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Abstract—Recently, hybrid networks, combining graph convo-
lutional networks (GCNs) and convolutional neural networks into
a unified framework, have garnered significant attention in hy-
perspectral image (HSI) classification. However, existing hybrid
networks have the following limitations. 1) Existing methods pri-
marily utilize simple fusion strategies such as concatenation or
direct addition, resulting in the ineffective utilization of advanta-
geous features. 2) Traditional GCNs only consider the relationship
between pairs of vertices, limiting their ability to capture complex
high-order and long-range correlations. In this work, a novel differ-
ential feature fusion network (DF2Net) is proposed for HSI clas-
sification. Specifically, DF2Net utilizes two subnetworks to learn
features at different abstraction levels: 1) the spectral–spatial hy-
pergraph convolutional network for capturing complex high-order
and long-range correlations, and the spectral–spatial convolution
network for pixel-level local information extraction. Subsequently,
we introduce an advantageous feature differential enhancement
fusion module, in which mutual enhancement of advantageous
features from different network structures is performed, thereby
improving the classification robustness of different regions in HSI.
The experiments on four HSI benchmark datasets demonstrate
that our DF2Net exhibits superior advantages over state-of-the-art
models, particularly when the training samples are limited.

Index Terms—Advantageous feature differential enhancement
fusion (AFDEF), convolutional neural networks (CNNs),
hypergraph convolutional network, hyperspectral image (HSI)
classification.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) generally consist of
dozens or even hundreds of contiguous spectral bands and

can provide rich high-resolution spectral information on land
covers. With this distinctive advantage, HSIs have found exten-
sive applications in various fields, such as land management [1],
agriculture assessment [2], and environmental protection [3],
[4].
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HSI classification aims to classify each pixel with specific
labels by analyzing spectral–spatial information of land covers.
At first, the combination of spectral feature extraction and
machine learning algorithms was primarily utilized for HSI
classification. Commonly employed spectral feature extraction
techniques encompass principal component analysis [5], linear
discriminant analysis [6], wavelet transform [7], and multiple
kernel learning [8]. These techniques reduce the data dimension
and extract the most representative spectral information within
the HSI data. Subsequently, extracted features are subjected to
training and classification using machine learning methods, such
as support vector machines (SVM) [9], [10] and random forest
(RF) [11]. However, these methods require manual selection and
design of feature extraction methods. In addition, the richness
of spectral information also makes it difficult for these methods
to obtain accurate results.

In recent years, many deep learning methods [12] have been
proposed for HSI classification, such as convolutional neural
networks (CNNs) [13], [14], [15], graph convolutional networks
(GCNs) [16], [17], and recurrent neural networks (RNNs) [18].
They allow extracting deeper and more discriminative features
from HSI through a series of hierarchical layers. Among them,
CNNs are able to efficiently extract pixel-level local information
by applying learnable filters. For example, in [13], a simple 1-D
CNN, consisting of only one convolutional layer, achieves supe-
rior classification performance compared to traditional methods,
such as SVM. Subsequently, many CNN variants, including
2DCNN [19], 3DCNN [20], [21], and hybrid spectral CNN (Hy-
bridSN) [22], have been proposed for HSI classification, which
has more powerful feature extraction capability. CNN-based
models have unique advantages in extracting pixel-level local
information, exhibiting superior classification performance in
fine areas. However, its receptive field is influenced by the size
of convolutional kernels, resulting in the long-range relations
cannot be adequately captured. In addition, labeled pixels in HSI
are typically rare and expensive to obtain. CNN-based methods
are prone to overfitting when the training sample is limited.

Graph CNNs (GCNs) [23], [24] offer a novel approach to
extract deep features in HSI. On the one hand, GCNs combine
the graph structure and node features to achieve feature ag-
gregation in non-Euclidean space, which makes GCN naturally
suitable for extracting long-range features. On the other hand,
GCNs can fully utilize unlabeled samples through the graph
structure, effectively alleviating the burden on labeled samples.
Based on the success of GCN, many variants of GCN have
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been proposed for HSI classification. Qin et al. [25] proposed
the spectral–spatial GCN (S2GCN), which integrates spectral
information and local spatial window information and is the first
GCN model designed for HSI classification. Since considering
each pixel point of an HSI as a node of the graph leads to a large
computational load, limiting its applicability. Wan et al. [26]
proposed the multiscale dynamic GCN (MDGCN), which uses
superpixel nodes instead of pixel nodes, and proposed to utilize a
dynamic graph structure representing the relationships between
superpixel nodes. In addition, superpixels can reflect features
such as the shape and patterns of land covers, giving GCNs a
significant advantage in classifying smooth regions. However,
due to the loss of pixel-level spectral–spatial information during
the superpixel segmentation process, superpixel-based GCNs
often exhibit poorer classification performance in fine regions.

CNNs and GCNs both demonstrate powerful feature ex-
traction capabilities. However, it can be observed that CNNs
and GCNs perform well in different regions: CNNs exhibit
better classification performance in fine regions while GCNs
perform better in smooth regions. Single-network structure,
whether CNN or GCN, captures limited information. Therefore,
to achieve robust classification of different regions in HSI, it is
necessary to design a new hybrid network, which can extract
and integrate the advantageous features of different network
structures.

In recent years, many hybrid networks [27], [28], [29], [30],
[31] have been proposed and garnered significant attention
in HSI classification. Among them, the CNN-enhanced GCN
(CEGCN) [27] is the first to achieve feature interaction and
fusion between CNN and GCN structure. Subsequently, the
weighted feature fusion network (WFCG) [28] uses GAT to
enhance the aggregation of features and combines the channel
attention mechanism and the spatial attention mechanism to
design the branches of the CNN network. Recently, the attention
multihop graph and multiscale convolutional fusion network
(AMGCFN) [29] uses multiscale fully CNN and multihop GCN
to extract the multilevel information of HSI. However, these
methods have the following limitations. 1) Existing methods,
such as CEGCN and WFCG, primarily utilize simple fusion
strategies such as concatenation or direct addition, resulting in
the ineffective utilization of advantageous features. 2) Tradi-
tional GCNs only consider the relationship between pairs of
vertices, limiting their ability to capture complex high-order
correlations and long-range correlations. Deep GCNs enhance
the representation capability of complex high-order and long-
range correlations by increasing the network depth. However,
they may suffer from the issue of feature oversmoothing. Yu
et al. [31] proposed a synergetic interaction network combined
with convolution and transformer (HyperSINet), which replaces
GCN with a transformer to enhance modeling capabilities for
long-range correlations. However, the transformer requires sig-
nificant computational resources and lacks interpretability.

