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Retrieval of Hurricane Rain Rate From SAR Images
Based on Artificial Neural Network

Zhancai Liu , Weihua Ai , Xianbin Zhao, Shensen Hu, Kaijun Ren , Chaogang Guo , Li Wang ,
and Mengyan Feng

Abstract—Spaceborne synthetic aperture radar (SAR) is grad-
ually being applied to hurricane observation because of its all-
weather, high-resolution observation capability. In particular, the
retrieval of rain rate using SAR images holds significant scientific
and practical importance. However, accurately retrieving rain rate
over the sea surface, particularly for high rain rate events under
hurricane conditions, remains a significant challenge. The study
proposes a new method for rain rate retrieval from hurricane SAR
images. We have developed a cascaded feedforward neural network
model based on Sentinel-1’s double-polarized C-band SAR images
of 46 hurricanes to retrieve rain rate under hurricane conditions.
In order to overcome the problem of local optimal solution of
neural network, the genetic algorithm is employed for optimized
model parameter selection. Preliminary results indicate that this
approach not only enhances the neural network’s iteration speed
but also improves its prediction accuracy. Compared with the
rain rate of the Stepped-Frequency microwave radiometers, the
root mean squared error of retrieved rain rate is 3.05 mm/h and
the correlation coefficient is 0.88. Furthermore, we independently
verify the rain rate during Hurricane Douglas and compared with
global precipitation mission 2-level dual-frequency precipitation
radar rain rate product, the results demonstrate that our model
can effectively retrieve rain rate in the range of 0–60 mm/h under
hurricane conditions. The encouraging results prove the feasibility
of the method in SAR rain rate retrieval.

Index Terms—Cascaded feedforward neural network (CFNN),
genetic algorithm (GA), rain rate, synthetic aperture radar (SAR).

I. INTRODUCTION

SATELLITE remote sensing technology serves as a crucial
mean in the study of precipitation, which can overcome

the limitations imposed by geographical position and has the
characteristics of wide coverage [1]. Synthetic aperture radar
(SAR) has all-day, all-weather, high-resolution ocean monitor-
ing capabilities and provides high-quality data for the study
of hurricanes. This technology holds significant potential in
the observation of tropical cyclones (TCs) structure, air–sea
interactions, rain rate, and wind speed. However, due to the
imperfect physical connection model between rain rate and
backscattering theory, SAR observations are primarily used for
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surface feature observation, with fewer studies focusing on rain
rate events [2]. High spatial resolution ocean monitoring data
is crucial for the accurate assessment of hurricane rain rate and
wind speed. Accurate SAR images contribute significantly to
the examination of the structural characteristics of TCs and their
application in TCs’ predictions [3].

SAR has become a spaceborne instrument that can detect and
quantify ocean surface information with very high spatial res-
olution. In fact, SAR can penetrate the atmosphere and clouds,
making it an ideal tool for studying extreme weather events
such as hurricanes. Its cross-polarized signal and copolarized
signal are highly sensitive to sea surface information, which
can help to retrieve the rain rate in the hurricane eye and the
surrounding ocean surface. If SAR images can be utilized for
rain rate retrieval, it would greatly enhance important scientific
promotion in the fields of global oceanography, meteorology,
and climate science.

With the continuous upgrading of space-borne SAR perfor-
mance, SAR has been widely used to monitor global hurricane
activities due to its high spatial resolution, penetrating capability,
and its two-dimensional imaging ability of TC structure, which
promotes deeper and wider research on the air-sea boundary of
TCs [2], [4], [5]. In the process of using SAR to monitor TCs,
the observed normalized radar cross section (NRCS) includes
the combined effects of dynamic processes such as wind and
rain.

Harrison et al. [6] discovered that the ocean rain rate not only
impacts air-sea interactions, but also affects energy exchanges
in the remote assessment of hurricanes. Subrahmanyam et al.
[7] utilized the C-band doppler weather radar to characterize the
spatial and vertical structure of the TC “Ockhi,” which provides
abundant information for the polarized characteristics of the
cyclone structure and aids in a deeper comprehension of the
microphysical characteristics of hurricanes. In Xu et al.’s study
[8], it is proposed that SAR has a significant impact on the mode
and intensity of sea surface rain rate, and its potential capabilities
allow for the observation of complex atmospheric events such as
hurricanes. By establishing a physical radiative transfer model of
sea surface rain rate, SAR images from both C-band and X-band
can roughly capture sea surface rain rate [8].

