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Mesoscale Eddy Detection and Classification From
Sea Surface Temperature Maps With Deep

Neural Networks
Mohammad Mahdi Safari , Alireza Sharifi , Javad Mahmoodi , and Dariush Abbasi-Moghadam

Abstract—Oceanic eddies are a widespread and important oc-
currence that plays a vital role in the movement of chemicals and
energy within the marine ecosystem. Hence, the astute and precise
recognition of these swirling currents may greatly contribute to
the progress of our comprehension of oceanography. Due to the
continuous breakthroughs in state-of-the-art deep learning tech-
nology, the population is witnessing a progressive improvement
in the methods used to identify and understand these aquatic
characteristics. This study employs sea surface temperature data
acquired from the Copernicus Marine and Environment Monitor-
ing Service (CMEMS) in the Atlantic Ocean. The objective is to
present EddyNet, a cutting-edge deep-learning framework specifi-
cally developed for the automatic identification and categorization
of ocean eddies. EddyNet incorporates a pixel-wise classification
layer into its neural encoder-decoder architecture. The resulting
output is a map that maintains the same dimensions as the input, but
each individual pixel is assigned a label indicating its classification
as either “0” for noneddy regions, “1” for anticyclonic eddies, or “2”
for cyclonic eddies. We propose a new image segmentation method
based on the U-net architecture with different convolutional neural
network backbones such as VGG16, VGG19, DenseNet121, and
MobileNetV2. Our models are built and trained using Python
and the Keras library with the Adam optimizer for improved
convergence. Our approach uses sparse categorical cross-entropy
as the loss function, simplifying the label encoding process for
multiclass classification with sparse labels. Initial results show that
this method achieves a good balance between computational effi-
ciency and segmentation accuracy, making it suitable for real-time
applications.

Index Terms—DenseNet121, MobileNetV2, remote sensing (RS),
semantic segmentation U-net, VGG-Net.
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I. INTRODUCTION

R ECENTLY, crucial occupations involving the understand-
ing of climate change have focused on the detection and

comprehension of the escalating phenomenon of global warm-
ing, with a specific emphasis on the prediction and surveillance
of sea level temperature [1], [2]. Several deep learning (DL)
and machine learning (ML) approaches have been developed
using graphical and spatial analytic methodologies [3], [4].
These inquiries may provide vital proof demonstrating that the
alterations are inducing the elevation of oceans and sea levels.
Oceanographic simulations include the study and prediction of
ocean currents and streams [1]. Accurate modeling of ocean
dynamics and turbulence is crucial in order to enhance our
understanding and prediction of climate change and sea level
fluctuations [5]. The physical processes responsible for ocean
currents have a significant influence on ocean dynamics and the
general movement of the ocean [6].

Current patterns of ocean motion have been significantly
influenced by the effects of changes in the climate and worldwide
warming in recent times. Various oceanic locations often influ-
ence the impact of sea surface temperature (SST) fluctuations
on anomalies in atmospheric circulation [7]. Mesoscale ocean
eddies have the ability to affect the dynamics of the atmosphere at
mesoscales mainly via kinetic energy. They also have a regional
influence on near-surface wind, cloud features, and rainfall [8].
The ocean’s stratification is influenced by substantial currents
and the resulting instability on the oceanic mesoscale, which
spans around 100 km [9]. These currents also contribute to the
transport of heat toward the poles in the climate system [10],
[11].

Researchers use to analyze and study eddies to get insights
into their impact on ocean climate models [12]. The introduction
of altimeter operations and the availability of many altime-
ters at the same time allowed for the detection of mesoscale
eddies in the SST combined objects, leading to sufficient de-
cisions [13], [14]. Understanding eddy dynamics is essential
to comprehending the environmental conditions on Earth. As
a result, finding and monitoring mesoscale ocean eddies is
essential for producing accurate numerical atmospheric models
that anticipate changes in the climate. The burgeoning field of
computer vision research, particularly neural networks, provides
interesting applications to achieve more accurate eddy detection
in addition to the well-established state-of-the-art methods for
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identifying eddies. The findings of existing approaches are rela-
tively trustworthy but lack complete automation since they rely
on user-defined thresholds, which makes them dependent on
user inputs. As a result, the incorporation of AI algorithms has
become fascinating. The computer may be trained to recognize
eddy patterns on its own by using neural networks. This strategy
has the potential to improve eddy detection’s accuracy and
effectiveness, but the main issue is to establish suitable criteria
and thresholds for monitoring mesoscale eddies among physical
and mathematical attributes.