To cope with the previous problems, a novel differential
feature fusion network (DF2Net) is proposed for HSI clas-
sification. The DF2Net consists of three subnetworks: 1) the
spectral–spatial hypergraph convolutional network (S2HGCN),
2) the spectral–spatial convolution network (S2CN), and 3) an

advantageous feature differential enhancement fusion (AFDEF)
module. Specifically, the S2HGCN subnetwork utilizes spectral
and spatial hypergraphs to capture complex high-order and
long-range correlations contained in HSI. Compared to sim-
ple graphs, hypergraphs have stronger representation capabili-
ties. The S2CN subnetwork utilizes spectral–spatial convolution
(SSConv) for pixel-level local information extraction. Finally,
through the AFDEF module, mutual enhancement of advanta-
geous features from different network structures is performed,
thereby improving the classification robustness of different re-
gions in HSI. The main contributions of this article are as
follows.

1) We systematically analyze the performance of different
network structures, including CNN, GCN, and HGCN
structures, for HSI classification. The experimental results
indicate that different network structures can extract com-
plementary advantageous features.

2) Aiming at improving the ability to capture complex high-
order and long-range correlations contained in HSI, we
extend the simple graph to the hypergraph and design the
spectral–spatial fusion hypergraph convolutional network
S2HGCN as a nonlocal feature extraction subnetwork.

3) A novel advantageous feature enhancement hybrid net-
work DF2Net is proposed. DF2Net utilizes the AFDEF
module to achieve mutual enhancement of advantageous
features derived from different network structures, thereby
improving the classification robustness of different re-
gions in HSI.

The rest of the article is organized as follows. In Section II,
we systematically analyze the performance of different network
structures for HSI classification. Section III provides a detailed
introduction to our proposed DF2Net. The experiments are illus-
trated in Section IV. The discussion and analyses are performed
in Section V. Finally, Section VI concludes this article.

II. DIFFERENT NETWORK STRUCTURES FOR HSI
CLASSIFICATION

In this section, we compare the performance of different net-
work structures for HSI classification. Specifically, two sets of
comparative experiments are performed: 1) comparing the CNN
(based on regular convolutional) with GCN (based on graph
convolutional) structures, and 2) comparing the GCN (based
on the simple graph) with HGCN (based on the hypergraph)
structures. The dataset used for the experiments is the University
of Pavia, which will be introduced in detail in Section IV.

A. Comparing the CNN With GCN Structures for HSI
Classification.

We initially designed a classification network based on CNN,
which consists of two layers of regular convolution. The kernel
size for the first layer is set to 5×5 and the second layer is
set to 3×3. Similarly, we design a classification network based
on GCN, incorporating two layers of graph convolution. The
dimension of the hidden layers in both CNN and GCN is set
to 128. The overall accuracy (OA) under different training
label ratios is shown in Fig. 1. Furthermore, we visualize the
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Fig. 1. OA of different network structures in the University of Pavia dataset
classification.

Fig. 2. Classification result maps of different network structures for three
representative regions in the University of Pavia dataset classification. The CNN
structure achieves better classification results in fine regions while GCN and
HGCN structures perform better in smooth regions. (a) HSI. (b) GT. (c) CNN.
(d) GCN. (e) HGCN.

classification maps of some representative regions in Fig. 2,
where region A covers fine areas such as shadows, and region B
covers smooth areas such as bare soil.

From the earlier data, we can observe that GCN achieves
80.86% OA when the number of training label ratio is only
0.1%. However, the CNN has only 74.97% OA under the
constraint of limited training samples. Subsequently, with
the increasing number of training samples, the OA of CNN
grows rapidly while GCN remained relatively steady. When the
training label ratio reaches 0.1%, CNN achieves 93.14% OA,
improved by 2% over GCN.

The results above validate that the CNN network structure
exhibits a strong dependence on training samples. With suffi-
cient training samples, the CNN structure model can have a
good classification performance, but its performance deterio-
rates significantly with a reduction in training samples. However,
the scarcity of training samples is a common and inevitable
challenge in HSI classification. In contrast, GCN exhibits
good classification performance even with a limited number of
samples. This is likely attributed to the fact that GCNs can utilize
unlabeled samples through the graph structure.

From Fig. 2, we can observe that the CNN structure performs
better in the classification of shadows in region A. This is

Fig. 3. Illustrations of the working principles of different network struc-
tures. (a) CNN can efficiently extract pixel-level local information by applying
learnable filters (orange square). (b) GCN utilizes the graph structure based
on superpixel node and graph convolution to learn superpixel-level high-order
features. (a) CNN: Regular convolution. (b) GCN: Graph convolution.

attributed to the CNN structure can extract pixel-level spectral–
spatial information through local convolution, enabling better
classification performance in fine areas, as shown in Fig. 3(a).
For Region B, we observe that GCN exhibits better classification
performance in smooth areas than CNN. This is primarily due
to the strong representation capability of the graph structure
for nonlocal features, giving the GCN structure a significant
advantage in classifying smooth regions, as shown in Fig. 3(b).

B. Comparing the GCN With HGCN Structures for HSI
Classification

In this section, we compare the classification performance of
GCN and HGCN structures on the University of Pavia dataset.
They are based on simple graphs and hypergraphs, respectively,
aiming to validate whether the hypergraph provides a more
powerful representation than the simple graph in specific HSI
classification. The implementation details for GCN are con-
sistent with the previous. Simultaneously, we design a simple
classification network HGCN based on the hypergraph. HGCN
contains two layers of hypergraph convolution and the dimen-
sion of the hidden layer is set to 128 as in GCN.

As shown in Fig. 1, HGCN has better classification perfor-
mance than GCN under different number of training samples.
Notably, the improvement is more pronounced when the training
samples are limited. For instance, when the training label ratio
is 1%, HGCN exhibits an improvement of approximately 1%
over GCN. When the training label ratio is 0.1%, HGCN has an
improvement of approximately 4%. This is primarily because
the hypergraph has a stronger representation capability than the
graph and better utilizes unlabeled sample data. As shown in
Fig. 4, the simple edge in the simple graph can only connect
two nodes while the hyperedge in the hypergraph can connect
any number of nodes, providing a more natural way to model
complex correlations. From Fig. 2, we can also observe that
HGCN has better classification performance in the classification
of regions A and C than GCN. This phenomenon validates
the more powerful representation of the hypergraph over the
simple graph in capturing long-range and complex high-order
correlations contained in HSI.
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Fig. 4. Illustrations of the simple graph and the hypergraph. (a) Simple graphs
tend to focus on relationships between pairs of vertices. (b) Hypergraph is
the extension of the simple graph that can represent relationships between any
number of nodes. (a) Simple graph. (b) Hypergraph.

In summary, models with different structures exhibit distinct
performances in the classification of different regions. The CNN
structure (based on regular convolution) shows better classifica-
tion performance in fine regions, whereas the GCN (based on
graph convolution) structure performs better in the classification
of smooth areas. Therefore, it is essential to integrate models
with different structures to enhance the robustness of the model
across different regions. Indeed, many hybrid models [27], [28],
[29], [30], [31] have recently been proposed for HSI classi-
fication and achieve commendable classification performance.
However, the effective fusion of complementary advantageous
information has been overlooked. Existing methods primarily
employ simple fusion strategies, such as linear combination or
concatenation, resulting in the extracted complementary features
not being fully exploited and utilized. Therefore, it is necessary
to propose a more effective fusion strategy, which can efficiently
leverage the complementary advantages of features. In addition,
conventional graphs, focusing on pairwise vertex relationships,
have limitations in modeling intricate land cover distributions.
From the previous experimental results, it is also necessary to
extend GCN into HGCN and construct a hybrid CNN and HGCN
network for HSI classification.