A large number of researches show that rain rate plays a
key role in the retrieval of sea surface wind field. Due to
the intimate connection between rain rate and wind field, the
wind field information and the NRCS of C-band SAR can be
used to retrieve the rain rate under hurricane conditions. In
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addition, copolarized and cross-polarized NRCS (VV + VH)
exhibit considerable potential for studying the TC rain field
[8]. Yang et al. [9] demonstrate that precipitation significantly
impacts the estimation of wind speed from C-band and Ku-band
scatterometers. The sea surface wind speed and rain rate are
intricately linked, when studying rain rate, the influence of the
wind cannot be overlooked. At low wind speeds, rain rate tends
to overestimate wind speed values, while at high wind speeds,
it tends to underestimate them. Guo et al. [10] investigated the
impact of precipitation-related parameters and phenomena on
wind speed retrieval under strong hurricane conditions. They
discovered that rain rate resulted in an increase in wind speed
retrieval errors, and this upward trend was positively correlated
with it. Shao et al. [11] proposed an effective rain cell detection
method for SAR images in order to explore the influence of rain
rate in the process of dual-polarization SAR images wind field
retrieval. Additionally, the rain rate is crucial for the retrieval
of sea surface waves. Zhao et al. [12] studied the effect of rain
rate on the C-band SAR observation of TCs, they found that rain
rate did have an important impact on the retrieval of SAR waves,
especially in high rain rate sea conditions.

In addition, there have been advancements in rain rate retrieval
based on physical methods. Shao et al. [13] simulated VV-
polarized NRCS using the geophysical model function (GMF)
CMOD5.N based on dual-polarized channel SAR images and
retrieved TC wind speed using VH-polarized images, and an
empirical algorithm for SAR rain rate retrieval that considers the
influence of the maximum wind speed radius has been proposed.
Using the dual-polarized channel SAR images as a foundation,
Zhao et al. [14] established a method for extracting the TC rain
rate from C-band SAR image by using GMF S1IW.NR and
the difference between the observed NRCS and the simulated
NRCS in the rainfall unit. However, despite these advancements,
there still remain challenges in observing hurricanes and rain
rate effectively. The available data samples are limited in size,
leading to poor performance of the retrieval results for the TC
rain rate in terms of accuracy and precision. To address this issue,
further research is needed to develop more advanced techniques
and refine existing methods to improve data resolution and
enhance the accuracy of TC rain rate extraction.

As machine learning gains widespread application in
academia, leveraging its power can significantly impact marine
remote sensing image information mining [15]. Colin et al. [16]
specifically evaluated whether deep learning methods can solve
the joint semantic segmentation of a wide range of ocean pro-
cesses in SAR ocean images and studied the semantic segmen-
tation of ten meta-ocean processes. Experiments demonstrate
that the fully supervised model outperforms all tested weakly
supervised algorithms, thereby establishing the feasibility of
deep learning in addressing oceanic challenges. Wang et al.
[17] utilized a convolutional neural network (CNN) based on
the Inception v3 model to identify 10 geophysical phenomena
in SAR images including rain rate and selected 320 Sentinel-1
wave mode images for each category, subsequently retrained
the pretrained Inception v3 model for classification purposes.
Guo et al. [18] utilized the transfer learning method to classify
the rain rate level in the SAR images by using the CNN and

combined the rain rate correction model to realize the retrieval
of wind speed. This method of combining SAR rain rate level
recognition with the rain rate correction method improves the
retrieval accuracy of SAR wind speed and offers a potential
advancement in SAR retrieval of sea surface wind fields. By
collecting SAR data of TCs and utilizing a back propagation
(BP) neural network, Mu and Li [19] employed five features
of SAR data as input of machine learning model to conduct
preliminary rain rate retrieval. The findings suggest that machine
learning can be effectively applied in SAR rain rate retrieval.

This article aims to employ a machine learning model to
retrieve sea surface rain rate during hurricanes based on SAR
images and to control the over-fitting of the model by using
the genetic algorithm (GA) optimization method. This approach
aims to verify the correlation between the backscatter and other
information of SAR images and rain rate, thus offering a novel
method for global rain rate retrieval.