The ocean exhibits dynamic, circular currents that have a
diameter ranging from 10 to 500 km [13], [15]. These charac-
teristics are crucial in the movement of ocean currents, the dis-
tribution of biogeochemical substances, and the management of
climate. In addition, we have strengthened the context by using
specific instances, recent research discoveries, and a formal style
to present a thorough explanation of the importance of mesoscale
eddies in the marine system, namely in the North Atlantic area.
In this study, SST is considered as an attribute to assist in setting
certain maps for analyzing remote sensing (RS) satellite images,
which are called SST maps. Anticyclonic and cyclonic eddies
are commonly believed to be linked to atypical warm and cold
surface waters, respectively [16], [17]. Through the utilization
of satellite images, we present evidence that the global ocean
contains a significant number of anticyclonic and cyclonic eddies
based on warm and cold core water streams in the Gulf Stream.
They are also characterized by potential vorticity that is more
pronounced near the surface. This study examines a specific type
of anticyclonic eddies and cyclonic eddies that are characterized
by subsurface-intensified potential vorticity and SST anomalies.
Specifically, cyclonic eddies are typically associated with cooler
temperatures due to the upwelling of deeper, nutrient-rich wa-
ters, while anticyclonic eddies are linked to warmer tempera-
tures resulting from the downwelling of surface waters. These
contrasting effects on SST, visible through satellite imagery, are
crucial in understanding ocean circulation and marine ecology.
Cyclonic eddies are marked by their counterclockwise rotation
in the Northern Hemisphere, promoting biological productivity
by bringing cold, nutrient-laden water to the surface, while
anticyclonic eddies, rotating clockwise, often encapsulate and
transport warmer surface waters, impacting local marine life and
oceanic carbon uptake differently [18], [19]. Due to their high
prevalence, it is necessary to accurately consider and quantify
the contribution of cyclonic and anticyclonic when evaluating
and defining the impact of oceanic eddies on the global climate.

Potential vorticity is a quantifiable characteristic that com-
bines the rotating motion of a fluid with the consequences of
stratification. Understanding the mechanics of fluid motion,
especially in geophysical flows like ocean currents, is greatly
facilitated by this helpful trait. This phenomenon is particularly
evident in the upper layers of the ocean within these small-scale
rotating currents, and it can offer vital insights into the intensity
and origin of these features [1], [20]. Acquiring an understanding
of the attributes and actions of these intermediate-sized swirling
currents is essential for enhancing our climate models and
precisely predicting changes in the environment. This study
employs state-of-the-art neural networks to detect and classify

these swirling currents from SST maps, providing a crucial
instrument for oceanographers and climatologists.

Consequently, it is essential to comprehend the transmission
and characteristics of mesoscale ocean eddies and use this
knowledge to detect and examine them, as it has significant
importance for worldwide climate change as well as geological
and oceanographic studies. This study utilizes four conventional
neural networks (CNNs) built using the U-net architecture con-
tains: VGG16, VGG19, DenseNet121, and MobileNetV2 to
assess preprocessed satellite images taken in the Atlantic Ocean,
specifically focusing on Gulf Stream data in 2019.

This article is divided into six segments. Setion II presents
the related works. In Section III, an outline of the suggested
approaches and designed models is presented. Also, Section IV
emphasizes implementation, findings, and derived outcomes. In
Section V, innovations and limitations in this article and outlines
of prospective research are discussed. And Section VI offers final
remarks and applications of the proposed methodology.

II. RELATEDWORKS - STATE-OF-THE-ART

In the field of computer science, specifically in the area of
DL, the task of dealing with a limited amount of labeled data for
neural networks requires the use of creative ways to generate or
enhance data. This has a substantial effect on traditional methods
of identifying mesoscale eddies and their applications in spatial
planning and RS. One of the most recent novel research methods
focuses on identifying ocean mesoscale eddies for deep transfer
learning target recognition. The method is based on YOLOF
(You Only Look One Level Feature), which is a widely used
framework for goal detection in DL. The study highlights the sig-
nificant advantages of YOLO series goal detection frameworks
in the field of DL. The suggested method surpasses current clas-
sification approaches in terms of detection performance, elimi-
nates the impact of threshold change on mesoscale eddy identi-
fication, and somewhat enhances identification speed [21], [22].