III. PROPOSED DF2NET

The overall structure of our proposed DF2Net is shown in
Fig. 5. We first perform feature extraction and transformation
(FET) of HSI to fit the inputs of different structure models.
Subsequently, the extracted features are processed through two
subnetworks, 1) S2HGCN and 2) S2CN, to extract complemen-
tary advantages features. Finally, the AFDEF module is utilized
to enhance advantageous features, achieving robust classifica-
tion across different regions. A detailed description of the main
modules of the DF2Net is provided ahead.

A. Feature Extraction and Transformation

We denote spectral features of HSI as Xspe ∈ RM×L×B ,
where M, L, and B denote the height, width, and number of
spectral bands, respectively. Then, we extract spatial features
Xspa ∈ RM×L×2 through pixel coordinates, denoted as

Xspa(i, j) = [i, j] (1)

where i and j represent the horizontal and vertical coordinates,
respectively. The spectral features and spatial features are nor-
malized separately and then concatenated together to obtain the

spectral–spatial feature X ∈ RM×L×(B+2), denoted as

X = Xspe ‖ Xspa (2)

the spectral–spatial feature X is directly passed to the S2CN
subnetwork for pixel-level local information extraction.

Considering the large number of pixels in HSI, treating each
pixel as a node in a hypergraph results in a considerable computa-
tional burden. Therefore, we employ the simple linear iterative
clustering [27] algorithm to perform superpixel segmentation
on the HSI data, replacing pixel nodes with superpixel nodes.
Specifically, we obtain a transformation matrix Q ∈ RML×N

where N denotes the number of superpixels that can map the
associations between pixels and superpixels [27], denoted as

Qi,j =

{
1, if X̃i ∈ Sj

0, otherwise
(3)

where X̃ = Flatten(X), represents the flattened HSI by the
spatial dimension, X̃i is the ith pixel in X̃ and Sj is the jth
superpixel. Therefore, Qi,j can reflect the map of the asso-
ciations between pixel X̃i and superpixel Sj . Finally, we can
achieve pixel-level to superpixel-level feature conversion using
the following formula:

V = Encoder(X;Q) = Q̂T X̃ (4)

where Q̂ denotes the normalized Q by column. V is the super-
pixel node, and its feature is the average value of all pixel points.
V serves as the input to the S2HGCN subnetwork. After the
features V undergo hypergraph convolution, we can similarly
achieve the feature transformation from superpixels to pixels
using the association matrix Q, denoted as

X∗ = Decoder(V;Q) = QV. (5)

B. Spectral–Spatial Hypergraph Convolutional Network

1) Hypergraph construction for HSI: The hypergraph is a gen-
eralization of the graph, enabling a more intricate representation
of relationships. In previous works [32], [33], [34], [35], [36],
[37], the hypergraph is defined as G = (V, E ,W), where V is
the set of vertices, the E is the set of hyperedge, and W is the
hyperedge weight matrix. For a hypergraph G, it is typically
described by an incidence matrix H. Specifically, when given a
vertex v ∈ V and a hyperedge e ∈ E , the incidence matrix H is
defined as

H(v, e) =

{
0, if v ∈ e
1, otherwise

(6)

furthermore, the vertex degree is defined as Dv(v) =∑
e∈ε W (e)H(v, e) and edge degree is defined as De(e) =∑
v∈V H(v, e). For superpixel node vi, we find its K nearest

neighbors Nspe(vi) and Nspa(vi) form the spectral hyperedge
and spatial hyperedge, respectively,

espe(vi) = vi ∪Nspe(vi)

espa(vi) = vi ∪Nspa(vi) (7)

then, all spectral and spatial hyperedges form the spectral and
spatial hypergraph, respectively,

Hspe = espe(v1)|| · · · ||espe(vN )
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Fig. 5. Flowchart of the proposed DF2Net. DF2Net mainly includes four parts. (a) Feature extraction and transformation module FET. (b) S2HGCN for capturing
long-range correlations and complex high-order correlations. (c) S2CN for pixel-level local information extraction. (d) Differential feature enhancement fusion
module AFDEF for mutual enhancement of advantageous features derived from different network structures. (a) FET. (b) S2HGCN. (c) S2CN. (d) AFDEF.

Hspa = espa(v1)|| · · · ||espa(vN ) (8)

where || represents concatenation operation. Finally, the spec-
tral and spatial hypergraph are fused to obtain the hypergraph
representation of HSI Hspea

Hspea = Hspe||Hspa (9)

2) Hypergraph Convolution: convolution operation on the hy-
pergraph is similar to graph convolution [32]. After obtaining the
superpixel node features V and the hypergraph representation of
HSI Hspea, the convolution operation on the hypergraph can be
formulated by

Y = D
− 1

2
v HspeaWD−1

e Hspea
TD

− 1
2

v VΘ (10)

where Dv and De denote, respectively, the diagonal matrix of
the vertex degrees and edge degrees ofHspea, W is the hyperedge
weight matrix, andΘ is the parameter to be learned. In this study,
we use two-layer hypergraph convolution to realize the mining
of higher-order correlations contained in HSI, formulated by

Ŷ = σ
(
Tσ

(
TVΘ(1)

)
Θ(2)

)
(11)

where T = D
− 1

2
v HspeaWD−1

e Hspea
TD

− 1
2

v , σ is nonlinear acti-
vation function, and Θ(1) with Θ(2) are the learnable weight
parameters. Y is the output signal. To enhance the stability
of the hypergraph convolution, Y is processed through a fully
connected layer

ỸS2HGCN = σ
(
WfcŶ + bfc

)
(12)

where Wfc is the weight matrix and bfc is the bias term. Finally,
we can similarly achieve the feature transformation from super-
pixels to pixels using the association matrix Q, formulated by

YS2HGCN = Decoder
(

ỸS2HGCN;Q
)
= QỸS2HGCN. (13)

C. Spectral–Spatial Convolution Network

In the S2CN network, we utilize SSConv [27], [38] for pixel-
level local information extraction. Compared to the traditional

2-D CNN structure, SSConv can greatly reduce the parameters
and enhance the robustness to overfitting. Specifically, SSConv
consists of two independent convolutional layers: 1) spectral
dimension convolution and 2) spatial dimension convolution.
In a spectral dimension convolutional layer, we utilize a 1 × 1
convolutional kernel to do a nonlinear transformation of each
image element in spectral–spatial feature X, formulated as

Yspe = σ(Wspe ∗ BN(X) + bspe) (14)

where σ is activation function, Wspe is the weight of the spectral
dimension convolution, bspe is the bias of the spectral dimension
convolution, * denotes the convolution operation. Through the
convolutional transformation of HSI using a 1× 1 convolutional
kernel, deep spectral features can be extracted using fewer
parameters. Then, the spatial dimensional convolutional layer
performs a 2-D convolution using a 2-D convolutional kernel on
Yspe, denoted as

YSSConv = σ(Wspa ∗ Yspe + bspa) (15)

where Wspa is the weight of the spatial dimension convolution
and bspa is the bias of the spatial dimension convolution. SSconv
can utilize all channels of the image element in the feature
extraction process at the same time, and its spectral dimensional
receptive field is not limited, so it can extract the spatial–spectral
features more effectively. In this study, we utilize a two-layer
SSConv to construct the S2CN subnetwork, aiming to explore
pixel-level local information. The final output of the S2CN
subnetwork is denoted as YS2CN.