The rest of this article is organized as follows. A brief descrip-
tion of the datasets used in the study is presented in Section II.
Section III introduces the rain rate retrieval model during hurri-
cane conditions. Section IV gives the rain rate retrieval results
and accuracy, as well as the hurricane rain rate retrieval example
validation. Finally, Section V concludes the article.

II. DATA AND PREPROCESSING

A. Sentinel-1 Images and Preprocessing

The Sentinel-1 mission belongs to the European Space
Agency Copernicus program. It consists of two polar-orbiting
satellites (Sentinel-1A and Sentinel-1B). S-1A was launched
on 3 April 2014, and S-1B was launched on 25 April 2016.
Both of them are equipped with C-band SAR operating at a
frequency of 5.405 GHz. They can collect cross-polarized and
copolarized image information in a variety of imaging modes.
SAR of Sentinel-1 has four unique imaging modes: interfero-
metric wide swath (IW), extra-wide swath (EW), strip-map, and
wave. The Sentinel-1’s core products are available at levels 0,
1, and 2. In this article, dual-polarized SAR images of the level
1 ground range detected (L1GRD) high-resolution products of
IW mode and medium-resolution products of EW mode were
used. The bandwidth of the IW mode is 250 km, and the spatial
resolution of L1GRDH products in IW mode is approximately
20 m × 22 m. The EW mode provides a large swath width of
400 km, and the spatial resolution of L1GRDM products in EW
mode is approximately 93 m × 87 m [20].

B. Stepped Frequency Microwave Radiometer Data and
Products

Currently, the primary methods for obtaining rain rate data
include rain gauge monitoring, radar monitoring, and remote
sensing monitoring [21]. However, the accuracy and range of
rain gauges and radar monitoring are limited, and remote sensing
struggles to capture hurricane tracks. The SFMR was designed
to measure the wind speed and rain rate of hurricanes occurring
on the ocean. It is carried onboard the hurricane research aircraft
of the NOAA. These aircraft equipped with SFMR can measure
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rain rate and wind speed along the trajectory with high temporal
resolution [22]. The research aircraft can track and pass through
the hurricane, enabling the detection of hurricane shape and
internal physical characteristics, which will be beneficial for the
machine learning model to retrieve the internal characteristics
of the hurricane [23]. In addition, Jiang et al. [22] found that
the rain rate observed by SFMR would not be saturated until
a very high level compared to other radiometers. The rain rate
detected by SFMR is highly correlated with the precipitation of
airborne radar, and it has a low error rate, which will be very
helpful for detecting high rain rate inside hurricanes. SFMR can
provide rain rate and surface wind speed data along the aircraft
trajectory with a time resolution of 1 s.

C. Hurricane Track Information – International Best Track
Archive for Climate Stewardship

The hurricane trajectory data used in this study is derived
from NOAA’s International Best Track Archive for Climate
Stewardship (IBTrACS). This task counts recent and historical
TC data and creates an optimal trajectory data set that can be
publicly available, thereby enhancing interagency comparisons.
In addition to global data files that contain all storms available in
IBTrACS, TC track data is available in several subsets, including
the modern satellite observations since 1980, three most recent
years of data, and storms active in the last 7 days. IBTrACS are
provided in three formats including comma separated variable,
network common data format (netCDF), and Shapefiles [24].
The hurricane track data used in this article is in netCDF format
since the format is more flexible. The hurricane trajectory data
provided by IBTrACS has a high temporal resolution of 2 min,
which enables almost real-time tracking of the hurricane’s eye
location.

D. Global Precipitation Mission Data

Global Precipitation Mission (GPM) is an international co-
operation initiated by the National Aeronautics and Space Ad-
ministration for global rain rate monitoring after TRMM. It car-
ries a dual-frequency precipitation radar (DPR) with operating
frequencies of Ku-band (13.6 GHz) and Ka-band (35.5 GHz)
channels, respectively. It detects precipitation conditions from
65 °S to 65 °N and is more accurate for weak rain rate and
weak snowfall events [25]. The GPM data disclosure product
encompasses three levels. This study employs the second-level
DPR product to juxtapose it with the retrieved rain rate. Within
this product, 49 scanning points are captured simultaneously
from beneath the satellite, featuring a spatial resolution of 5 km,
a scanning width of 245 km, and a vertical resolution of 250 m.

