based on

the feature representation. And the complexity of remote sensing
image puts forward more challenging requirements for sample
selection, so we design an effective sample augmentation strat-
egy to improve the robustness of features.

III. METHOD

In this section, we introduce the proposed contrastive
learning-based feature representation algorithm for multimodal
image registration in detail, including a consistency feature
representation network, a contrastive loss with sample augmen-
tation, and a novel multimodal image registration framework.

A. Consistency Feature Representation Based on Spatial
Attention

The proposed feature representation model is shown in Fig. 1,
which consists of three stages: sample augmentation, consis-
tency feature representation learning, and contrastive loss op-
timization. To achieve the alignment of cross-modal images, it
is necessary to learn the mapping of consistency features, thus
a suitable network needs to be designed for feature encoding.
In this article, we choose U-Net [28] with a skip connection
structure as the backbone net, so that the model can better
retain and utilize feature information from different levels better,
and effectively capture both local and global information in
the image. Due to the complexity of remote sensing images,
the network should have the ability to enhance the features of
terrain. Therefore, we introduce the spatial attention mechanism
to highlight the representation of the salient structural regions.
The purpose of the spatial attention mechanism is to learn
the weights and attention distributions of different locations,
helping the model focus on the spatial structure in the input data,
thereby improving the quality of the feature representations.
It is worth mentioning that the dual path networks are trained
alternately for two modalities, which is beneficial for extending
this representation model to the training of multimodal images.

The feature embedding network is shown in Fig. 2. For the
downsampling encoder, the features of the input sample are
extracted through the convolution layer by layer. The input to
each layer of the upsampling decoder is the aggregation of output
from the previous layer and the skip connection structure. The
spatial attention module is introduced related to the skip connec-
tion section, and the encoder output of each layer is weighted
with attention and concatenated with the corresponding layer
of the decoder. Finally, the feature map is recovered by 1× 1
convolution layer of the same size as input sample. The inputs
of the spatial attention module are convolved by 1× 1× 1
respectively and concatenated, then the features are activated
with a ReLU function. Convolved at 1× 1× 1 and activated
with a sigmoid function, the weight information is multiplied
by the original input. Therefore, the spatial attention mechanism
can be calculated as

al = Ω2

(
ψ
(
Ω1

(
ylCy + xCx + bx

))
+ bψ

)
(1)

yla = ylal (2)
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Fig. 1. Proposed consistency feature representation method.

Fig. 2. Structure of feature encoding network.

whereal represents the attention weight,ψ denotes the1× 1× 1
convolution, x and yl represent feature map from the decoder
and the previous layer of the encoder, which are operated with
matrix Cx and Cy , respectively. Ω1 and Ω2 represent ReLU
and sigmoid activation functions, respectively. bx and bψ are
bias parameters. Fig. 3 presents the heatmap of derived atten-
tion weights. It can be observed that the model can focus on
structural areas, such as roads and shores. The combination of
skip connection structure and spatial attention modules helps the
contrastive network concentrate more on the important spatial
position of the image. The consistency features are captured by
the proposed contrastive learning network, providing reliable
spatial information for subsequent matching.

B. Contrastive Loss With Sample Augmentation

Contrastive learning methods aim to promote the feature
representation of positive samples closer and that of nega-
tive samples more dispersed in the absence of labeled data.

Fig. 3. Examples of spatial attention heatmap. (a) Image A. (b) Att. Map A.
(c) Image B. (d) Att. Map B.

Therefore, the sample construction is crucial for the performance
of the model. The design of the sample is determined by the
downstream task, and for the image registration, the learning
goal is to map the consistency features of the same object in
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Fig. 4. Positive and negative samples.

different modalities to a common space. Therefore, assuming
that a SAR image is taken as the anchor sample, then the optical
image at the corresponding position is the positive sample, and
other images in the batch are regarded as negative samples. In
other words, for each batch with 2N samples, once a sample
is anchored, there is one original positive sample and 2N − 2
negative samples corresponding to it.