D. Advantageous Feature Differential Enhancement Fusion

In Section II, we have demonstrated that different structure
models extract distinct advantageous features. Specifically, the
CNN structure exhibits superior classification performance in
fine regions, whereas the GCN/HGCN structure exhibits supe-
rior classification performance in smooth regions. Therefore,
to enhance the classification robustness of the model, in this
section, we introduce AFDEF to achieve mutual enhancement
between different structure models with distinct advantageous
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features, thereby achieving good classification performance in
different regions. The principle of the AFDEF module [39] is
analogous to differential amplifier circuits in which the com-
mon features are suppressed and the advantageous features are
amplified, which can be formulated as

YS2HGCN =
YS2HGCN + YS2HGCN

2
+

YS2CN − YS2CN

2

=
YS2HGCN + YS2CN

2
+

YS2HGCN − YS2CN

2
(16)

YS2CN =
YS2CN + YS2CN

2
− YS2HGCN − YS2HGCN

2

=
YS2CN + YS2HGCN

2
+

YS2CN − YS2HGCN

2
(17)

where the accumulation part YS2HGCN + YS2CN reflects com-
mon features, and the differential part YS2HGCN − YS2CN and
YS2CN − YS2HGCN reflects advantageous features captured by
S2HGCN and S2CN structure. Therefore, The core of AFDEF
is to preserve the original features and compensate according to
the differential features. The workflow of the AFDEF module
is illustrated in Fig. 5(d). We first obtain the differential feature
YD by direct subtraction of two subnetworks, denoted as

YD = YS2HGCN − YS2CN. (18)

Then, we obtain the derivation of the fusion weight vector Vw

formulated as

Vw = Tanh(FC(YD)) (19)

where FC represents a fully connected layer, and Tanh is the
activation function, which normalizes the fusion weights to the
range of−1 to 1. Subsequently, the features YS2HGCN and YS2CN

from the two subnetworks are recalibrated by the fusion weight
vector Vw through channelwise multiplication, resulting in the
advantageous complementary features YAHG and YACN extracted
by S2HGCN and S2CN, respectively,

YAHG = VwYS2HGCN

YACN = VwYS2CN (20)

finally, the complementary features YAHG and YACN are added
to the original feature as complementary information, resulting
in a more discriminative feature representation

ỸS2HGCN = YS2HGCN + ηACNYACN

ỸS2CN = YS2CN + ηAHGYAHG (21)

compared to the work in [39], we introduce an enhancement
factorη to amplify advantageous features. The enhanced features
from the two subnetworks ỸS2HGCN and ỸS2CN are then fused
and through a fully connected layer to output the classification
result

Y = FC
(
γỸS2HGCN + (1− γ)ỸS2CN

)
(22)

where γ represents the fusion weight.

TABLE I
CATEGORY INFORMATION OF THE INDIAN PINES DATASET

The cross-entropy is employed as the loss function for DF2Net

Loss = − 1

N

N∑
i=1

C∑
j=1

yij log(pij) (23)

where N is the number of samples, C is the number of classes,
y represents the true labels, and p represents the predicted
probabilities.

IV. EXPERIMENTAL

A. Dataset Description

In this section, we evaluate the proposed DF2Net on four
HSI benchmark datasets, i.e., Indian Pines, University of Pavia,
Xuzhou, and LaoYu River dataset.

1) Indian Pines Dataset: The Indian Pines dataset was col-
lected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) over Northwestern Indiana, USA, in 1992 [40]. The
dataset comprises 145×145 pixels with a spatial resolution of
20 m and a spectral resolution of 10 nm. After filtering out the
noisy bands, the remaining 200 bands from the original dataset,
containing 10 366 samples, labeled into 9 different classes are
used for further analysis and experimentation. Since the Indian
Pines dataset suffers from severe class imbalance issues. For
instance, the Oats comprise only 20 pixels, posing challenges for
accurate classification. Therefore, 1%, 1%, and 98% of labeled
samples per class are chosen as the training, validation, and
testing sets, respectively. The detailed category information is
shown in Table I.

2) University of Pavia Dataset: The University of Pavia
dataset was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor over the University of Pavia,
Italy, in 2001 [41]. The dataset comprises 610×340 pixels with
a spatial resolution of 1.3 m. After removing the disturbing
bands, the remaining 103 bands, containing 207 400 samples,
labeled into 9 different classes are used for further analysis and
experimentation. Since the University of Pavia dataset has a
higher proportion of labeled samples (over 20%), Therefore,
0.1%, 0.1%, and 99.8% of labeled samples per class are chosen
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TABLE II
CATEGORY INFORMATION OF THE UNIVERSITY OF PAVIA DATASET

TABLE III
CATEGORY INFORMATION OF THE XUZHOU DATASET

as the training, validation, and testing sets, respectively. The
detailed category information is shown in Table II.

3) Xuzhou Dataset: The Xuzhou dataset was collected by
an airborne HYSPEX hyperspectral camera over the Xuzhou
peri-urban site in November 2014 [42]. This dataset consists of
500 × 260 pixels, with a very high spatial resolution of
0.73 m/pixel. After removing the disturbing bands, the remain-
ing 436 bands are used for further analysis and experimentation.
About 0.1%, 0.1%, and 99.8% of labeled samples per class are
chosen as the training, validation, and testing sets, respectively.
The detailed category information is shown in Table III.

4) LaoYu River Dataset: The LaoYu River dataset was col-
lected by OHS satellite over Dianchi Lake and its adjacent LaoYu
River wetland parks. In this area, a large number of Metasequoias
have been planted along Dianchi Lake, which plays a crucial role
in purifying the water quality of Dianchi Lake and protecting the
ecological environment. The dataset consists of 391×591 pixels
with the spatial resolution of 10 m. The wavelength range of the
LaoYu River dataset is 0.4 to 1μm. After removing the disturbing
bands, the remaining 32 spectral bands in the dataset are labeled
into 8 different classes for further analysis and experimentation.
Since, the LaoYu River dataset has a low spatial resolution, 0.3%,
0.3%, and 99.4% of labeled samples per class are chosen as the
training, validation, and testing sets, respectively. The detailed
category information is shown in Table IV.