Moreover, the 3D neural network with a focus on the vertical
structure of eddies is used to classify ocean eddies. This study is
one of the early attempts to evaluate the effectiveness of DL in
identifying vertically arranged eddies. The improved eddy pro-
files database is generated by using a vertical profile framework
that is tightly linked to altimetry sea surface topography. The
following is a description of a 3D neural network that focuses
on the vertical structure of eddies. This network is based on
the residual network (ResNet) and is used to classify eddies
as either anticyclonic, cyclonic, or nonexistent. The proposed
network might include geographical and dynamic properties
as external variables. The proposed network has the capability
to represent 3D eddy data and may be extended to a more
complex network structure by including 3D convolutions and
pooling. Ultimately, classification testing validates the proposed
methodology. An especially notable result from the experiments
is that the proposed method may improve the capacity to identify
eddies by using altimetry-calibrated vertical characteristics with
similar classification effectiveness [23].

Another comparable research has used a strategy that com-
bines many approaches. A new combination strategy that
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leverages CNN and extreme gradient boosting (XGBoost) ad-
vantages may be used to extract the usual vertical feature and
eddy from an image. The CNN utilizes the input data analyzed
at the lower layers of the neural network to extract vertical
features. Furthermore, the model called XGBoost utilizes the
complex vectors of variables and account features to classify
profiles that are not associated with altimeter-identified eddies
(Alt eddy) [24].

The subsequent correspondence introduces the pyramid
split attention (PSA) eddy detection U-net architecture (PSA-
EDUNet) designed specifically for the purpose of identifying
maritime imaging eddies. The PSA-EDUNet has been developed
based on the U-net architecture. It has encoder and decoder
components to effectively combine low-level and high-level
characteristics and avoid the loss of characteristic data via
nonlinear connections. Principal component analysis enhances
the process of extracting features. The primary criteria for iden-
tifying eddies in fusion data are SST and sea level anomaly
(SLA). The Kuroshio Extension (KE) and South Atlantic inves-
tigations demonstrate that the proposed technology surpasses
existing methodologies, particularly in terms of eddy edges and
small-scale eddies [25].

The accompanying letter presents developed DL approaches
for detecting ocean eddies using semantic segmentation. Con-
textually efficient pixel-level detection is necessary for semantic
segmentation. Two attention modules are designed to tackle this
problem. The VGG16-based U-net design, equipped with two
attention modules, effectively demonstrates the contextual re-
lationship between the distribution and geographic dimensions.
Each pixel or bandwidth incorporates context from the others,
as per the links. A residual route is used to substitute the skip
link that connects the encoder and decoder units. The results
demonstrate that the use of an attention-based deep framework
and a unique residual methodology enhances the effectiveness
of models compared to the most advanced methods currently
available [26]. Duo et al. [27] have developed OEDNet, an
oceanic mesoscale eddy automated recognition and localization
network. OEDNet leverages DL techniques to enhance previous
detection methods. This study utilizes research findings on ed-
dies to address the detection of mesoscale eddies. The approach
involves using a training database that contains SLA contour
maps with labeled eddy sites. A multilayer deep neural network
is constructed and taught to accurately identify the center of
mesoscale eddies and generate the corresponding contour. In
addition, Aguedjou et al. [16] study the influence of mesoscale
eddies on the interaction between the atmosphere and the ocean,
focusing on their effects on the exchange of heat and freshwater
in the tropical Atlantic Ocean. Their study utilizes a substantial
amount of satellite altimetry data spanning multiple years, in
conjunction with SST data, to gain a comprehensive understand-
ing of the influence of eddies in these phenomena.

Recent explorations and advancements in DL methodologies
have highlighted a research gap in the automation method
and precision of mesoscale eddy identification from SST data,
specifically utilizing U-net frameworks with varying backbones
for enhanced detection and classification in the Gulf Stream of
the Atlantic Ocean-based warm and cold core water. Regarding

Fig. 1. Study area: North Atlantic Ocean.

the gap in the previous for detecting and classification and
localization of mesoscale in the North Atlantic Ocean based on
SST in the Gulf Stream. So, this study has conducted an evalua-
tion of U-net architectures as the principal approach, consisting
of a convolutional encoder-decoder followed by a pixel-wise
classification layer based on VGG16, VGG19, DenseNet121,
and MobileNetV2. The initial visualization involved plot maps
with the same size as the input, where pixels have been labeled
as follows: “0” for noneddy, “1” for anticyclonic eddy, and “2”
for cyclonic eddy. Subsequently, training datasets and EddyNet
weights files have been generated. Moreover, our findings sig-
nify the growing collaboration between the RS and ML com-
munities, which has resulted in substantial contributions toward
addressing the segmentation of SST images. The U-net archi-
tectures and implementation models are specifically discussed
in the dedicated in the proposed method of the study.

