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A Deep Learning Framework: Predicting Fire
Radiative Power From the Combination of
Polar-Orbiting and Geostationary Satellite

Data During Wildfire Spread
Zixun Dong , Change Zheng , Fengjun Zhao , Guangyu Wang , Ye Tian , and Hongchen Li

Abstract—Fire radiative power (FRP) is a key indicator for
evaluating the intensity of wildfires, unlike traditional real-time
fire lines or combustion areas that only provide binary informa-
tion, and its accurate prediction is more important for firefighting
actions and environmental pollution assessment. To this end, we
used a combination of data from geostationary satellites and polar
orbit satellites to correct the FRP data. Incorporating various
factors that affect wildfire spread, such as meteorological condi-
tions, topography, vegetation indexes, and population density, we
constructed a comprehensive California wildfire spread dataset,
covering information since 2017. Then, we established a deep
learning framework that integrates various modules to analyze
multimodal data for the accurate prediction of FRP imagery. We
investigated the impact of input sequence length and loss function
design on model predictive performance, leading to subsequent
model optimization. Furthermore, our model has demonstrated
acceptable performance in transfer learning and multistep predic-
tion, emphasizing its application value in wildfire prediction and
management. It can provide more detailed information about wild-
fire spread, showcasing the powerful capability of deep learning to
process multimodal data and its potential in the emerging field of
real-time FRP prediction.

Index Terms—Deep learning, fire radiative power (FRP), remote
sensing, spatiotemporal prediction, wildfire.

I. INTRODUCTION

W ILDFIRES, recognized as one of the most severe natural
disasters globally, have exhibited a significant increase

in intensity and frequency in recent years, destroying communi-
ties and ecosystems [1], [2]. Taking Canada as an example, 6551
wildfires occurred in 2023, burning more than 40 million acres,
the largest burned area in the country’s history. Hundreds of these
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wildfires spread over more than four months, resulting in the
release of large amounts of greenhouse gases and air pollution
from the fires that affected the atmosphere across Canada and
even reached Europe. The accumulation of greenhouse gases in
the atmosphere leads to global warming, which in turn triggers
more extreme weather conditions such as abnormal rainfall,
vegetation drying, strong winds, high temperatures, and high-
frequency lightning strikes [3]. These conditions make vegeta-
tion more prone to ignition. Once ignited, the burning vegetation
releases more greenhouse gases, exacerbating their accumula-
tion in the atmosphere and further driving global warming. These
processes creates a reinforcing feedback loop, intensifying the
frequency and intensity of wildfires [4].

While various methods are used to reduce the risk of wildfire,
wildfires still occur due to lightning strikes and human careless-
ness, especially in extreme weather conditions [4]. The ability
to accurately predict the spread of wildfires is crucial for effec-
tive wildfire management, including the timely deployment of
firefighting resources, resident evacuation plans, and emergency
response measures [5], [6].

Current wildfire spread prediction models focus on either the
spread rate at each point on the fire line or the position of the fire
line or burning area at the subsequent time step, representing the
overall propagation and extent of the wildfire.

Fire-point spread rate predictions can be further subcatego-
rized into two broad categories. First, empirical models establish
relationships of fire spread rate based on experimental data [7],
rendering them suitable for specific conditions but potentially
inadequate in complex environments [8], [9]. Second, physical
models [10], grounded in thermodynamic principles, analyze
wildfire spread through the mechanisms of heat conduction, con-
vection, and radiation, offering broader applicability. However,
these two methods focus on the spread rate of one certain fire
point and cannot predict large-scale fires, such as those using
remote sensing as a data source. [11], [12].

Various mathematical models have been developed to predict
not only the rate of spread but also to forecast the trend and
shape of fire behavior. These models, utilizing mathematical
equations and incorporating physical principles, construct de-
tailed simulations of wildfire behavior. Ranging from the earliest
Huygens’ principle model [13] such as FARSITE [14] and graph
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theory models [15], [16] to level set [17] and cellular automata
(CA) [18], they have deepened the understanding of forest fire
behavior by offering a 2-D perspective from local details to
overall form, thus providing more comprehensive predictions of
the path and shape of fire spread. Although, Huygens’ principle
and CA are commonly used as benchmark comparisons for
newer models [16], [19]. The prediction principles of these
models mostly require some prior knowledge and empirical
formulas, which leads to questionable accuracy and insufficient
scale to predict large-scale fires [20], [21].

The development of satellite and sensor technologies has
facilitated the application of machine learning, specifically deep
learning, in remote sensing. For instance, Hong et al. [22]
constructed a novel collection of multimodal remote sensing
benchmark datasets, encompassing hyperspectral, multispectral,
and SAR data, to facilitate research on cross-city semantic
segmentation tasks. Additionally, he proposed a high-resolution
domain adaptation network to address the challenges associated
with such tasks. Hong et al. [23] introduced SpectralGPT, a
groundbreaking universal RS foundation model, specifically
engineered to tackle spectral RS images using an innovative 3-D
generative pretrained transformer (GPT). Li et al. [24] presented
a new hyperspectral anomaly detection baseline network and
demonstrated the model’s scalability by displaying the good
evaluation results of eight datasets.