B. Implementation Details

1) Comparison With State-of-the-Art Models: Eight state-of-
the-art deep learning models are selected for comparison: 1)
2DCNN [19], 2) multiscale 3-D deep CNN (M3DCNN) [20],

TABLE IV
CATEGORY INFORMATION OF THE LAOYU RIVER DATASET

3) hybrid spectral network (HybridSN) [22], 4) RNN [18],
5) GCN [24], 6) the feature fusion hypergraph convolution
neural network (F2HGNNss) [35], 7) CNN-enhanced GCN
(CEGCN) [27], and 8) attention multihop graph and multiscale
convolutional fusion network (AMGCFN) [29]. In these meth-
ods, M3DCNN and HybridSN are based on the CNN struc-
ture, GCN and F2HGNNss are based on the graph/hypergraph
structure, and CEGCN and AMGCFN are based on the hybrid
network structure.

2) Evaluation Metrics: To comprehensively evaluate the per-
formance of the proposed DF2Net and other state-of-the-art
models, four evaluation metrics are adopted, namely 1) OA, 2)
average accuracy (AA), 3) kappa coefficient (KC), and 4) per
class classification accuracy. In addition, all results presented in
this article are the mean values of 10 experiments for consistency.

3) Configuration of Hyperparameters: The number of layers
for both S2CN and S2HGCN subnetworks is set to 2. For the
S2CN subnetwork, the size of convolutional kernels is set to
5×5, and the number of channels in the first and the second
layers are set to 128 and 64, respectively. For the S2HGCN
subnetwork, the superpixel density for the University of Pavia
and Xuzhou datasets during the SLIC process is set to 100. For
the Indian Pines and LaoYu River datasets, the superpixel density
is set to 50 as they have a low spatial resolution. The number
of channels in the first and the second layers of the S2HGCN
subnetwork are set to 128 and 64. The number of neighbor nodes
for superpixel nodes K is set to 10. The fusion weight γ is set
to 0.95 and the enhancement factor η is set to 0.2. We utilize
the Adam optimizer to train DF2Net with a weight decay set of
0.0005. The initial learning rate is set to 0.001, and DF2Net is
trained for 600 epochs. All experiments are conducted on the
PyTorch platform, utilizing the NVIDIA GeForce RTX 3060
GPU for hardware acceleration.

C. Comparison of Classification Performance

In this section, we compare and analyze the results of all
methods on each dataset separately. The classification accuracies
of different methods are detailed in Tables V–VIII and the
classification result maps generated by these methods are shown
in Figs. 6–9,

1) Indian Pines Dataset: As shown in Table V, M3DCNN
performs poorly on the Indian Pines dataset, with OA of 61.36%
and KC of 55.43%. In addition, in Fig. 6(c), the classification
result maps of M3DCNN exhibit a lot of pepper-salt noise.
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TABLE V
CLASSIFICATION RESULTS (%) ON THE INDIAN PINES DATASET

Fig. 6. Classification maps on the Indian Pins dataset. (a) False-color image. (b) Ground truth. (c) M3DCNN. (d) HybidSN. (e) RNN. (f) GCN. (g) F2HGNNss.
(h) CEGCN. (i) AMGCFN. (j) DF2Net.

This is mainly due to the high dependence of M3DCNN on
training samples, resulting in poor classification performance
when facing with limited and imbalanced samples. HybridSN
integrates convolutions from different dimensions, enhancing its
representative capacity. However, its classification performance
remains unsatisfactory. We also compared the classification
performance of RNN when there is a lack of samples, and
the results were similarly poor. Simple GCN surpasses Hy-
bridSN by 1% in OA, benefiting from its effective modeling of

nonlocal features and the utilization of unlabeled samples
through the graph structure. Compared to GCN, F2HGNNss
utilizes the hypergraph to capture high-order correlations, sig-
nificantly enhancing the classification performance of HSI. For
instance, F2HGNNss achieves smoother and more accurate
classification for class 7, as illustrated in Fig. 6. But both GCN
and F2HGNN are based on superpixel nodes, which results in
the loss of pixel-level spectral information, leading to poorer
classification performance in fine regions.
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Fig. 7. Classification maps on the University of Pavia dataset. (a) False-color image. (b) Ground truth. (c) M3DCNN. (d) HybridSN. (e) RNN. (f) GCN.
(g) F2HGNNss. (h) CEGCN. (i) AMGCFN. (j) DF2Net.

TABLE VI
CLASSIFICATION RESULTS (%) ON THE UNIVERSITY OF PAVIA DATASET

For hybrid networks, CEGCN combines CNN and GCN into
a hybrid network, which was expected to have good classifica-
tion performance but yielded poor experimental results. This is
mainly because it employs a simple concatenation strategy to
fuse features from different structures, failing to effectively uti-
lize advantageous complementary information. Building upon
CEGCN, AMGCFN introduces an attention multihop graph and
various attention fusion mechanisms to enhance the extraction
and utilization of deep features, achieving OA of 85.18%. How-
ever, improving the representation capability of GCN subnet-
works for high-order correlations through multihop graphs is
not a favorable direction, as it leads to feature oversmoothing
and consumes a considerable amount of memory resources. Our
proposed DF2Net achieved the best classification performance
with an OA of 87.06%. DF2Net combines hypergraph convolu-
tion with convolution and utilizes the AFDEF module to achieve
mutual enhancement of advantageous features derived from dif-
ferent network structures, thereby improving the classification
robustness of different regions in HSI, as shown in Fig. 6.

2) University of Pavia Dataset: Compared to the Indian
Pines dataset, the University of Pavia dataset has more labeled
samples and is more balanced. Thus, the OA of both M3DCNN
and RNN is improved. For GCN, its OA reaches 86.44%, but
its AA is only 77.48%, indicating an imbalance issue in its
classification performance. For instance, in classes 9 and 4
with fewer samples, its accuracy is only 44.42% and 65.01%,
respectively. In addition, from Fig. 7, it can be observed that
GCN performs poorly in classifying asphalt, particularly at road

intersections, indicating its weak representation capability for
the complex land cover distributions contained in HSI. In con-
trast, F2HGNNss exhibits superior classification performance
at road intersections, as depicted in Fig. 7. This validates the
stronger representational power of hypergraphs over simple
graphs for capturing complex correlations. The hybrid net-
works CEGCN and AMGCFN achieve high OA of 90.47% and
89.87%, respectively. However, the classification accuracy for
class 9 is below 60% and indicates that there is also an imbalance
issue in classification performance. As shown in Table VI,
our proposed DF2Net exhibits good classification performance
across all classes. Particularly, it achieves an accuracy of 90.85%
even in class 9, where other methods perform poorly. In addition,
all the comparative methods exhibited notable variability in
results across multiple runs, indicating instability in their per-
formance. The proposed DF2Net demonstrates relatively stable
performance on the University of Pavia dataset.