III. MATERIAL AND METHODS

A. Study Area

The study area region covers a large portion of the North
Atlantic Ocean, spanning from latitude 17.32◦N to 55.50◦N
and longitude 41.13◦W to 95.63◦W , as shown in Fig. 1 [28].
This vast expanse includes notable geographical features such
as the Hudson Bay, the Gulf of Mexico, and the Labrador Sea.
Moreover, it spans from the western African shoreline to the
eastern coast of the Americas. The North Atlantic Ocean, while
often seen as a mostly flat body of water, does exhibit several
discernible oceanic traits [29]. An exemplary instance is the
Gulf Stream, a vigorous warm oceanic circulation that moves
in a northeasterly trajectory over the eastern North American
shoreline. The present oceanic conditions have a substantial
impact on the climate of adjacent coastal regions. A diverse
array of aquatic organisms flourishes in this expansive region,
including several fish species, marine invertebrates, and seabirds
[30].

The complex marine ecosystems seen in this area result from
the delicate interaction between different water currents and
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TABLE I
SATELLITE DATASET INFORMATION CREDITED BY COPERNICUS [31]

masses. The North Atlantic has historically been crucial in
enabling trade and transit between Europe and North America.
The region’s strategic significance has resulted in significant
marine involvement, emphasizing its essential role as a critical
commerce route. This vast research area encompasses several
islands and beaches. These include notable geographical areas
such as the Azores, a cluster of Portuguese islands, portions of
the Caribbean archipelago, and the eastern peripheries of the
United States and Canada [30].

The North Atlantic has a negligible impact on the climate
of adjacent land regions, particularly in Europe. Nevertheless,
the North Atlantic Drift, which is an integral component of the
broader North Atlantic Current system, does indeed influence
temperatures and contribute to the formation of the European
climate. The North Atlantic Ocean receives significant focus for
vast research endeavors due to its crucial influence on climate dy-
namics, marine biology, and oceanography. The many attributes
and extensive impacts of this issue make it a captivating topic
for scientific investigation and analysis.

B. Satellite Data Observation

The fundamental dataset supporting this study is the ESA
SST CCI and C3S global SST Reprocessed product. Table I
shows the satellite dataset information. This dataset is crucial
for comprehending and examining global-scale SST dynam-
ics. The dataset provides a detailed representation of the daily
average SST at a depth of 20 cm, presented in a spatial grid
resolution of 0.05° by 0.05°. The dataset is carefully compiled
using satellite data obtained from three different sources: the
Advanced Along-Track Scanning Radiometer (AATSRs), the
Sea and Land Surface Temperature Radiometer (SLSTR), and
the Advanced Very High-Resolution Radiometer (AVHRR) se-
ries of sensors, as thoroughly explained by the work in [31]
and [32]. The combination of several satellite sensors yields
a comprehensive and varied dataset, effectively capturing the
intricacies of SST fluctuations across various geographical areas.

TABLE II
PERFORMANCE METRICS COMPARISON OF CONVOLUTIONAL NEURAL

NETWORK MODELS

The ESA SST dataset has been selected for its superior resolution
and timeliness throughout the study period, which are essential
for effectively capturing mesoscale eddy features.

The ESA SST CCI and C3S level 4 analyses are produced us-
ing a complex processing pipeline called the operational SST and
sea ice analysis (OSTIA) system [33]. This system accurately
and carefully analyzes the satellite data it receives, resulting in
a daily study of SST with a high grid resolution of around 5 km.
The increased resolution greatly improves the dataset’s capacity
to record small-scale variations in oceanic temperatures. In this
section, the study designates the aforementioned dataset as the
foundational training and testing repository for our deep neural
network-based U-net algorithm. This investigation harnesses
a year in 2019, during which we assimilate daily sensed and
detected SST satellite images. The decision to prioritize the
year 2019 for eddy identification has been made in order to
obtain a comprehensive and precise understanding of the most
recent characteristics of eddies. This choice also ensures that the
study is based on the most up-to-date and complete information,
enabling a consistent examination of the current effects and pat-
terns of eddies. The corresponding SST maps, essential for our
research, are thoughtfully furnished by the Copernicus Marine
Environment. The SST data underwent spatial and temporal
filtering procedures to accurately separate mesoscale signals,
guaranteeing that the DL model had been trained on features
that are distinctively associated with mesoscale eddies.