Indeed, alongside the aforementioned general deep learning
networks, there have been notable advancements in developing
architectures tailored specifically for wildfire applications [25],
[26]. For example, Fantine Huot [27] used Google Earth Engine
(GEE) [28] to establish the “Next Day Wildfire Spread” dataset,
incorporating MOD14A1 wildfire information (Fire mask band)
and 11 remote sensing variables, and applied a convolutional
autoencoder (AE) to predict the wildfire spread. The results have
better accuracy than logistic regression and random forest mod-
els, thus, highlighting the potential for predicting wildfire spread
using remote sensing imagery. Marjani et al. [29] established a
dataset of wildfires across Canada and Alaska from 2001–2019,
incorporating MCD14ML wildfire and environmental variables.
The predicting model’s architecture is divided into four parts:
hourly, daily, constant, and combination modules to extract
features from different modalities and perform binary prediction
for each pixel. Comparative experiments were conducted on
diverse combinations of loss functions, padding sizes, batch
sizes, and thresholds, with the best model achieving over 90%
accuracy. The study also analyzed the impact of environmental
variables on fire behavior within the models.

All the methods mentioned above primarily focus on predict-
ing either the spread rate of points on the fire line or the area
of fire combustion. However, even with the recent integration of
deep learning techniques into spreading prediction, the focus
has mainly revolved around classifying individual pixels as
either fire or nonfire, without providing insight into the burning
intensity of the fire pixels [19], [30], [31]. Predicting the extent
of fire spread alone cannot provide sufficient information to
guide firefighting efforts. Lack of prediction of fire intensity
may lead to uneven resource allocation and waste of limited
firefighting resources. If we can accurately predict the intensity

of fire combustion and combine it with the area of fire spread,
we can develop more reasonable resource allocation strategies
to concentrate limited resources in the areas where the fire is
most intense, in order to maximize the outcome of firefight-
ing [32]. For example, we can prioritize aerial firefighting efforts
in areas with higher fire intensity to maximize the impact of
limited resources [33], [34], [35]. In addition, by predicting the
intensity of fire combustion, we can better assess the degree of
threat that fires pose to the environment and lives. For wildfires,
understanding the burning intensity of each location can help us
predict smoke diffusion, harmful gas emissions, and the impact
of fires on surrounding vegetation and wildlife. These pieces of
information are crucial for developing response measures, pro-
tecting the ecological environment, and ensuring life safety [36].
Therefore, the focus of our research is to address this gap by
developing a novel approach that aims to predict the fire intensity
at all locations within the area at the next timestep or several
timesteps. This innovation has the potential to significantly
enhance resource allocation and response strategies, ultimately
improving the effectiveness and efficiency of firefighting efforts.

Fire intensity represents the energy released per unit area by
the combustion of organic matter technically speaking, typically
measured in Wm−2, can broadly encompass fire line intensity,
temperature, residence time, and radiative energy [37]. With ad-
vancements in remote sensing technology, we now have access
to more extensive wildfire characteristic data [38]. Currently,
remote sensing data related to wildfires are mainly divided into
two categories: the burned area product [39] and the active fire
product [38]. FRP, as an important part of active fire product, is
commonly retrieved using the Wooster method, which involves
calculating FRP at each identified fire pixel using midinfrared
(MIR) radiometry. FRP not only reflects the thermal energy
release of flames directly but also correlates significantly with
biomass consumption [40], smoke emissions [36], aerosol op-
tical depth (AOD) [34], [41], and particulate matter (PM) con-
centration [35]. In summary, accurately predicting FRP during
wildfire spread is crucial for understanding fire behavior and
its associated environmental pollution, making it an important
parameter in fire behavior studies.

Despite the integration of mature FRP remote sensing
products into various sensors, both geostationary (e.g., Me-
teosat Spinning Enhanced Visible and InfraRed Imager (SE-
VIRI) [42], Geostationary Operational Environmental Satellite
(GOES) Advanced Baseline Imager (ABI) [43]) and polar-
orbiting sensors (e.g., Aqua/Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) [44], Suomi National Polar-
orbiting Partnership (Suomi NPP) Visible Infrared Imaging
Radiometer Suite (VIIRS) [45]) have their limitations in accu-
rately characterizing FRP. Geostationary sensors offer frequent
retrieval but are limited by coarse spatial resolution, affecting
the detection of subpixel fires and fires with low intensity. For
instance, SEVIRI provides data every 15 min at a 3 km spatial
resolution, hindering the detection of fires with FRP less than
50 MW [42], [46]. In contrast, polar-orbiting sensors can detect
smaller and cooler fires but are limited by orbital characteris-
tics, leading to lower temporal resolution. For example, VIIRS
provides FRP products at 375 and 750 m resolutions only once
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a day [45]. Therefore, fusion of data from both types of sensors
can result in FRP images with high spatiotemporal resolution.
So far, a fusion of sensors such as Himawari-8 and VIIRS [47],
[48], along with MODIS and GOES [49], has shown promising
results in subsequent fire emission assessments.

At present, there is a lack of relevant research and typical
algorithms for real-time prediction of fire radiation power based
on traditional methods or deep learning. We believe there are
two main reasons for this. First, at the data level, the number
and comprehensiveness of field samples are insufficient. Sec-
ond, traditional methods make it difficult to handle multimodal
data and predict nonlinear problems. In response to these two
issues, a large amount of remote sensing data provides a dataset
guarantee, and deep learning also has the ability to handle feature
extraction and nonlinear modeling of grid-based images. There-
fore, the main purpose of this study is to explore the potential
of deep learning architectures in predicting fire radiation power
in the field of remote sensing, rather than comparing them with
traditional models.

To our knowledge, we are the first study to conduct FRP
prediction of grid-based images. Based on this starting point,
our approach is to model the FRP of remote sensing images
using deep learning. There are three challenges in this work.

1) The accuracy of data affects the accuracy of the trained
model, but FRP data have strong uncertainty [50] and the
comprehensiveness of the impact factors on the wildfire
dataset is lacking [27].

2) At present, there are many studies on deep learning in
spatiotemporal modeling, but for complex multisource
input problems such as wildfires, benchmark models have
not yet been established [29].