3) Xuzhou Dataset: As shown in Table VII, hybrid structure
networks exhibit superior classification performance compared
to single-structure networks. For example, CEGCN achieves
an OA of 94.52% while GCN achieves an OA of 91.56%.
This is mainly due to their ability to extract complementary
information at different levels. As shown in Fig. 8, M3DCNN
and RNN exhibit a significant amount of pepper-salt noise. In all
classification methods, our proposed DF2Net achieved the best
classification performance on the Xuzhou dataset, with OA of
95.49% and KC of 94.29%. Compared to the single hypergraph
convolutional network structure F2HGNNss, DF2Net exhibits
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TABLE VII
CLASSIFICATION RESULTS (%) ON THE XUZHOU DATASET

Fig. 8. Classification maps on the Xuzhou dataset. (a) False-color image. (b) Ground truth. (c) M3DCNN. (d) HybidSN. (e) RNN. (i) AMGCFN. (j) DF2Net.

Fig. 9. Classification maps on the LaoYu River dataset. (a) False-color image. (b) Ground truth. (c) M3DCNN. (d) HybridSN. (e) RNN. (f) GCN. (g) F2HGNNss.
(h) CEGCN. (i) AMGCFN. (j) DF2Net.

a 3% improvement in OA. This is mainly attributed to
the loss of pixel-level local information in F2HGNNss.
DF2Net combines S2HGCN and S2CN subnetworks to mine
information at different abstraction levels, effectively enhancing
classification performance. In addition, it is noteworthy that
DF2Net surpasses CEGCN and AMGCFN by 1% in OA,
further validating its capability in extracting and integrating
advantageous complementary features.

4) LaoYu River Dataset: Three important observations need
to be emphasized again. First, graph-based methods are better at
capturing global features while regular convolution-based meth-
ods are better at capturing local features. As shown in Fig. 9(c),
M3DCNN can effectively extract textures of land covers and
classify the fine areas better. In addition, RNN also extracts tex-
ture details of the land covers well, as shown in Fig. 9(e). How-
ever, they exhibit errors in large-area classification, for instance,
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TABLE VIII
CLASSIFICATION RESULTS (%) ON THE LAOYU RIVER DATASET

TABLE IX
CLASSIFICATION RESULTS (%) OF DIFFERENT SUBNETWORKS ON EACH DATASET

Fig. 10. Visualization of different subnetworks on the University of Pavia
dataset. (a) False-color image. (b) Ground truth. (c) S2CN. (d) S2HGCN.
(e) DF2Net.

misclassifying many other tree species as metasequoia. In con-
trast, GCN and F2HGNNss demonstrate better performance in
large-area classification, as shown in Fig. 9(f) and (g). However,
since they are superpixel-based methods, a large amount of
pixel-level information is lost. In addition, due to oversmoothing
issues, nodes within the same connected component tend to
converge to the same value (the class with the highest number
of nodes). Therefore, in the results in Fig. 9(e) and (g), many
regions are incorrectly classified as asphalt. Second, hyper-
graphs demonstrate better performance than graphs. As shown in
Table VIII, the OA and KC of F2HGNNss increased by about 4%
compared to GCN. Third, hybrid networks demonstrate more
robust classification performance compared to single-structure
networks. For example, CEGCN achieves an OA of 88.20% and
AMGCFN achieves an OA of 89.46%. They are approximately
5% higher than GCN. Among all hybrid structure methods, the
proposed DF2Net achieved the best classification results, with
an OA of 90.15%, AA of 81.74%, and KC of 88.10%. This once
again validates the effectiveness of extending simple graphs to
hypergraphs in DF2Net, as well as the impactful role of the
introduced AFDEF module.

V. DISCUSSION

A. Comparison of Subnetworks

In this section, we design and conduct various ablation
experiments on four datasets to evaluate the effectiveness of
each module. Specifically, we first compare the performance of
two subnetworks, S2HGCN and S2CN, along with DF2Net. The
experimental results are shown in Table IX. Since, the University
of Pavia dataset covers typical fine and smooth regions, we pro-
vide the visualization of different subnetworks on the University
of Pavia dataset, as is shown in Fig. 10.

From Table IX, it can be observed that the S2CN subnet-
work exhibits better classification performance on the Uni-
versity of Pavia dataset compared to S2HGCN. Conversely,
S2HGCN demonstrates better classification performance on the
Indian Pines dataset. The reasons could be as follows: First,
the University of Pavia and Xuzhou datasets have larger im-
age dimensions, leading to a higher density of superpixels.
Consequently, a substantial amount of local spectral–spatial
information remains uncaptured by the S2HGCN network based
on superpixel nodes. Second, the University of Pavia dataset
contains more fine regions; hence, the convolution-based S2CN
has more advantages on this dataset. From Fig. 10(c), we observe
that S2CN exhibits better classification performance in fine
regions such as region A, but its performance is poorer in region
B. In Fig. 10(d), S2HGCN demonstrates better classification
performance in smooth region B, yet it performs poorly in
identifying shadows in region A due to pixel-level information
loss. In Fig. 10(e), our proposed DF2Net achieves accurate clas-
sification performance across different types of regions by in-
tegrating two subnetworks, demonstrating robust classification
performance.
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Fig. 11. Classification accuracies of DF2Net with the S2HGCN subnetwork under different segmentation scales on each dataset. (a) Indian Pines. (b) University
of Pavia. (c) Xuzhou. (d) LaoYu River.

Fig. 12. Classification accuracies under different training label ratios on each dataset. (a) Indian Pines. (b) University of Pavia. (c) Xuzhou. (d) LaoYu River.

B. Influence of Segmentation Scale

The segmentation scale λ determines the size of superpixels.
A larger λ means that more information about large objects can
be provided while a smaller λ can reduce the loss of pixel-level
spectral–spatial information. Therefore, the segmentation scale
λ has an impact on the classification performance of DF2Net.
As shown in Fig. 11, we tested the classification performance
of DF2Net and S2HGCN subnetworks on four datasets under
different segmentation scales λ. Specifically, for the Indian Pines
dataset with a smaller size, segmentation scale λ was set to 10,
30, 50, 70, and 90. For the University of Pavia, Xuzhou, and
LaoYu River datasets with larger sizes, segmentation scale λ

was set to 50, 100, 200, 300, and 400. We can observe that
as the segmentation scale λ increases, the performance of the
S2HGCN subnetwork rapidly decreases due to the increasing
loss of pixel-level information. However, DF2Net achieves good
classification performance across different segmentation scale λ

sizes by combining the S2HGCN and S2CN subnetworks. This
phenomenon indicates that the influence of segmentation scale
λ on the hybrid network diminishes.