E. Data Matching

In this article, dual-polarized Sentinel-1 SAR images of 46
hurricanes that occurred in the Eastern Pacific and Atlantic from
2016 to 2022 were collected. Data matching was performed
based on the spatial and temporal information of Sentinel-1 SAR
and SMFR to obtain hurricane monitoring data. Since SFMR is
mounted on the aircraft, there exists a temporal delay between

Fig. 1. (a) Quick-look from the VV polarized Sentinel-1 SAR image acquired
in EW swath mode over hurricane Douglas at 03:48 UTC on 25 July 2022.
(b) Corresponding quick-look of the image in VH polarized. The red line denotes
the track of the SFMR onboard the hurricane aircraft.

the real-time monitoring information and SAR images. In order
to ensure the accuracy of this study, a time window of 2 h was
established for the purpose of matching SAR and SFMR data.
In addition, the rain rate data of SFMR were averaged every
20 s. In space, the latitude and longitude correction of SFMR
is achieved by utilizing the hurricane’s movement speed [26],
aiming to enhance the precision of spatial positioning. In this
article, wind speed data obtained from SFMR was utilized, and
a comparative analysis was conducted between wind speed data
provided by the European Centre for Medium-Range Weather
Forecasts. The accuracy of SFMR has been established at a high
level, making it recognized as true rain rate values.

Fig. 1(a) and (b) depicts the quick-looks of one of the collected
images in dual-polarized SAR images from the matching dataset,
which were acquired at 03:48 UTC on 25 July 2022 during the
period of hurricane Douglas. The red line denotes the track of
the NOAA aircraft. The blue point is the hurricane center.

III. RAIN RATE RETRIEVAL MODEL DURING HURRICANE

CONDITIONS

The flow chart of rain rate retrieval during hurricane con-
ditions using SAR images based on machine learning method
is shown in Fig. 2. The Cascaded feedforward neural network
(CFNN) is an artificial neural network that incorporates the
error BP algorithm of BP neural network, the input layer of
the network is not only connected to the hidden layer, but also
directly connected to the output layer, which enhances the rela-
tionship between input features and output features, enabling it
to perform various tasks including regression and classification.
The CFNN’s ability to realize nonlinear mappings, coupled
with its strong adaptability and error backpropagation process,
makes it well-suited for rain rate retrieval based on SAR images.
So far, there has not been an established physical model or
empirical formula to realize SAR image rain rate retrieval. This
model is also suitable for us to obtain the nonlinear relation-
ship between SAR information and marine element information
through machine learning methods, without any prior experience
information, so it can occupy a place in the field of marine
remote sensing. At the same time, GA was used to fine-tune
the weights and thresholds of the CFNN, aiming to identify the
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Fig. 2. Flow chart of SAR image rain rate retrieval based on machine learning.

optimal solution, so as to address the neural network’s propensity
to converge to a local optimal value, thereby enhancing its
performance.

A. Model Training Features

After selecting the machine learning training model, it is
essential to control the input and output of the model. The output
feature is obviously the rain rate surrounding hurricanes. At
this point, the selection of input features is very important to
ensure accurate output results. To establish a stronger connection
between input features and rain rate, meticulous consideration
of the model’s input is essential. According to Shao et al. [11],
it is known that VV-polarized NRCS (σVV

0 ) and VH-polarized
NRCS (σVH

0 ) hold significant importance in rain rate retrieval
from SAR images. Although the incident angle may not be
directly linked to the rain rate, it remains a crucial parameter
for SAR echo observation. Furthermore, the rain rate has a very
obvious effect on wind field retrieval [12], rain rate affects both
NRCS and wind speed retrieval, many scholars have identified
a correlation between rain rate and wind speed in hurricanes,
included as an input feature in the model.

In addition, from the hurricane data, there is almost no rainfall
in the hurricane center, and as the distance from the center
increases, the rain rate first reaches a peak and then decreases.
Fig. 3. presents the connection between the rain rate, as measured
by SFMR, and the distance from the hurricane’s center. Two
paths passing through the hurricane’s center were chosen to
visualize the relationship, which are represented in Fig. 3(a).
Notably, Fig. 3(b) and (c) indicates that at the hurricane’s center,
the rain rate is zero. As the distance increases, the rain rate
initially rises, then exhibits regular oscillation, and ultimately
generally exhibits a descending trend. Therefore, it is evident
that the amount of rainfall is somewhat connected to the distance
from the hurricane center.