3) In terms of deep learning modeling, model optimization,
analysis of influencing factors, and temporal characteris-
tics are important but difficult and insufficient [27].

We have completed the following tasks in response to the
above challenges.

1) We combined MODIS and GOES FRP products to de-
rive the fire diurnal cycle reasonably and collected re-
mote sensing images of wildfire spread driving factors
combined with corrected daily maximum FRP images to
establish a dataset.

2) We developed a deep learning model framework specifi-
cally designed for analyzing remotely sensed multimodal
data.

3) We performed optimization techniques to determine the
optimal time series length and loss function given three
different encoders1 and discussed the impact of various
driving factors on model prediction and the model’s ability
in transfer learning and multistep prediction.

The rest of this article is organized as follows. Section II
introduces the sources and integration of data for historical
remote-sensing data. Section III describes our network frame-
work and evaluation metrics. Section IV optimized the time
series length and loss function and demonstrated the model

1The data source, model code, and detailed training methodology are available
at https://github.com/dazhaxie666/FRP_Prediction.

prediction accuracy. Section V discusses the importance of input
features and timeliness of the model, and finally, Section VI
concludes this article.

II. DATASET

Using the data sources available in GEE [28], we propose a
data aggregation workflow that combines historical fire events
with remote sensing data.

A. Research Area and Motivation

The research area is chosen in California, United States, for
two main reasons. First, approximately 33 million acres of forest
in California encompass a wide variety of vegetation types and
provide rich data and ecological diversity for research, as shown
in Fig. 1(a) which illustrates 17 different land cover types.
Second, due to the high frequency of fires, Fig. 1(b), illustrates
the number of fires exceeding 10 000 acres from 2017 to 2022,
along with the total burned area. Our dataset contains significant
fire incidents in California exceeding 10 000 acres since 2017,
totaling 88 cases. The fire data are sourced from the California
Department of Forestry and Fire Protection (CALFIRE2). This
offers a wealth of cases and a diverse ecological background for
our research.

The data is collected at the precise locations and times of
each fire incident within a 64-km by 64-km rectangular area.
In this study, FRP is the core state object, also referred to as
“state data,” while variables closely related to the spread of
fire are considered as driving conditions, termed “condition
data.” Condition data are further divided into two categories:
one is “dynamic data,” primarily consisting of meteorological
information, and the other is “constant data,” including static
variables such as topography, vegetation, and human data. These
have been widely recognized and implemented as driving factors
for wildfire spread, and are used for purposes such as wildfire
monitoring, prediction, and analysis [51], [52], [53]. Condition
data can be also obtained through remote sensing. See Sections
II-B and II-C for more information on remote sensing data
sources, specific resolutions, and processing methods of each
band.

B. State Data

As the predictive output for fire spread, our FRP data are
a combination of MOD14A1, MYD14A1, and GOES-16Hot
Spot Characterization(HSC). The MOD14A1 and MYD14A1
products are from the MODIS sensors on the Aqua and Terra
satellites [44], respectively. The MaxFRP band data provided
on GEE are updated once a day with a spatial resolution of
1 km. MaxFRP data represent the maximum fire radiative power
(FRP) in each pixel, with the corresponding overpass times
for the two products being approximately 1:30 P.M. and 10:30
A.M. [50]. However, the FRP at these moments may not capture
the maximum value for the day, thus we apply an approach
that integrates FRP products with high temporal resolution:

2[Online]. Available: https://www.fire.ca.gov/.
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Fig. 1. (a) California land cover. (b) California fire incident statistics over the years.

first, determine the intensity distribution in time and then op-
timize it in the spatial domain. To achieve this, we select the
GOES-16 HSC satellite, which provides FRP band data with
a temporal resolution of 5 min and a spatial resolution of 4
km. Our approach is founded on the theories and outcomes of
Andela et al. [54] and Zhang et al. [47], adapting and fine-tuning
the aforementioned two types of sensor data. The first step is
to utilize the high temporal resolution FRP data from GOES
representing the fire intensity changes throughout the day for
the entire area as a standard Gaussian distribution on an hourly
basis [55]. The second step involves parameterizing the FRP for
each pixel using the MaxFRP band data from both products and
the established Gaussian function, with the GOES FRP as the
baseline, to calculate the maximum FRP value. To obtain the
MODIS-GOES FRP value at time t for a specific pixel j, refer to
(1) shown at the bottom of this page. FRPMODIS-GOES,j,t is the
instantaneous MODIS-GOES FRP(MW) for pixel j at time t;
FRPnight,j is the night-time (01:00 LST) GOES FRP(MW) for
pixel j; FRPTerra,j is the daytime ( 10:30 LST) Terra FRP (MW)
for pixel j; FRPAqua,j is the daytime ( 13:30 LST) Aqua FRP
(MW) for pixel j; tpeak and σ represent the mean and standard
deviation of the GOES FRP diurnal cycle, which are calculated
by fitting a Gaussian function using nonlinear least squares.
μ1 and μ2 are adjustment factors that are used to align the

daytime overpass times of the Aqua and Terra satellites with the
peak time of the fire diurnal cycle’s weighted mean, which can
be formulated as follows:

μ1 = e−
(tTerra,j−tpeak)

2

2σ2 (2a)

μ2 = e−
(tAqua,j−tpeak)

2

2σ2 (2b)

where tTerra,j and tAqua,j are the local times of the Terra and
Aqua FRP observation for pixel j. In this work, to simplify data
processing, we treat these two variables as constants, setting
Terra’s overpass at 10:30 and Aqua’s at 13:30.

The value of pixel j is the maximum FRP for the day after
substituting t=tpeak in (1).