C. Comparison of Different Training Sample Ratios

As we all know, labeled pixels in HSI are usually rare and
expensive to acquire. Therefore, in the previous experiments,
we evaluated the HSI classification performance of our proposed
DF2Net using a small sample. To further validate the robustness
of DF2Net, we tested its classification performance on four
datasets under different ratios of labeled samples. Specifically,
for the Indian Pines dataset, as its low sample annotation rate and
validation imbalance, we selected training proportions of 1%,
2%, 3%, 4%, and 5%. For the University of Pavia, Xuzhou, and

LaoYu River datasets, given their abundance of labeled samples,
we chose training proportions of 0.1%, 0.2%, 0.3%, 0.4%, and
0.5%. As shown in Fig. 12, it is observed that the performance of
all methods improves with an increase in the number of training
samples. Overall, hybrid networks outperform single-structure
networks. Our proposed DF2Net demonstrates significant ad-
vantages in scenarios with limited labeled samples, which may
be attributed to the utilization of more unlabeled samples facil-
itated by the hypergraph.

D. Fusion Strategy Analysis

In this section, we compared different fusion strategies,
including simple concatenation, direct addition (where each
branch is multiplied by 0.5 before addition), and AFDEF. The
experimental results are presented in Table X. It can be observed
that different fusion strategies have a significant impact on the
final classification performance, especially on the Indian Pines
dataset. Using the concatenation method only achieves an OA
of 75.72% while using AFDEF can achieve an OA of 87.06%.
In addition, the fusion strategy of direct addition achieves an
OA of 79.43%, which is 4% higher than the concatenation. This
could be attributed to the poor classification performance of the
S2CN subnetwork on the Indian Pines dataset when faced with
limited and imbalanced samples. Employing fusion strategies
such as simple concatenation, and direct addition, especially
simple concatenation, at this time may lead the fusion network
to be influenced by the S2CN subnetwork, resulting in the
underutilization of advantageous features. It is noteworthy that
the hybrid network, which employs the AFDEF fusion strategy,
demonstrates strong classification robustness across all four
datasets. As is shown in Fig. 13, we provide the visualization of
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TABLE X
CLASSIFICATION RESULTS (%) OF DIFFERENT FUSION STRATEGIES ON EACH DATASET

Fig. 13. Visualization of different feature fusion strategies on the University
of Pavia dataset. (a) False-color image. (b) Concatenation. (c) Direct addition.
(d) AFDEF.

different feature fusion strategies for all areas on the University
of Pavia dataset, as the University of Pavia dataset covers typical
fine and smooth regions. The classification maps demonstrate
that the AFDEF module can achieve mutual enhancement of
advantageous features derived from different network struc-
tures, thereby enabling robust classification of different regions
in HSI.

VI. CONCLUSION

In this article, we systematically compared the performance
of different network structures (i.e., CNN, GCN, and HGCN)
in HSI classification. The experimental results demonstrate
that the CNN structure achieves better classification results in
fine regions while GCN and HGCN structures perform better
in smooth regions. In addition, the HGCN structure exhibits
better representation ability for complex spectral–spatial in-
formation compared to GCN. However, features extracted by
single-network structures are always partial. To achieve robust
classification across different regions, we propose an advanta-
geous feature enhancement hybrid network, named DF2Net,
for HSI classification. DF2Net consists of two subnetworks:
S2HGCN is employed for capturing long-range correlations and
complex high-order correlations and S2CN for pixel-level local
information extraction, along with an AFDEF module. Through
the AFDEF module, DF2Net achieves mutual enhancement of
advantageous features derived from different network structures,
thereby improving the classification robustness of HSI.

REFERENCES

[1] J. Feng, J. Zhang, T. Li, and Y. Zhang, “Spectral–spatial joint feature
extraction for hyperspectral image based on high-reliable neighborhood
structure,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 9609–9623, Sep. 2021.

[2] B. Lu, P. D. Dao, J. Liu, Y. He, and J. Shang, “Recent advances of
hyperspectral imaging technology and applications in agriculture,” Remote
Sens., vol. 12, no. 16, 2020, Art. no. 2659.

[3] P. Duan, Z. Xie, X. Kang, and S. Li, “Self-supervised learning-based oil
spill detection of hyperspectral images,” Sci. China Technol. Sci., vol. 65,
no. 4, pp. 793–801, 2022.

[4] P. Duan, X. Kang, P. Ghamisi, and S. Li, “Hyperspectral remote sens-
ing benchmark database for oil spill detection with an isolation forest-
guided unsupervised detector,” IEEE Trans. Geosci. Remote Sens., vol. 61,
Apr. 2023, Art. no. 5509711.

[5] W. Sun, G. Yang, J. Peng, and Q. Du, “Lateral-slice sparse tensor robust
principal component analysis for hyperspectral image classification,” IEEE
Geosci. Remote Sens. Lett., vol. 17, no. 1, pp. 107–111, Jan. 2019.

[6] T. V. Bandos, L. Bruzzone, and G. Camps-Valls, “Classification of hy-
perspectral images with regularized linear discriminant analysis,” IEEE
Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862–873, Mar. 2009.

[7] Y. Y. Tang, Y. Lu, and H. Yuan, “Hyperspectral image classification based
on three-dimensional scattering wavelet transform,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 5, pp. 2467–2480, May 2015.

[8] Q. Wang, Y. Gu, and D. Tuia, “Discriminative multiple kernel learning for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 7, pp. 3912–3927, Jul. 2016.

[9] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, “SVM-
and MRF-based method for accurate classification of hyperspectral im-
ages,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736–740,
Oct. 2010.

[10] P. Duan, P. Ghamisi, X. Kang, B. Rasti, S. Li, and R. Gloaguen,
“Fusion of dual spatial information for hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7726–7738,
Sep. 2021.

[11] J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, “Investigation of the
random forest framework for classification of hyperspectral data,” IEEE
Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492–501, Mar. 2005.

[12] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep
learning for hyperspectral image classification: An overview,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709, Sep. 2019.

[13] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural
networks for hyperspectral image classification,” J. Sensors, vol. 2015,
pp. 1–12, 2015.

[14] X. Lu, D. Yang, F. Jia, Y. Yang, and L. Zhang, “Hyperspectral image
classification based on multilevel joint feature extraction network,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 10977–10989,
Oct. 2021.

[15] M. Esmaeili, D. Abbasi-Moghadam, A. Sharifi, A. Tariq, and Q. Li,
“ResMorCNN model: Hyperspectral images classification using residual-
injection morphological features and 3DCNN layers,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 17, pp. 219–243, Oct. 2024.

[16] Y. Ding, X. Zhao, Z. Zhang, W. Cai, and N. Yang, “Multiscale graph sample
and aggregate network with context-aware learning for hyperspectral
image classification,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 14, pp. 4561–4572, Apr. 2021.

[17] H. Hu, M. Yao, F. He, and F. Zhang, “Graph neural network via edge
convolution for hyperspectral image classification,” IEEE Geosci. Remote
Sens. Lett., vol. 19, Sep. 2022, Art. no. 5508905.

[18] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3639–3655, Jul. 2017.

[19] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep
supervised learning for hyperspectral data classification through convolu-
tional neural networks,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2015, pp. 4959–4962.