In order to increase the information of the positive sample
with fewer training batches, the positive sample is augmented in
this article for stronger feature representation ability. Random
transformations of different contrast and brightness are con-
ducted to increase the data diversity, and improve the capacity
of model to process images in different illumination scenes. An
example of sample composition is shown in Fig. 4. The blue box
represents positive samples with the augmentation strategy that
require attraction, and the green box represents negative samples
from two modalities that need to be repelled. The augmentation
strategy introduces changes to samples, which is conducive for
the model to learn the features of objects under different imaging
conditions.

The contrastive loss is also extended as the constraint on
augmented positive samples. The information multiformity of
the positive sample pairs can be improved by estimating the
expectation of each augmentation of the positive sample instead
of the original one, promoting the adaptive capacity of the model.
The proposed contrastive loss is formulated as

Li,j = −log
exp[ŝ(zi, zj)/τ ]∑N
k=1 exp[s(zi, zk)/τ ]

(3)

ŝ (zi, zj) =
1

n

n∑
j=1

s (zi, z̄j) (4)

s (zi, zj) = (zi · zj) / (‖zi‖ ‖zj‖) . (5)

In addition, the loss function adopts the similarity of neg-
ative samples instead of total samples to stretch the distance,
enhancing sensitivity to discrepancies in negative samples. In
this way, the coupling between positive and negative samples
is avoided, and the optimization efficiency of the network is
improved. Therefore, the loss function for multimodal remote
sensing image registration is defined as (6). By constraining
the consistency mapping between samples, the proposed loss

function can encourage the model to learn deep features

LReg = − 1

N

N∑
i=1

(
log

exp[ŝ(zi, zj)/τ ]∑N
k=1 exp[s(zi, zk)/τ ]

)
. (6)

Suppose that zi, zj , and zk correspond to feature representa-
tion of the anchor sample, positive sample, and negative sample,
respectively. τ is a temperature coefficient, and N means the
number of negative samples. n denotes the total number of
positive samples z̄j with augmentation. ŝ is calculated as (4),
and s represents a similarity function defined by (5), to represent
the distance of the feature encoding vector in the measure space.

C. Multimodal Image Registration Framework

On the basis of the above-mentioned representation network
construction, this article proposes a framework for multimodal
remote sensing image registration based on contrastive learning.
The procedure is depicted in Fig. 5. The reference and sensed
images are first preprocessed with specific modal characteristics.
The processed images are then trained by contrastive network
for consistency feature representation. It should be noted that
the feature encoding will inevitably cause pixel deviation in the
representation map, to ensure the precision of the registration
results, the proposed framework simultaneously feeds the pre-
processed images I(1) and I(2) into a candidate feature detection
module, to provide a more accurate and complete candidate set.
The design of the candidate detection module aims to provide
an accurate spatial reference, and simple lightweight detection
algorithms are able to meet the demand, such as oriented FAST
and rotated BRIEF [40] selected in this article.

After generating the contrastive feature representation map
I
(·)
rep, we traverse the feature points obtained on the candidate

image I(·)can, and extract the corresponding neighborhood of key-
points on the representation map. Then, the local descriptors are
constructed based on the neighborhood of feature. Histogram of
oriented gradients [41] is adopted in this article, which counts
the gradient orientation histogram of the image area to form
the feature description. Subsequently, the correspondences are
matched with the consistency feature descriptors, and the spa-
tial transformation parameters can be obtained after the outlier
removal.

The proposed framework simplifies the issue of multimodal
image registration by aligning images to the same modality,
making full use of the strong nonlinear representation capabil-
ities of deep learning networks as well as preserving matching
accuracy. Moreover, this framework is adaptable to various
modalities or scene inputs, making it suitable for a wide range
of applications.

IV. EXPERIMENTS AND ANALYSES

In this section, the dataset and implementation details are first
introduced, followed by an explanation of the evaluation metrics
used in the experiments.
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Fig. 5. Multimodal image registration framework.