Fig. 2 presents three major fires occurring in 2018, 2020,
and 2022, respectively: County Fire, Creek Fire, and McKinney
Fire. The figure illustrates scatter plots of normalized FRP for
every hour across three selected days within each of the three
fires. Gaussian distribution fitting curves are utilized to depict
the daily variation trends in fire intensity. It is evident that the
fire intensity has a clear diurnal pattern, with very low intensity
at night (the normalized value is almost 0) and peaking in the
noon or afternoon, which is consistent with the conclusions of
previous experiments [55], [56]. It is worth noting that the red
dots within the MODIS gray stripes in the figure do not represent
maximum values during the day. It suggests that the Max FRP
values obtained from Aqua and Terra satellite observations may
not represent the highest fire intensity within a day. Therefore,
it is necessary to calibrate with data from the Geosynchronous
Environmental Satellite (GOES) [43] to obtain more accurate
fire intensity information.

C. Condition Data

1) Dynamic Data: The dynamic data in this article in-
cludes temperature, precipitation, wind speed, wind direction,

FRPMODIS-GOES,j,t = FRPnight,j +

(
μ1(FRPTerra,j−FRPnight,j)+μ2(FRPAqua,j−FRPnight,j)

2

)
e−

(t−tpeak)
2

2σ2 . (1)
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Fig. 2. (a) Time series of hourly normalized FRP derived from GOES
data. Countyfire. For the first day, tpeak = 15.2 and σ = 3.5; for the second
day, tpeak = 12.5 and σ = 2.5; for the third day, tpeak = 13.6 and σ = 4.2.
(b) Creekfire. For the first day, tpeak = 14.8 and σ = 3.5; for the second day,
tpeak = 13.1 and σ = 3.7; for the third day, tpeak = 15.5 and σ = 4.3. (c)
McKinney Fire. For the first day, tpeak = 12.7 and σ = 4.0; for the second day,
tpeak = 14.6 and σ = 3.2; for the third day, tpeak = 16.0 and σ = 4.4.

humidity, and dead combustible material moisture content.
These data are sourced from the Gridded Surface Meteorological
dataset (GRIDMET) [57], with a spatial resolution of 4 km for
each band and a temporal resolution of 1 d, provided by the
University of California, Merced.

2) Constant Data: The constant data include geographic,
vegetation, and demographic data for the study area. Geograph-
ical data, such as elevation, aspect, and slope, are sourced from
the Shuttle Radar Topography Mission (SRTM) [58] provided by
NASA JPL at a resolution of 1 arc second. The landcover data are
derived from the MODIS Version 6.1 Land Cover Type product
(MCD12Q1) [59] on Terra and Aqua satellites. This product
provides annual global land cover type data at a resolution of
500 m and is released and managed by the NASA Land Processes
Distributed Active Archive Center (LP DAAC) under the U.S.
Geological Survey (USGS) Earth Resources Observation and
Science (EROS) Center. The vegetation remote sensing data are
derived from the normalized difference vegetation index (NDVI)
and enhanced vegetation index (EVI) band data of the VNP13A1
product on Suomi NPP VIIRS. Both bands provide important
information about vegetation at a 500 m spatial resolution. NDVI
is one of the most commonly used vegetation indices, typically
employed to estimate the condition and health of surface vege-
tation. EVI [60], on the other hand, is an improved version of
NDVI designed to overcome some of its limitations, particularly
in cases of high and low vegetation cover. Population density
data is obtained from the Gridded Population of World Version 4
(GPWv4) dataset by the Center for International Earth Science

Information Network (CIESIN) [61], with a resolution of 30
arc-seconds.

D. Data Aggregation and Preprocessing

All the above raw data can be obtained on GEE. To spatially
align the data, we projected data from different sources onto the
World Geodetic System 1984 (WGS1984) [27]. Considering the
varying spatial resolutions of the data sources, we resampled
all data to a consistent 1-kilometer resolution aligned with the
state data using nearest-neighbor interpolation to reduce model
complexity. Finally, normalization of the data using the min–
max method was applied. Fig. 3 presents state data and dynamic
data for one time step, along with the corresponding constant
data for each fire incident. The higher the brightness of a pixel
in the FRP image, the higher its FRP value. Before DL, we
randomly split the data into training, validation, and test sets in
a 7:1:2 ratio.

III. METHOD

A. Overview of the Framework

We developed a deep learning framework to predict fire
radiant power utilizing multimodal data, as shown in Fig. 4.
The prediction model proposed in this article belongs to the
encoder–decoder framework. The encoder involves two com-
ponents: the multimodal encoder and the backbone encoder. In
the multimodal encoder, we established three blocks to process
three types of data, to increase their number of channels without
changing the height and width of the feature layers. The “State
Block” and “Dynamic Block” spatiotemporal encoders, respec-
tively, handle state data with a channel = 1 and dynamic data
with a channel= 9. The spatiotemporal encoder, as the main part
of the encoder, processes a large and complex amount of data
and will choose from three modules with strong universality:
3-D CNN [62], I3-D [63], and ConvLSTM [64], [65], shown
in Fig. 5. Although the Transformer model performs well in
analogous fields, the three models are still feasible and effective
choices for situations with relatively small sample sizes. They
provide us with several flexible and reliable ways to process
spatiotemporal data and have shown broad application prospects
in spatiotemporal tasks similar to this article, such as radar echo
prediction [66]and video prediction [65]. The spatial encoder in
the “Constant Block” processes spatial data with a channel =
9 for constant data, where the architecture chosen is a typical
CNN network [67]. Concatenate the outputs of three blocks
and feed them into the Backbone Encoder as the final output
of the Multimodal Encoder. The Backbone Encoder reduces
the resolution of the feature map while increasing the channel
depth, effectively compressing spatial information into a more
abstract representation. The “Backbone Decoder” upsamples the
bottleneck feature map, restoring it to a size consistent with
the input dimensions. Both the Backbone encoder and decoder
consist of stacked convolution (transposed convolution for the
decoder) and pooling operations.