As was mentioned by Wang et al. [17], incorporating latitude
information as a geographical parameter can better represent
hurricane formation, which is conducive to the retrieval of rain
rate.

Fig. 3. Variation of rain rate with distance to hurricane center. (a) Quick-look
from the VH polarized Sentinel-1 SAR image over hurricane Michael at 11:49
UTC on 10 October 2018. The blue and red lines denote the track of the SFMR.
(b) Rain rate of the blue track. (c) Rain rate of the red track.

The σVV
0 , σVH

0 , incident angle (θ), and latitude (ϕ) are used as
the basic inputs of the model, and then the distance parameter
(D) and wind speed (v) are added as additional input features
to evaluate the correlation and error of the model retrieval rain
rate after different features are added. This evaluation aids in
understanding the impact of input parameters on the model’s
performance and identifies the most practical feature inputs.

B. Cascaded-Feedforward Neural Network Settings

The Cascaded-Feedforward Neural Network (CFNN) is im-
proved on the basis of feedforward neural network, which has
strong fault tolerance. In the event of neuron damage, that is,
when neurons in a specific region or layer in the artificial neural
network have abnormal function or damage due to data problems
or training problems, the output value or weight value of neurons
is abnormal or faulty, it minimizes impact on the overall network
[27], [28]. The information of network memory is stored on
the connection weights between neurons, which is a distributed
storage method. The learning function is powerful, enabling the
acquisition of connection weights and structures through learn-
ing. In comparison to the BP neural network, CFNN combines
both backpropagation and cascade-correlation algorithms. Each
layer within the CFNN is connected with the input layer cross-
layer, which is a fully connected neural network. This increased
connectivity boosts the neural network’s training speed [29] and
enhances its nonlinear fitting capabilities.
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The output vectors of each layer of the CFNN with multiple
hidden layers are as

Yn = fn (W
n
1 × Yn−1 +Wn

2 × p+Bn) (1)

where n is the number of neural network layer, Yn is the output
vector, fn is the neural network activation function, W is the
weight function of the hidden layer, B is the bias of the hidden
layer, the rows of W or B is the number of neurons in each
layer, the columns are the number of input individuals, and p is
the input vector.

Mathematical theory proves that a three-layer neural network
can approximate any nonlinear continuous function with arbi-
trary accuracy [30], [31]. The structure of CFNN consists of the
input layer, the hidden layer, and the output layer. The number
of neurons in the input and output layers is determined by the
specific inputs and outputs of the model under consideration.
The number of neurons in each layer plays a crucial role in de-
termining the model’s applicability and accuracy. Deeper hidden
layers theoretically enhance the model’s ability to fit functions.
However, in practice, deeper layers may lead to overfitting
issues and increase training difficulty, making it challenging
for the model to converge. After meticulous adjustments, it
is reasonable to set the number of the input layer, the hidden
layer, and the output layer to 1, 3, and 1, respectively, [19].
Furthermore, if the number of neurons in the hidden layer is
insufficient, the neural network lacks the necessary learning and
information-processing abilities. Conversely, an excessive num-
ber of hidden layer neurons not only significantly increases the
complexity of the network structure but also makes the network
more likely to get trapped in local minima during the learning
process, thereby slowing down the learning speed. This article
combines empirical rules with minimum error to determine the
number of hidden layer neurons. When the number of neurons
reaches the optimal value, the model’s error is minimized. Since
the performance of the network training is influenced by random
initialization, the model undergoes 500 training iterations for
each value of the neuron count, resulting in a histogram of neuron
frequencies that initially increases and then decreases. The steps
are as follows.

Step1: According to the empirical formula (2), the range of
values for the number of neurons in the ith layer is determined
as [Nmin, Nmax]. Please note that for other hidden layers with
unknown number of neurons, the number of neurons is set to
1, indicating a direct linear relationship with the output layer

Nh =
√
Nx +Ny + a (2)

where Nh denotes the number of neurons in the hidden layer,
Nx represents the number of neurons in the previous layer, Ny

represents the number of neurons in the next layer, and a is a
constant where a ∈ [2, 10] and a ∈ N+.

Step2: Set the number of neurons in the ith hidden layer to
Nhi

whereNhi
∈ [Nmin, Nmax] andNhi

∈ N+. For eachNhi
,

we train 500 times and obtain the root mean square error for
comparison.