Fig. 6. Examples of SEN1-2 dataset.

A. Experimental Dataset and Settings

We employ the public SEN1-2 dataset1 [42] for training and
validation, which comprises paired SAR and optical images.
This dataset is commonly employed in the multimodal remote
sensing images registration, change detection, and fusion tasks.
Examples of the SEN1-2 dataset are displayed in Fig. 6. The
SAR images are collected by the Sentinel-1 satellite in IW mode,
and the optical images are composed of the RGB bands from the
Sentinel-2 satellite. Both SAR and optical images have a uniform
sampling resolution of 10 m and are cropped to a size of 256 ×
256 pixels. The data eliminates the interference of cloud cover
to image information and covers diverse regions and terrains.

The trained model is tested on images from the SEN1-2
dataset and a multimodal image dataset to assess the regis-
tration performance and generalization ability. In the experi-
ment, the SAR images are denoised with the nonlocal means

1SEN1-2 dataset: https://mediatum.ub.tum.de/1436631

TABLE I
PARAMETERS SETTING

algorithm [43], and the optical images are grayed. The multi-
modal dataset consists of SAR, optical, infrared, depth, and map
images captured by diverse sensors, covering different regions
and time periods. With significant radiation differences, the test
images pose a great challenge for registration methods.

The experiments are conducted on NVIDIA RTX 1080 Ti,
and the training parameters of the model are shown in Table I.
For feature point detection, the threshold number is set to 5000,

https://mediatum.ub.tum.de/1436631
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TABLE II
NCM RESULTS OF DIFFERENT METHODS

and the number of decomposition levels is 8. The patch size
in descriptor construction is 128×128 pixels, and matching
threshold is 100. To ensure the comparability of the results, each
algorithm was tested with the optimal parameters given in the
literature, and the parameters for outlier removal in the algorithm
were kept consistent across all algorithms.

B. Evaluation Metric

The registration performance is evaluated by the number of
correct matching (NCM) and root-mean-square error (RMSE).
During the feature point matching process, candidate pairs with
large errors are iteratively eliminated, and the remaining pairs
that meet accuracy requirements are deemed as correct matches.
A higher NCM indicates greater registration reliability, with the
algorithm demonstrating increased stability.

The RMSE is used to evaluate the precision of the registration
results, which is defined as

RMSE =

√∑n
i=1 (x2i − x1i)

2 + (y2i − y1i)
2

n
(7)

where i represents the index of keypoint, (x1i, y1i) is the key-
point coordinates of the reference image, and (x2i, y2i) is the
keypoint coordinates obtained after affine transformation of the
moving image, and n denotes the number of matching pairs.
The lower the RMSE, the higher the matching accuracy.

C. Experimental Results

The performance is compared with other remote sensing
image registration methods and analyzed to prove the superiority
of our method. Then, a multimodal dataset is applied to verify
its generalization ability.

1) Performance Comparison to Other Methods: The perfor-
mance of the proposed methods is quantitatively and quali-
tatively compared with some popular multimodal image reg-
istration methods, including RIFT [8], ASS [9], sRIFD [44],
Pix2pix [45], pix2pixHD [46], KCG-GAN [19], and ReD-
Feat [47]. Ten pairs are picked at random, and Table II lists
the NCM results for eight algorithms. In cases where a method
failed to register due to insufficient matching pairs, we denoted it
with “−−.” Bold numbers indicate the best result in the column.

The RIFT algorithm achieves stable performance on most
data, but the NCM obtained is limited. Therefore, the image
registration of the ninth pair is offset because the amount of cor-
rect matching pairs is not enough. sRIFD obtains more matching
pairs than RIFT, but performs weakly on two pairs. The ASS,

pix2pix, pix2pixHD, and ReDFeat algorithms fail on three or
more images, indicating the vulnerability of their performance.
The KCG-GAN method scores the highest on two pairs but fails
on the third pair and eight pair, displaying relatively unstable
performance across different scenes. For the proposed method,
it achieves the best results on most images with NCM values
consistently over a hundred. The RMSE results, as illustrated in
Fig. 7, further confirm the superior performance of the proposed
method. We set the value of invalid registration as ∞ in this
figure for clarity. It is clear that the proposed method steadily
ranks at the forefront of precision with a high success ratio.