Additional details on model architecture are provided in
Appendix A.
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Fig. 3. Examples from our dataset. Each example is 64 km by 64 km, with a resolution of 1 km. In the examples, the fire incident in the first row is the Dixie
Fire, which occurred on July 22, 2021; the fire incident in the second row is the Carr Fire, which occurred on July 26, 2018; and the fire incident in the third row is
the LNU Lightning Complex, which occurred on August 19, 2020.

Fig. 4. Deep learning framework.

Fig. 5. (a) 3-D CNN. (b) I3-D. (c) ConvLSTM.

B. Evaluation Metrics

We use mean squared error (MSE) as our loss function, which
is calculated as shown in the following:

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3)

where yi represents the true value of the ith pixel, and ŷi
represents the predicted pixel value at the same pixel location.

In this article, peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) are used as metrics [68]. PSNR
measures the quality and distortion of an image by comparing
the maximum pixel values and mean squared error between

the ground truth and the predicted image. SSIM is an index
that measures the visual similarity of two images, taking into
account elements such as luminance, contrast, and structure
to evaluate image quality in a manner closer to human visual
perception. Both are widely used in spatiotemporal and video
prediction [69], with calculations detailed in the following:

PSNR = 10 · log10
(

MAX2
I

MSE

)
(4)

SSIM(Y, Ŷ ) =
1

M

M∑
i=1

[
(2μyi

μŷi
+ c1)(2σyiŷi

+ c2)

(μ2
yi
+ μ2

ŷi
+ c1)(σ2

yi
+ σ2

ŷi
+ c2)

]

(5)
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where MAXI is the maximum possible pixel value, in this
article MAXI = 1, MSE is the mean squared error between two
grayscale images; M is the total number of windows within the
image. yi is the ith window of the original image Y, and ŷi is the
corresponding ith window of the comparison (predicted) image
Ŷ . μyi

and μŷi
are the average pixel value of the image window

yi and ŷi. σ2
yi

and σ2
ŷi

are the variance of the image window yi
and ŷi. c1 and c2 are small constants to avoid division by zero.
The value of PSNR ranges from 0 to infinity, and that of SSIM
lies between 0 and 1; for both metrics, a larger value indicates
greater similarity between the two images.

IV. EXPERIMENTS AND RESULTS

A. Training Details

To increase the diversity of the training dataset, reduce model
overfitting, and enhance model robustness, we applied data aug-
mentation in two spatial dimensions by using random cropping,
random flipping, and random rotation. The model is trained
using PyTorch. The training and testing phases are performed
on a device equipped with an NVIDIA GeForce GTX 4070Ti
GPU. The training consists of 1000 epochs with a learning rate of
0.0005, and the adaptive moment estimation (Adam) optimizer
is used.

B. Performance With Varying Input Sequence Length

The impact of the input sequence length on deep learning
models is complex [70]. Long sequences provide rich historical
information, allowing the model to learn and identify more
subtle and long-term trends, especially in scenarios where
patterns and trends significantly change over time. However,
processing long sequences may introduce irrelevant noise and
increase the model’s dependence on past data, thereby affecting
its adaptability to new situations. At the same time, shorter
sequences can significantly improve the model’s computational
efficiency and reduce delays caused by complex computations,
which is particularly crucial for real-time prediction systems
requiring fast responses. Balancing sequence length to maintain
model performance while improving efficiency is an important
aspect of designing spatiotemporal sequence prediction models.
In this study, we conducted comparative experiments with se-
quence lengths ranging from 2 to 8 days to assess the impact
of sequence length on model performance and efficiency, under
the circumstance of three different spatiotemporal encoders (3-D
CNN, I3-D, ConvLSTM). The results are shown in Table I.

The statistic in the table indicates that as the sequence length
increases, the model’s predictive performance significantly im-
proves, which means that longer input sequences enhance the
model’s ability to capture the dynamics of forest fire prop-
agation. However, as the sequence length becomes too long
(with different values for different encoders), the performance
indicators slightly decrease, and this change in performance
trend may reflect the temporal dependence of wildfire behavior,
where recent state and condition data have a greater impact on
the spread of fires. The fire events in the dataset may mainly
manifest as short-term behavioral patterns rather than cyclical

TABLE I
PERFORMANCE WITH VARYING SEQUENCE LENGTH

or long-term trends [71]. In addition, during the training process,
we found that longer sequence data can easily lead to overfitting.
This situation occurs when the model excessively adapts to noise
and less important feature details when attempting to capture
complex patterns in training data [72]. Moreover, the optimal
model under different spatiotemporal encoders corresponds to
different optimal sequence lengths. Although 3-D CNN can pro-
cess temporal information, it cannot explicitly handle long-term
dependencies in time series. Therefore, in this dataset, recurrent
neural networks can extract hidden layer information for each
time step, resulting in higher accuracy [73].

Interestingly, it can be observed that there is not much differ-
ence in accuracy between 3-D CNN and I3-D, which is different
from some previous studies [63]. We believe that this may be
because, although both belong to the field of spatiotemporal
sequence analysis, the temporal length of data in the field
of wildfire spread is relatively short. The spatial resolution
currently provided by satellites is insufficient compared to video
prediction or video classification datasets, like sports motion
and human action data. This missing information from the
dataset makes it difficult for the model to extract the optical flow
information during the wildfire spread period. In the dual stream
network type I3-D, the optical flow branch module extracts a
small amount of information. We extracted the weight ratio
of the two branches in I3-D, with the spatiotemporal branch
and the optical flow branch being 4.16:1. This validates our
idea that the spatiotemporal branch extracts most of the wildfire
spread features. For the subsequent experiments, we will select
the models which were highlighted in bold for the following
optimization.