C. Proposed Method

In our research, we employed a U-net framework augmented
with various backbone networks to identify and categorize
oceanic eddies within our dataset. This approach allowed us
to classify each pixel into one of three distinct classes: noneddy
regions, anticyclonic eddies, or cyclonic eddies. The U-net’s
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Fig. 2. U-net architecture.

Fig. 3. Architecture of the U-net with DenseNet 121 as a backbone.

architecture, characterized by its distinctive U-shaped design as
depicted in Fig. 2, is the inspiration behind its nomenclature.
This structure is pivotal for the network’s ability to effectively
capture both contextual and localized information, thereby en-
hancing its segmentation capabilities.

U-net is a DL architecture for image segmentation. U-net is
designed as a convolutional network with two main components:
an encoder for feature extraction and a decoder for feature
localization and resolution restoration. The encoder part of U-net
captures the essential features of the image while reducing its
dimensionality through max-pooling. Subsequently, the decoder
portion employs up-sampling and deconvolution techniques to

incrementally recover the image’s resolution and precisely local-
ize the features. U-net also uses skip connections to concatenate
the features from the encoder and the decoder, which helps to
preserve the spatial information and improve the segmentation
accuracy. The backbone of U-net is the network that is used
as the encoder. Different backbones can have different effects on
the performance and efficiency of U-net. Specifically, changing
the backbone of U-net can be a tradeoff between accuracy and
speed, depending on the application and the available resources.
In this article, we exploit DenseNet121 as the backbone of the
U-net. As depicted in Fig. 3, our specific U-net implementation
integrates DenseNet121 as its encoder backbone. The network
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processes input images of size 128 × 128, propelling them
through the layered architecture. The encoder generates feature
maps of descending spatial dimensions but increasing depth,
specifically sizes of 4× 4× 1024, 8× 8× 1024, 16× 16× 512,
32 × 32 × 256, and 64 × 64 × 64. These progressively
reduced representations are then channeled into the decoder
part for detailed reconstruction. Within the U-net architecture,
the decoder undergoes a systematic sequence of stages to refine
features and expand dimensionality. For example, a feature map
of 4 × 4 × 1024 is subjected to up-sampling and deconvolution
to get a new size of 8 × 8 × 512. The extended feature map
is joined with an 8 × 8 × 1024 feature map from the encoder,
resulting in a merged feature map of 8 × 8 × 1536.

Afterward, the feature map undergoes further processing by a
subsequent layer in the decoder, resulting in a feature map with
dimensions of 16 × 16 × 256. The map is combined with a
16 × 16 × 512 feature map obtained from the encoder, resulting
in a composite feature map of 16 × 16 × 768. Subsequently,
the procedure proceeds by using an additional decoder layer
to convert the feature map into a size of 32 × 32 × 128. The
32 × 32 × 256 feature map from the encoder is combined with
this, resulting in a 32 × 32 × 384 feature map. Afterward, an
additional level of the decoder is used to generate a feature map
with dimensions of 64 × 64 × 64. This feature map is then
combined with a feature map obtained from the encoder, which
also has dimensions of 64 × 64 × 64. The result is a feature
map with dimensions of 64 × 64 × 128. Ultimately, a transpose
convolutional layer is used to manipulate this feature map and
generate the ultimate output mask, which has dimensions of
128 × 128 × 3. The precise sequence of up-sampling, merging,
and processing is crucial for the U-net to precisely locate and
define the target features in the output mask.