Besides, we choose some representative terrains to analyze
the performance of the model, including roads, water bodies,
buildings, farmland, mountains, and airports. The visualization
of matching results are displayed in Fig. 8. Most algorithms only
excel in terrains with sharp edges, such as roads and water. The
edges in the multimodal image provide consistent information
for the registration task. However, for areas such as buildings
and airports, whose geomorphic boundaries are ambiguous or
features are heavily disturbed by strong scattering effects, al-
gorithms probably fail. By comparison, the proposed method
outperforms the other methods with outstanding robustness.
Visually, matching pairs of the proposed method are numerous
and uniformly distributed, achieving reliable registration results.
With sufficient matching pairs on all terrains, features are regis-
tered with high accuracy.

The corresponding checkerboard mosaic maps of the pro-
posed method are displayed in Fig. 9. The junction areas of red
boxes in the figure are enlarged and shown on the right. It can be
observed that the edges of the regions are perfectly overlapped.
The results demonstrate that our method can register multimodal
remote sensing images effectively.

We also enlarge the intersection of checkerboard maps with
different methods for comparison. In Fig. 10, the orange, green,
and cyan boxes outline the three regions in different positions
with road connections. There are certain deviations on the re-
sults from other methods, manifesting as the discontinuity of
the roads. The results of RIFT and KCG-GAN methods show
significant displacements in the orange area. For the green area,
the road is mismatched by ASS, sRIFD, pix2pix, and ReDFeat
algorithms. And pix2pixHD algorithm makes an error in the
cyan region. While for the results of the proposed method,
the lines are aligned and connected perfectly in each area.
The global alignments illustrate that the proposed method
achieves stable and reliable matching, with superior perfor-
mance to other methods.

Inference time is also an important aspect to evaluate al-
gorithms. We compare the time consumption of four deep
learning-based methods in the experiment. The three generative
models cost about 40 ms for each image, while the ReDFeat
and proposed models take 11.82 and 12.01 ms, respectively.
Generally, the proposed method requires less inference time than
generative methods, and the cost is comparable to the ReDFeat
model.

2) Generalization Ability: In the above-mentioned exper-
iments, the test data adopted is from the same source as
the training data. A question worth verifying is whether the
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Fig. 7. RMSE results of different methods.

Fig. 8. Matching results of different methods. (a) Road. (b) Water. (c) Building. (d) Farmland. (e) Mountain. (f) Airport.

knowledge learned from the SEN1-2 dataset can be applied
to other sensors. In order to explore this issue, we conducted
registration experiments on data for five modalities, respec-
tively. Fig. 11 showcases the matching results of the proposed
algorithm. It can be seen that all image pairs are matched cor-
rectly. Fig. 12 compares the performance of other deep learning-
based methods with the proposed model. The three generative

algorithms are invalid on more than two modalities, while the
proposed model and ReDFeat model still work well with great
accuracy. These two models achieve comparable accuracy on
infrared-optical and day-night data, but the proposed method
derives lower errors on other modalities. The results indicate
that the proposed method is more adaptable to new data across
multiple modalities.
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Fig. 9. Mosaic maps of the proposed method. (a) Road. (b) Water. (c) Building. (d) Farmland. (e) Mountain. (f) Airport.

Fig. 10. Comparison of checkboard maps of different methods.

Fig. 11. Matching results on multimodal dataset. (a) Depth-optical. (b) Infrared-optical. (c) Map-optical. (d) Sar-optical. (e) Day-night.

Fig. 12. Performance on multimodal dataset.