C. Performance With Different Loss Function

For image output tasks, MSE is commonly used as the loss
function to assess pixel-level errors. However, for the distinct
structural characteristics of FRP during wildfire spread, simple
MSE may overlook important structural features. Therefore, we
propose a composite loss function that combines local MSE loss
(LMSE) for precision in detail and local SSIM loss (LSSIM) for
maintaining image structure integrity [74]. A series of exper-
iments will be conducted to determine the optimal weighting
between LMSE and LSSIM, aiming to enhance the model’s per-
formance in predicting wildfire FRP spread. The LSSIM can be
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TABLE II
PERFORMANCE WITH VARYING w1 VALUES

calculated as follows:

LSSIM = 1− SSIM(Y, Ŷ ) (6)

where the calculation method for SSIM(Y, Ŷ ) is presented in
(5). The total loss can be calculated as follows:

Ltotal = w1LMSE + w2LSSIM (7)

where w1 is the weight coefficient for LMSE, w2 is the weight
coefficient for LSSIM, and it is defined that w2 = 1− w1. The
more similar the two images, the smaller LMSE and LSSIM be-
come, resulting in a smallerLtotal. We select the best-performing
models, which have been highlighted in bold in Table I from
the previous section, for the discussion on optimizing the loss
function by increasing the weight of LSSIM. The results are as
shown in Table II.

The study results reveal that after integrating LSSIM into the
loss function, the predictive performance based on the PSNR
and SSIM evaluation metrics initially improves slightly and then
begins to decline. This indicates that an appropriate amount of
LSSIM can effectively enhance model training. Notably, PSNR
and SSIM achieve the best predictive performance at different
w1 weight values, reflecting that these metrics assess image
similarity from different aspects [75]. Relying entirely on LSSIM

for the loss function significantly decreases model performance
in predicting fire-affected areas, likely due to the unique charac-
teristics of the forest fire dataset, where fire areas are relatively
sparse. SSIM scoring is based on structural similarity within
image windows and averages the scores across windows, which
may cause the model to overfit the nonfire windows during
training, thereby neglecting key features of the fire areas such as
contrast, brightness, and structure. We believe that in the realm
of wildfire, the optimal model is verified by the task’s demand
for accurate predictions of spreading trends and precise identi-
fication of spreading areas, which are more crucial than simple
pixel-level differences. Therefore, the model should focus more
on the structural features of the images rather than merely on
pixel value accuracy.

The visualization of partial prediction results from the cur-
rently best models, which are highlighted in bold in Table II, is
shown in Fig. 6. The results indicate that the models exhibit a
certain degree of imprecision in predicting details such as the

TABLE III
PERFORMANCE OF THE THREE MODELS

periphery of the fire line, and it tends to merge scattered fire
points into larger, merged fire sources or ignore small fires in
the predicted image. This issue likely stems from inadequate
information recovery during the upsampling phase of the net-
work, which leads to the loss of nuanced edge and small fire
spot details when transitioning from low to high-resolution data.
The upsampling process is dependent on the model’s ability to
infer and augment details from learned patterns in the training
data. A deficiency in the representation of these isolated fire
patches within the training set, or a failure of the model’s learning
framework to sufficiently capture these features, may result in an
inability to accurately reproduce small-scale fire patches, lead-
ing to the formation of larger, continuous fire zones. In terms of
overall prediction performance, ConvLSTM outperforms both
3-D CNN and I3-D, as evident from both evaluation metrics and
visualizations, particularly for regions with higher fire intensity.

The model exhibits acceptable consistency with real-world
scenarios regarding the distribution of fire intensity and the
morphology of fire spread. While the predictions may lack
fine-grained details, the achieved level of precision still offers
significant advantages for fire management and strategic deploy-
ment of firefighting resources.

V. DISCUSSION

A. Model Transferability

In the context of wildfire spread, model transferability denotes
the capability of a model to effectively forecast wildfire activity
in a different area or under varying conditions [29], [76]. To
assess the transferability of our model trained by the dataset
in California, we established an additional dataset comprising
eight major fires in Alaska from May to August 2022 as a new
test set. The format of the data is consistent with that of Section
II and was input into the three optimized models described in
Section IV, and the results are shown in Table III.

The predictive performance of these three models is similar
in this additional dataset of Alaska. These results are lower than
the predictive performance on the test set in California, and we
attribute this to three main reasons. First, the geographical char-
acteristics of Alaska differ significantly from those of California.
For instance, most of Alaska’s forested regions are located
in boreal and temperate climate zones, whereas California is
predominantly in a Mediterranean climate zone. The different
climatic conditions lead to variations in vegetation types, growth
cycles, and humidity levels, all of which directly affect the
occurrence and spread of wildfires. Second, the difference in
the seasonal patterns of wildfires between the two locations
is also a crucial factor in the reduced model transferability.
California’s peak fire season typically occurs in the fall, in
contrast to Alaska’s late spring and early summer. Different
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Fig. 6. Eight sets of predicted images and ground truths, as well as the PSNR and SSIM between them. During visualization, if the predicted value on the
predicted image is less than 100 MW, we set the value of that pixel to 0. There are two reasons for this. First, the FRP values in the input data, which indicate areas
with fire, do not fall below 100 MW; second, adopting this threshold can effectively remove overly scattered points in the predicted image, thereby minimizing
their impact on the visualization of the overall burned area.