Step3: The number of neurons in the ith hidden layer is set to
N0

hi
, which represents the value with the highest frequency

TABLE I
RESULTS OF CALCULATION OF THE NUMBER OF NEURONS IN THE HIDDEN

LAYER

Fig. 4. Structure of CFNN model for hurricane rain rate retrieval. (“S1
precipitation” represents the retrieved rain rate from Sentinel-1 SAR images).

of occurrence when the root mean square error is minimized.
Proceed to Step 1.

Step4: If the frequency of neuron numbers varies monotoni-
cally, then the optimal value does not lie within the interval
[Nmin, Nmax], and it is necessary to expand the range of
values. Based on the Hecht–Nelson formula [32] and the
Lawrence–Fredrickson formula [33], to further determine the
range of neuron quantities, proceed to Step 2

min

(
Nx +Ny

2
, 2Nx + 1

)
≤ Nh

≤ max

(
Nx +Ny

2
, 2Nx + 1

)
. (3)

Finally, the number of neurons in the three hidden layers is
set to 8, 15, and 9, as shown in Table I, respectively, yielding the
best-retrieved results for the model. The overall structure of the
CFNN model designed in this article is shown in Fig. 4.

According to the structure of CFNN, we obtain the output of
each hidden layer as

yi1 = f1

(
N1∑
i=1

W i
1xi +Bi

1

)
(4)

yj2 = f2

⎛
⎝ N2∑

i=1

W i
2y

i
1 +

N1∑
j=1

W1,jxj +Bj
2

⎞
⎠ (5)

yk3 = f3

(
N3∑
i=1

W i
3y

j
2 +

N1∑
k=1

W1,kxk +Bk
3

)
(6)

where yi,j,kn is the output of the neuron (i, j, k) in the hidden
layern (n is 1, 2, or 3), fn is the activation function of the hidden
layer n, x is the input of neural network. Nn is the number of
neurons in the upper layer of the hidden layern (N1 is the number
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of neurons in the input layer). W i
n is the connection weight

between the hidden layer n and the upper layer’s node. Bi,j,k
n

is the offset of the neuron (i, j, k) in the hidden layer n. W i,j,k
1

is the connection weight from the neural network input layer to
the corresponding hidden layer (i, j, k).

The selection of transfer function of the hidden layer and
the output layer has an important influence on neural network’s
retrieval accuracy. The transfer function makes the neural net-
work have nonlinear mapping ability. For the transfer function
selection of the model, there are generally purelin, tan-sigmoid,
log-sigmoid, etc.

The linear transfer function (purelin) does not change the
linearity of the map, the input is equal to the output, and n is the
input

purelin (n) = n. (7)

The logarithmic nonlinear mapping transfer function (log-
sigmoid) enables the output to be mapped to the input to a value
between 0 and 1 according to the logarithmic function:

logsig(n) =
1

1 + e−n
. (8)

The hyperbolic tangent nonlinear mapping transfer function
(tan-sigmoid) enables the output to be mapped the input to a
value between −1 and 1 according to the hyperbolic tangent
function:

tansig(n) =
en − e−n

en + e−n
. (9)

It has been demonstrated that when the hidden layer transfer
function is set to tan-sigmoid and the output layer transfer
function is set to purelin, adjusting the active interval of the
subsequent layer can yield more effective results.

The loss function is employed to assess the discrepancy
between the neural network-derived rain rate retrieval and the
actual output. The loss function chosen for this analysis was root
mean squared error (RMSE)

RMSE =

√
1

n

∑n

i=1
(pi − pi)

2 (10)

where pi is the rain rate detected by the SFMR, pi represents
the rain rate from model retrieval, and n is the total number of
samples.

The input data of the model were randomly divided into
training, validation, and test sets. Additionally, an SAR image
was reserved as an independent test set of the model to better
show the universality of the model. The reserved image was
hurricane Douglas occurred in the northeastern Pacific Ocean on
25 July 2022. After data matching, a total of 14 046 juxtaposed
data samples from dual-polarized Sentinel-1 SAR images and
simultaneously measured by SFMR data of 46 hurricanes were
collected in the study. These samples were then divided into
training set, validation set, and test set at a ratio of 7:2:1.