[20] M. He, B. Li, and H. Chen, “Multi-scale 3D deep convolutional neural
network for hyperspectral image classification,” in Proc. IEEE Int. Conf.
Image Process., 2017, pp. 3904–3908.



WANG et al.: DF2NET: DIFFERENTIAL FEATURE FUSION NETWORK FOR HSI CLASSIFICATION 10673

[21] S. M. M. Nejad, D. Abbasi, A. Sharifi, N. Farmonov, K. Amankulova, and
M. Laszlz, “Multispectral crop yield prediction using 3D-convolutional
neural networks and attention convolutional LSTM approaches,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16, pp. 254–266,
Nov. 2023.

[22] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “HybridSN:
Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image clas-
sification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 277–281,
Feb. 2020.

[23] Y. Ding, Y. Guo, Y. Chong, S. Pan, and J. Feng, “Global consistent graph
convolutional network for hyperspectral image classification,” IEEE Trans.
Instrum. Meas., vol. 70, Feb. 2021, Art. no. 5501516.

[24] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1–14.

[25] A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, and Y. Y. Tang, “Spectral–
spatial graph convolutional networks for semisupervised hyperspectral
image classification,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 2,
pp. 241–245, Feb. 2019.

[26] S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, and J. Yang, “Multiscale
dynamic graph convolutional network for hyperspectral image classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 5, pp. 3162–3177,
May 2020.

[27] Q. Liu, L. Xiao, J. Yang, and Z. Wei, “CNN-enhanced graph convolutional
network with pixel-and superpixel-level feature fusion for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 10,
pp. 8657–8671, Oct. 2021.

[28] Y. Dong, Q. Liu, B. Du, and L. Zhang, “Weighted feature fusion of con-
volutional neural network and graph attention network for hyperspectral
image classification,” IEEE Trans. Image Process., vol. 31, pp. 1559–1572,
Jan. 2022.

[29] H. Zhou, F. Luo, H. Zhuang, Z. Weng, X. Gong, and Z. Lin, “Attention
multihop graph and multiscale convolutional fusion network for hyper-
spectral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 61,
Apr. 2023, Art. no. 5508614.

[30] M. Liu, Z. Chai, H. Deng, and R. Liu, “A CNN-transformer network
with multiscale context aggregation for fine-grained cropland change
detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4297–4306, May 2022.

[31] Q. Yu, W. Wei, D. Li, Z. Pan, C. Li, and D. Hong, “HyperSINet: A
synergetic interaction network combined with convolution and transformer
for hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 62, Feb. 2024, Art. no. 5508118.

[32] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural
networks,” in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, no. 1,
pp. 3558–3565.

[33] Y. Gao, Y. Feng, S. Ji, and R. Ji, “HGNN+: General hypergraph neu-
ral networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3,
pp. 3181–3199, Mar. 2023.

[34] Y. Tian et al., “Fully-weighted HGNN: Learning efficient non-local re-
lations with hypergraph in aerial imagery,” ISPRS J. Photogrammetry
Remote Sens., vol. 191, pp. 263–276, 2022.

[35] Z. Ma, Z. Jiang, and H. Zhang, “Hyperspectral image classification us-
ing feature fusion hypergraph convolution neural network,” IEEE Trans.
Geosci. Remote Sens., vol. 60, Oct. 2022, Art. no. 5517314.

[36] Q. Wang, J. Huang, T. Shen, and Y. Gu, “EHGNN: Enhanced hypergraph
neural network for hyperspectral image classification,” IEEE Geosci.
Remote Sens. Lett., vol. 21, Mar. 2024, Art. no. 5504405.

[37] Y. Yan et al., “Learning multi-granular hypergraphs for video-based person
re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., 2020, pp. 2899–2908.

[38] Q. Liu, L. Xiao, F. Liu, and J. Huan, “SSCDenseNet: A spectral-
spatial convolutional dense network for hyperspectral image clas-
sification,” Acta Electronica Sinica, vol. 48, no. 4, pp. 751–762,
2020.

[39] K. Zhou, L. Chen, and X. Cao, “Improving multispectral pedestrian
detection by addressing modality imbalance problems,” in Proc. Eur. Conf.
Comput. Vis., 2020, pp. 787–803.

[40] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232–6251, Oct. 2016.

[41] X. Lu, J. Zhang, D. Yang, L. Xu, and F. Jia, “Cascaded convolutional
neural network-based hyperspectral image resolution enhancement via
an auxiliary panchromatic image,” IEEE Trans. Image Process., vol. 30,
pp. 6815–6828, Jul. 2021.

[42] K. Tan, F. Wu, Q. Du, P. Du, and Y. Chen, “A parallel Gaussian–Bernoulli
restricted Boltzmann machine for mining area classification with hyper-
spectral imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 12, no. 2, pp. 627–636, Feb. 2019.

Qingwang Wang (Member, IEEE) received the B.E.
and Ph.D. degrees in electronics and information
engineering, and information and communication en-
gineering from the Harbin Institute of Technology,
Harbin, China, in 2014 and 2020, respectively.

From 2020 to 2021, he was a Senior Engineer
with Huawei Technology Company, Ltd., in the area
of autonomous driving. Since 2022, he has been
with the Kunming University of Science and Tech-
nology, Kunming, China. His research interests in-
clude machine learning and its application to remote

sensing data analysis, autonomous driving, and edge calculation, focusing on
developments of deep learning, broad learning, and graph convolutional-neural-
network-based methods for RGB-T images, hyperspectral images, LiDAR data,
and multispectral LiDAR point clouds.

Jiangbo Huang(Graduate Student Member, IEEE)
received the B.S. degree in information and com-
puting science from the Chongqing University of
Posts and Telecommunications, Chongqing, China, in
2022. He is currently working toward the M.S. degree
in computer systems organization with the School of
Information Engineering and Automation, Kunming
University of Science and Technology, Kunming,
China.

His research interests include machine learn-
ing, graph neural networks, and hypergraph neural

networks.

Yuanqin Meng received the double B.E. degrees
in mechatronics from Tongji University, Shanghai,
China, and Zittau/Görlitz University of Applied Sci-
ence, Zittau, Germany, in 2013, and the M.S. degree
in electrical engineering and computer science from
the Technical University of Berlin, Berlin, Germany,
in 2016. She is currently working toward the Ph.D.
degree in computer science and technology with
the Kunming University of Science and Technology,
Kunming, China.

From 2017 to 2021, she was a Software Devel-
oper with ALTRAN Deutschland S.A.S & CO.KG, Wolfsburg, Germany. Her
research interests include deep learning, medical data processing, image seg-
mentation, and their applications in clinical practice.

Tao Shen (Member, IEEE) received the Ph.D. degree
in electrical engineering from the Illinois Institute of
Technology, Chicago, IL, USA, in 2013.

He is currently a Professor with the Faculty
of Information Engineering and Automation, Kun-
ming University of Science and Technology, Kun-
ming, China. His research interests include intelligent
perception and computation, artificial intelligence,
blockchain, and industrial Internet.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