seasonal patterns mean that the environmental conditions for
wildfires, such as temperature, humidity, and wind speed, will
also vary. Additionally, the impact of exceptional climatic events
on wildfires cannot be overlooked. For example, the Hurricane
Kay event in 2022 [77], [78] and the atmospheric river events in
2023 in California brought abnormal amounts of rainfall, which
temporarily altered the regional drought conditions, thereby
affecting the occurrence and spread of wildfires. Such sudden
events are difficult to account for in model training, hence, they
may lead to a decline in predictive performance in practical
applications. We visualize the ground truth and predicted im-
ages for one day of each of the eight fires, along with their
respective coordinates and predictive performance metrics, as
shown in Fig. 7. In addition, the performance degradation of the
transferred model in SSIM is slightly greater than that in PSNR,
which may be due to the insufficient ability of the model to
extract structural features from the new dataset. Despite a decline
in performance evaluation metrics, the visualization results show
that the model can still effectively predict the shape and intensity
of wildfire spread. The models demonstrate basic predictive
capabilities in new environments, proving their generality and
adaptability. Therefore, the models are acceptable in terms of
transferability and have practical value for wildfire prediction
and management in varying areas.

B. Feature Sensitivity Analysis

To gain a better understanding of the importance of each
channel in the model by using feature elimination [79], we
conducted a channel ablation study. Specifically, we selected

various types of channels in the model and set their values to
zero, then fed these altered inputs back into the trained optimal
model to evaluate its performance [27]. In this process, the
model will automatically learn which channels of information
are more critical for the prediction task. By clearing specific
channels and observing changes in model performance, we
can infer that those channels that have a significant impact on
performance contain important feature information required for
prediction tasks [80]. The advantage of this method is that it
can provide a quantitative evaluation of the relative importance
of each channel in the model. By comparing the effects of each
channel, we can identify the most critical channel for the task and
further understand the model’s behavior in feature extraction. If
the model’s performance significantly decreases after certain
channels are zeroed out, it indicates that those channels have
captured essential information for the prediction task. Table IV
displays the feature types and the number of channels that were,
along with the corresponding performance on the test set.

The model performance analysis shows that compared to
using all features, removing the FRP state feature results in
the most significant performance decline. This is because the
distribution of FRP data is critical for the model to learn the FRP
at the next moment, making the FRP state an indispensable input.
For other types of features, the removal of anyone has a relatively
small impact on model performance. However, the removal of
topography and landcover data leads to a noticeable decrease in
performance. This may be due to topography directly affecting
the trend of fire spread, with the vegetation type and humidity
conditions of different terrains affecting the spread of fire [81].
Additionally, landcover determines the type and distribution of
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Fig. 7. Eight sets of predicted images and ground truths in the additional dataset of Alaska, as well as the PSNR and SSIM between them.

TABLE IV
PERFORMANCE WITH REMOVED FEATURES

combustible materials on the ground, which directly affects the
intensity and speed of fire spread. The data in the table also show
that removed features such as precipitation and population den-
sity do not decrease model accuracy, and may even increase it.
The possible reason is that these two types of data are relatively
sparse in the time and space domains; in the dataset of this article,
precipitation data accounts for only 2.38% of the total number
of days, while population density accounts for only 5.76% of the
pixels in each image. These sparse data may be redundant for the
model, and including these features could reduce the model’s
ability to extract important features. It is worth noting that,
compared to the removal of constant information, the removal of
dynamic information does not have a significant impact on the
accuracy of the model. One possible reason is that the original
spatial resolution of the dynamic information is relatively low,
making it difficult to extract effective features. Another reason
might be that the deep learning model has learned some dynamic
meteorological information from the FRP state’s time series
data, whereas complex constant data is more difficult to learn.

In summary, through the discussion in this section, we can
understand that removing some features will not significantly
reduce the predictive performance of the model, which reduces
the pressure of obtaining too much input data and the complexity
of the model to cope with different research backgrounds(such
as the unavailability of partial data from other regions).

C. Temporal Effectiveness of Multistep Prediction

While predicting the FRP value for the next day using data
from the previous six days may provide a reference for fire
departments, this information may not be sufficient for actual
emergency fire response [82]. Therefore, this study further ex-
plores the effectiveness of the model in time series prediction, es-
pecially the transition from single-step to multistep forecasting.
Considering that the results of Section V-B indicate that dynamic
information contains more redundancy than static information
and unknown dynamic information, we removed the dynamic
information module and retrained the models to obtain the



DONG et al.: DEEP LEARNING FRAMEWORK: PREDICTING FIRE RADIATIVE POWER 10837

Fig. 8. (a) PSNR over increasing time steps. (b) SSIM over increasing time
steps.

optimized version. Then, we iteratively predict using the model,
taking the predicted FRP image data as new input to assess
whether the models can maintain an acceptable level of accuracy
in predicting the FRP values for the upcoming days based on the
known FRP data and static information of the past six days [83].
The results are presented in Fig. 8(a) and (b).