C. Optimization of CFNN Based on GA

GA is an optimization algorithm based on evolutionary theory
and genetic principles. By simulating biological evolution, it

Fig. 5. Flow chart of CFNN optimization based on GA.

iterates, evolves, and optimizes from an initial population, and
finally obtains a relatively better solution. In the field of machine
learning, GA has found extensive application in fine-tuning
parameters and optimizing model outputs. The intricate work-
ings of neural networks are particularly sensitive to the weights
and thresholds assigned to their nodes, and GA can avoid the
shortcomings of the initial weight and threshold randomization
in the neural network. It is crucial to note that the parameters
within the GA algorithm greatly impact its global performance
and rate of convergence. The algorithm flow we used is shown
in Fig. 5.

The population size is set to 40, the maximum genetic al-
gebra is set to 100, and the crossover probability and mu-
tation probability are predefined constants, typically within
the ranges of 0.3–0.8 and 0.001–0.1. In this article, the
crossover probability is 0.7 and the mutation probability is
0.01.

IV. RESULTS AND VALIDATION

A. CFNN Neural Network Retrieval of Precipitation

Upon comparison, it was observed that the utilization of wind
speed, as well as its absence, significantly impacts the model’s
retrieval of rain rate. Additionally, this article also delves into
the influence of the distance parameter D on the retrieved rain
rate. The result is presented in Fig. 6.

Fig. 6 shows the rain rate retrieval effect map with multiple
parameters added to the neural network input. Only σVV

0 , σVH
0

θ, and ϕ are used as input, the RMSE of the training set is
4.23 mm/h, and the correlation coefficient is 0.68, the RMSE of
the validation set is 4.55 mm/h, and the correlation coefficient
is 0.67.



LIU et al.: RETRIEVAL OF HURRICANE RAIN RATE FROM SAR IMAGES BASED ON ARTIFICIAL NEURAL NETWORK 15073

Fig. 6. Effect of model retrieval with different features as input.

Fig. 7. GA optimization process.

With the addition of the distance parameter D, the perfor-
mance of the rain rate retrieval improves. The RMSE of both
training set and validation set decreases significantly, and the
correlation coefficient is higher than before. When the input
parameter v is added, compared to the retrieval effect of only four
parameter inputs, the RMSE of the training set and the validation
set is reduced by more than 0.7 mm/h, and the correlation
coefficient is increased by more than 0.17, which improves the
accuracy of the neural network retrieval rain rate. It can be
observed that the addition of D and v significantly improves
the accuracy of rain rate retrieval results.

In summary, the CFNN model with σVV
0 , σVH

0 , θ, ϕ, D, and
v as input parameters have the best rain rate retrieval level.
The RMSE and correlation coefficient of the validation set are
3.43 mm/h and 0.84, respectively.

B. GA-CFNN Model Training

GA is used to optimize the parameters of the neural network.
The rain rate retrieval results of GA-CFNN are better aligned
with the rain rate true value results obtained from SFMR. Fig. 7
shows the evolution process of GA-CFNN. As can be observed
in it that as the genetic algebra increases, when it evolves to

Fig. 8. Comparison of SAR retrieval rain rate and SFMR rain rate. (a) Training
sets. (b) Test sets.

49 generations, the neural network tends to converge and the
error reaches the minimum target. Fig. 8 shows the comparison
between the SFMR rain rate product and the rain rate retrieved
using the GA-CFNN model. It is evident that after optimization
using the GA, the target expectation is achieved.

After using GA to optimize the neural network, the scatter
plot of SAR rain rate retrieval results compared with SFMR rain
rate data is shown in Fig. 8. In general, there are more samples
with a rain rate of 15 mm/h or less in the training and testing sets
and less data with high rain rate, which increases the difficulty
of training. After optimization, the RMSE of the training set of
the model is reduced to 2.82 mm /h, the correlation coefficient
is 0.89. For the test set, the RMSE of the test set is reduced to
3.04 mm /h, and the correlation coefficient is 0.88. It is evident
that after GA optimization, the retrieval accuracy of the rain rate
has significantly improved.

C. Model Validation

The SAR image of hurricane Douglas occurred in the north-
eastern Pacific was used for independent verification. It was
captured by Sentinel-1 at 03:47 on 25 July, 2020 (UTC), and
is independent of the matching data set. This article used GA-
CFNN to retrieve the rain rate for it, and the rain rate field around
the hurricane eye was obtained. The retrieved rain rate intensity
field of hurricane Douglas is shown in Fig. 9. In addition, this
article compares the retrieved results with the 2-level DPR rain
rate data of GPM, because the rain rate observed by GPM is
wider than by SFMR and has two-dimensional structure, which
can be better compared with the retrieved rain rate of SAR
images. The time information of GPM is 02:30 (UTC) on the
same day.