The selection of the 128 × 128 pixel size for input images
in our U-net-based segmentation approach has been driven by a
balance between computational efficiency and the level of detail
necessary for accurate eddy detection. This size is sufficient to
capture the essential features of mesoscale eddies while main-
taining manageable computational demands for processing large
datasets. It allows for the inclusion of enough spatial context
to effectively identify and classify eddy and noneddy regions,
leveraging the U-net architecture’s capability to handle both
contextual and localized information. This dimensionality also
aligns well with the U-net’s encoder-decoder mechanism, where
the encoder reduces the dimensionality through max-pooling,
and the decoder employs up-sampling and deconvolution to
recover resolution and localize features accurately. The chosen
size ensures that the network can efficiently process feature maps
through its layers, as demonstrated by the systematic reduction
and expansion of spatial dimensions within the network architec-
ture. This careful consideration of input image size thus supports
the model’s overall performance in segmenting satellite imagery
for oceanic eddy detection.

In our U-net architecture, we employ four distinct backbone
networks: VGG16 [34], VGG19 [34], DenseNet 121 [35], and
MobileNet V2 [36]. Of these, DenseNet 121 emerges as the
most effective in terms of performance. The backbone weights
are initialized using pretraining on the ImageNet dataset, which

confers several advantages. This initialization strategy short-
ens the training duration for the terminal layers, expedites the
convergence process, and enhances the overall efficacy of the
network. MobileNetV2 and DenseNet121 are CNNs used for
image processing applications. However, they vary greatly in
terms of the complexity and number of parameters in their
structures. MobileNetV2 is renowned for its high efficiency,
achieved by the use of depth-wise separable convolutions in
combination with inverted residual structures, resulting in a
reduction in parameter count and computing burden. The sleek
appearance of this product makes it well-suited for settings with
minimal resources.

Conversely, DenseNet121, a modified version of the
DenseNet architecture, employs a network topology that is
densely linked. This model is composed of four dense blocks,
each consisting of 6, 12, 24, and 16 convolutional layers accord-
ingly. It is distinguished by its distinctive connection structure,
where every layer gets input from all the layers that come before
it. The network concludes with a fully connected layer, which
is then followed by a SoftMax classification layer. Because
of its extensive connection and several layers, DenseNet121 is
regarded as a network that requires more parameters. This means
it demands more computing resources, but it also enhances its
ability to handle difficult visual recognition jobs effectively.
MobileNetV2 is an enhanced version of the original MobileNet
design. It incorporates depth-wise separable convolutions to-
gether with inverted residual structures to reduce the number of
parameters and computing requirements. MobileNetV2 is de-
signed to be efficient, with 17 inverted residual blocks that have
different expansion factors and output channels. The model is
finalized with a fully connected layer, which is then followed by
a SoftMax layer for the purpose of classification. MobileNetV2,
which consists of almost 3.5 million parameters, is specifically
designed to prioritize speed and efficiency. This makes it highly
ideal for devices with limited processing capabilities, such as
mobile and embedded devices.

On the other hand, DenseNet121, which has around 8 million
parameters, is highly praised for its precision and resilience. The
reason for this is its compact block structure, which improves
the transmission and reutilization of characteristics, making it
very proficient at managing intricate and diverse picture col-
lections. In summary, MobileNetV2 and DenseNet121 provide
a harmonious combination of speed, efficiency, accuracy, and
complexity, with each being specifically designed for certain
circumstances and applications. MobileNetV2 is the preferred
choice for achieving fast and efficient performance in contexts
with limited resources, whereas DenseNet121 stands out in situ-
ations where precision and robustness are of utmost importance.
VGG16 and VGG19 are two configurations of the VGG model,
which is characterized by its use of small 3 × 3 convolutional
filters stacked in multiple layers before a max-pooling layer.
The primary distinction between VGG16 and VGG19 lies in
the number of convolutional layers: VGG16 comprises 13,
while VGG19 includes 16. Each model concludes with three
dense layers and a SoftMax layer for output classification.
Both VGG16 and VGG19 are considered to be models with
substantial parameter counts, approximately 138 million and
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144 million, respectively, reflecting their more complex and
expansive architectures.

The selection of neural network architectures in this study has
been driven by the need to balance accuracy, computational effi-
ciency, and model complexity. The U-net architecture, known for
its efficacy in image segmentation tasks, has been chosen as the
foundation for all models due to its robust performance in feature
extraction and localization. The VGG16 and VGG19 models
were selected for their deep architectures and strong feature
extraction capabilities, providing a benchmark for segmentation
performance. DenseNet121 has been chosen for its efficient
feature propagation and reuse, which is beneficial in identifying
complex patterns in SST data. Finally, MobileNetV2 is included
for its lightweight architecture and rapid processing capabili-
ties, making it ideal for real-time analysis in computationally
constrained environments. Each model thus caters to different
requirements of the segmentation task, from the VGG models
providing detailed feature extraction to the MobileNetV2 ensur-
ing efficiency and speed. This comprehensive approach allows
for a robust evaluation of varying architectural strengths in the
context of mesoscale eddy detection from satellite imagery.