V. DISCUSSION

In this section, ablation experiments are conducted to better
understand the necessity of each improvement in the proposed
method. Then, we discuss the performance of the proposed
method when facing challenging situations in remote sensing
image registration.

A. Ablation Study

1) Necessity of Spatial Attention: For demonstrating the
effect of the proposed feature representation network, we
conducted experiments on the network with/without spatial

TABLE III
COMPARISON WITHOUT/WITH SPATIAL ATTENTION

attention mechanism, respectively. Randomly selecting ten sets
of test data while keeping the other parameters the same, the
registration results are presented in Table III.

In terms of RMSE, the full model consistently reaches
the lowest registration error for each pair. The inclusion of
the attention module notably improved the NCM across most
data. Especially in pair 3, the proposed representation network
achieves successful matching with high accuracy and stability,
whereas the network without spatial attention modules failed.
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Fig. 13. Comparison without/with sample augmentation. (a) NCM. (b) RMSE.

On the whole, the proposed network outperforms the incomplete
configurations.

2) Necessity of Positive Sample Augmentation: To ascertain
the effectiveness of positive sample augmentation strategy on
feature representation, the registration results with/without aug-
mentation are compared in Fig. 13.

It can be seen that the errors by the augmented algorithm are
further reduced, leading to a higher number of matching pairs
on most data. These results indicate that the model with sample
augmentation strategy effectively promotes registration robust-
ness and accuracy, highlighting the efficacy of this approach
in improving the performance of the feature representation
network.

B. Challenging Issues

1) Translation, Rotation, and Scale Variations: The match-
ing results of image pairs with translation, scale, and rotation
variations are shown in Fig. 14 . For the image pair with
only translation differences, the proposed method can derive
considerable matching pairs. Then the SAR image is taken as the
reference image, and the optical image is rotated anticlockwise
by 10◦, as depicted in (b), our method still works well in this
scene. In (c), the size of the optical image is reduced from 500px
× 500px to 400px × 400px, while the size of the SAR image
remains unchanged. It can be found that the proposed method
performs poorly on images with scale variations. Therefore,

Fig. 14. Performance on translation, rotation, and scale variations. (a) Trans-
lation. (b) Rotation. (c) Scale.

Fig. 15. Performance on unstructured and structure terrains. (a) Unstructured.
(b) Structure.

the proposed method can handle images with translation and
rotation differences, but shows unsatisfactory scale invariance.

2) Homogeneous Terrains: Differences in imaging modes
result in various features on the same landform. The texture
information is more prone to instability between multimodal
images, while the structural information presents the superior
performance. Therefore, the proposed method probably fails on
terrains lacking apparent structure. As shown in Fig. 15, the
SAR and optical images exhibit significantly different proper-
ties in the forest, rendering the algorithm invalid in (a). The
area with roads and artificial structures provides references for
corresponding feature detection, enabling our method to achieve
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successful matching in (b). The vulnerability to texture-rich re-
gions is a consistent issue in current registration algorithms, and
we will focus on improving the robustness of texture information
extraction in the future work.

VI. CONCLUSION

In this article, we propose a contrastive learning-based feature
representation method for multimodal remote sensing image
registration. A consistency feature representation network is
proposed with a spatial attention module, significantly improv-
ing the capability of the network to focus on important spa-
tial information. In addition, a sample augmentation strategy
is designed for contrastive learning networks, enhancing the
adaptability of the method in various scenarios with more di-
versity and variation. The extended contrastive loss can better
constrain the model to efficiently learn latent features. Moreover,
a multimodal remote sensing image registration framework is
developed based on the proposed feature representation network
to fully extract and describe image features. Accurate alignment
facilitates the implementation of other downstream remote sens-
ing tasks. The framework is efficient for images with significant
modal variations, and is expected to be extended to multiple
modalities. However, the proposed method is not an end-to-end
process. Our future work will concentrate on learning spatial
mapping directly with semantic embedding, thereby achieve
more efficient registration.
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