Using the GA-CFNN model, it was retrieved that the maxi-
mum rain rate of Hurricane Douglas reached 60 mm/h. Upon
comparison, it is found that the results of the retrieved using the
method proposed in this article are basically consistent with the
GPM rain rate data, but there are a few rainbands that have not
been successfully identified. Since the time difference between
the SAR image of Hurricane Douglas and the GPM observation
is 77 min, the hurricane will move farther away, so it appears
that the two hurricanes in Fig. 9(b) and (c) are in different
locations. We speculate that these rainbands would move and
dissipate over time due to the different times at which the SAR
images and GPM data were obtained. In addition, due to the
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Fig. 9. Comparison of rain rate from SAR image retrieval and GPM rain rate
for hurricane Douglas. (a) Quick-look from the VH polarized over hurricane
Douglas. (b) Retrieval rain rate of hurricane Douglas. (c) GPM rain rate of
hurricane Douglas.

high spatial resolution of SAR, the fine structure of rain rate with
high spatial resolution can be obtained, the hurricane rainbands
with high rain rate have the same structure as the rain bands
of GPM data. Moreover, the high-resolution SAR data allows
for the identification of the hurricane eyewall situated between
the intense rain band and the eye of the hurricane. In summary,
the method outlined in this article is well-suited for retrieving
rain rate information surrounding Hurricane Douglas, offering
the potential to enhance the accuracy of rain rate retrieval for
hurricanes.

V. CONCLUSION

Extreme weather processes, such as hurricanes, have a signifi-
cant impact on human life. Hurricanes are often accompanied by
natural disasters, such as strong winds, rainstorms, and tsunamis,
and can even directly affect the safety of human life. Monitoring
hurricanes is helpful for taking preventive measures and mini-
mizing losses. Therefore, effective monitoring of hurricanes is
of great significance for ensuring human activities.

At present, traditional hurricane monitoring methods rely
on aircraft and ground meteorological observations, but these
monitoring methods have significant limitations. Therefore, re-
mote sensing has become the primary means of large-scale and
all-day ocean monitoring. Although there are some products
available for the observation of sea surface rain rate, the retrieval
of hurricane rain rate remains a challenge. In addition, due to
the limitation in the level and data of hurricane observation,
there are errors in the retrieval of hurricane rain rate, making
it a significant challenge to improve the accuracy of hurricane

rain rate retrieval. SAR has the ability to obtain all-day, high-
resolution hurricane information, and its technology is continu-
ously developing. There is a wealth of global sea data observed
by SAR. If SAR can be applied to retrieve rain rate, it will
provide an important means for sea precipitation observation
and monitoring.

This article proposed a hurricane rain rate retrieval method
based on machine learning, particularly GA to optimize neural
networks. The SFMR data in the hurricane observation task of
the US NOAA program was set as the reference data, achieving
favorable rain rate retrieval results. We used the machine learn-
ing approach to train the neural network model according to the
established data set. This model employed the cross-polarized
(VH) and co-polarized (VV) NRCS, incident angle, and latitude
information as input to initially verify the feasibility of neural
network retrieval of hurricane rain rate. Then, when we add v
and D as inputs, the RMSE of hurricane rain rate retrieval is
3.04 and the correlation coefficient is 0.88. To further enhance
the accuracy of our results, we used a GA to optimize the
neural network’s parameters. The rain rate retrieval results of
the optimized neural network model exhibited lower errors.
When comparing our results with GPM data for hurricane
Douglas’s rain rate retrieval, we observed good accuracy. This
demonstrates the practicality and strength of our approach. It is
evident that SAR data can be used to retrieve hurricane rain rate,
providing a valuable method for SAR-based rain rate retrieval
with significant practical applications.

The article exhibits some limitations. Because the high rain
rate in the SFMR observations has a limited number of high
rain rate cases, the rain rate is concentrated below 15 mm/h,
which increases the difficulty of retrieval and may limit the
model’s generalizability. Therefore, our next step will focus on
developing a method for retrieving rain rate above 15 mm/h.
This effort will enhance our understanding of the physical
mechanisms involved in extracting rain rate information from
SAR images, thereby advancing the field.
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