The figure shows that, with input consisting only of state and
constant data, all three models excel in single-step prediction,
in line with the results of experiment Section V-B. In the
multistep prediction, regardless of the type of spatiotemporal
encoder, SSIMs remain above 61.7% and PSNR above 22.3
for the first four timesteps, indicating the model’s capacity for
relatively accurate short-term FRP prediction. However, beyond
four days, there is a marked decline in prediction accuracy,
likely due to the gradual amplification of cumulative errors.
In the process of multistep forecasting, errors from each step
might propagate to the next, leading to an accumulation of
errors in future predictions. As the number of time steps in-
creases, the model’s ability to handle noisy and blurred input
weakens, making it challenging to effectively restore image
quality during upsampling, resulting in significant discrepancies
in pixel-level detail as well as overall brightness, contrast, and
structure compared to actual conditions. In summary, the model
achieves acceptable accuracy for multistep forecasting up to four
timesteps, with the capability to extend this step to six timesteps

using the ConvLSTM spatiotemporal encoder. This timeliness
of the model is crucial in actual fire rescue operations, providing
the fire department with rapid and accurate predictions of fire
dynamics during the critical initial phase. Despite limitations in
the length of prediction, the model remains a valuable tool for
fire management and prevention.

VI. CONCLUSION

This article aims to extend deep learning to FRP prediction,
a brand new research object for the spread of wildfires. To
this end, we have utilized GEE to integrate the high tem-
poral resolution FRP products from geostationary orbit satel-
lites like GOES with those of high spatial resolution from
polar orbit satellites, creating a new rasterized remote sensing
imagery dataset with a daily temporal resolution where each
pixel value represents the maximum value in that area. In
conjunction with weather, topography, and vegetation charac-
teristics, we created a multimodal dataset for the California
region. To our knowledge, this is the first wildfire spread time
series dataset containing FRP, which is essential for generat-
ing high-quality machine learning models for real-world fire
scenarios.

To achieve reasonable predictions of FRP, we established a
deep learning framework to handle this complex multimodal
data. Given three different models, dynamic and constant data
are encoded separately with different networks in the first layer,
then merged and reencoded to generate a bottleneck feature map,
and finally decoded back to the same data dimensions and size
as our study subject, the FRP data.

We conducted research on input step size and optimized model
prediction to ensure that our model maintains high accuracy
while maintaining portability. Additionally, by incorporating
LSSIM into the overall loss function, experimental results indicate
that the model performs well under dual assessment of SSIM and
PSNR when LSSIM is given a weight of 0.3 or 0.4. This result
is consistent with the task of wildfire spread prediction because
the model needs to understand the overall expansion pattern and
structural shape of the spread to better assist people in grasping
the patterns of fire behavior.

After obtaining the optimized model, to validate the model’s
transferability, we tested it using wildfire data from Alaska
in 2022. Although performance metrics indicate a decrease in
predictive performance, visual results show that the model can
still predict the overall shape and intensity distribution of the
fires. Additionally, we conducted feature ablation experiments
to delve deeper into the role of dynamic and static inputs in model
performance. The experimental results revealed that static inputs
contribute more significantly to the model than dynamic inputs
in our dataset. By eliminating less important feature layers,
the model can maintain accurate predictions. Moreover, this
simplified approach also brings the added benefit of reducing
the number of model parameters, thereby improving training
efficiency. Ultimately, we analyzed the multistep prediction
effects of the model using only static data and the FRP state
processing module. The study found that within four timesteps,
the model could maintain high predictive accuracy. However,
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TABLE V
DETAILS OF THE DEEP LEARNING NETWORK ARCHITECTURE

as the prediction step length increased, the impact of cumu-
lative error began to appear, leading to a significant decline in
model performance. This finding highlights the potential of deep
learning models for short-term predictions of fire development,
providing fire departments with a powerful tool for rapid and
accurate response.

This study points out an important future research direction.
Future work should utilize more advanced and comprehen-
sive remote sensing technology with sensors to collect high
spatiotemporal resolution active fire data and establish more
complex models, such as variants of Transformer, to extract
data features. The objective is to enhance prediction accuracy,
improve model generalization, and better meet practical ap-
plication requirements, guiding early wildfire prevention and
firefighting efforts. This approach and framework are not limited
to predicting wildfire spread; they have potential value for any
issue involving multimodal data and significant uncertainty. By
expanding this framework, emergency managers could better
understand and respond to extreme weather events, thereby
improving the accuracy of forecasts, optimizing resource allo-
cation, and reducing the risks and losses associated with natural
disasters.

APPENDIX A
NETWORK INFORMATION

A. Network Details

The architecture of the deep learning model used is shown in
Table V.

B. ConvLSTM

1) ConvLSTM Cell: The computation method and illustra-
tion of the ConvLSTM cell [73] can be found in (8) and Fig. 9,

Fig. 9. Inner structure of ConvLSTM cell.

respectively

it = σ(Wxi ∗ xt +Whi ∗Ht−1 +Wci � Ct−1)

ft = σ(Wxf ∗ xt +Whf ∗Ht−1 +Wcf � Ct−1)

Ct = ft � Ct−1 + it � tanh(Wxc ∗ xt +Whc ∗Ht−1)

ot = σ(Wxo ∗ xt +Who ∗Ht−1 +Wco � Ct)

Ht = ot � tanh(Ct) (8)

where, it, ft, and ot represent the input gate, forget gate, and
output gate, respectively. Ct and Ht denote the cell state and
hidden state. xt is the input for the current time step. Ht−1

and Ct−1 are the hidden state and cell state from the previous
time step. The symbols ∗ and � denote the convolutional and
Hadamard products, respectively. The functions σ and tanh
stand for the sigmoid and hyperbolic tangent (tanh) activation
functions.

2) Four Layers ConvlSTM: We set the number of layers for
the ConvLSTM to 4, as shown in Fig. 10.
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Fig. 10. Four layers ConvlSTM. The Hl=4
t in the red box is the output from

the ConvlSTM, used for subsequent convolution.

Fig. 11. (a) Spatial distribution. (b) Temporal distribution.

APPENDIX B
SPATIOTEMPORAL DISTRIBUTION OF THE DATASET

Fig. 11 displays the spatial and temporal distribution of the
dataset.
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