D. Evaluation Metrics for Convolutional Neural Network
Performance in Mesoscale Eddy Segmentation

Within the theoretical framework of our research, we have
used a range of measures to evaluate the effectiveness of neural
network models in dividing satellite pictures into segments.
The Intersection over Union (IoU) is a widely used statistic in
segmentation tasks that quantifies the degree of overlap between
the predicted segment (the region recognized by the model) and
the ground truth (the actual region). The ratio of the intersection
of the projected and actual areas to their union is calculated. A
higher IoU value signifies a larger degree of overlap, which in
turn indicates superior performance of the model [37].

IoU = Area of Overlap between Prediction and Ground Truth
Area of Union between Prediction and Ground Truth . (1)

The Dice Score, sometimes referred to as the Dice coefficient,
is a similarity statistic used to assess the precision of the seg-
mentation. The model’s performance is assessed by determining
the extent of overlap between the predicted segmentation and
the ground truth. This is achieved by multiplying the overlap
size by two and dividing it by the total of the pixels in both
segmentations. Similar to the IoU metric, a higher Dice Score
signifies superior performance [38].

Dice = 2×Area of Overlap between Pred and GT
Total Num of Pixels in Pred+Total Num of Pixels in GT .

(2)
In this case, accuracy refers to the degree of correctness of

the model. It is determined by summing the number of accurate
predictions (true positives and true negatives) and dividing it by
the total number of predictions produced. True positives (TP)
refer to the accurately detected eddy pixels, while true negatives
(TN) represent the properly recognized noneddy pixels. On the
other hand, false negatives (FN) indicate the eddy pixels that the

model mistakenly classified as noneddy [39].

Accuracy =
True Positives + True Negatives

Total Population
. (3)

Precision is a quantification of accuracy or excellence. Pre-
cision is calculated as the ratio of true positives to the sum
of true positives and erroneous positives, where false positives
refer to noneddy pixels that are mistakenly recognized as eddies.
High accuracy is characterized by a minimal occurrence of false
positives [40].

Precision =
True Positives

True Positives + False Positives
. (4)

The F1 Score is calculated as the harmonic mean of accuracy
and recall, effectively balancing the two metrics by including
both erroneous positives and FN. The F1 Score is essential since
it considers both the accuracy and recall of the model, which is
the ratio of TP to the sum of TP and FN [41].

F1 Score = 2 × Precision × Recall
Precision + Recall

. (5)

The recall, therefore, signifies the model’s capacity to cor-
rectly detect all relevant instances (all real eddies) [41].

Recall =
True Positives

True Positives + False Negative
. (6)

Collectively, these measures provide a comprehensive per-
spective on the model’s performance, with each statistic reflect-
ing a distinct facet of the segmentation process. Achieving high
scores in these criteria indicates a model that is both accurate
and precise, and capable of reliably detecting eddies in diverse
marine satellite data.

IV. RESULTS

The neural networks have been trained on the satellite im-
agery dataset from the North Atlantic Ocean in 2019, resulting
in segmentation maps that are visually and numerically dis-
tinguishable. Our methodology is implemented using Python
with the Keras framework, leveraging the Adam optimization
algorithm, and also, we trained the model on a Google Colab
with 12.7 GB of memory and T4 as GPU. We configure the
dataset with a batch size of 16 and undertake training over 100
epochs, allocating 10% of the data for validation purposes. The
chosen loss function is sparse categorical cross-entropy, which
is apt for multiclass categorization tasks involving sparsely
labeled data. This means that instead of using a one-hot encoded
vector, each sample’s label is denoted by a single integer. Fig. 4
illustrates the satellite image, ground truth, and predicted image
for different backbones. To train our DL models, we carefully
selected a ground truth dataset consisting of mask images that
depict the borders of mesoscale eddies. As mentioned before,
we have been assisted by SST data that implement our mask
images for labeling eddies based on temperature as cyclonic
and anticyclonic eddies regarding cold and warm core water in
our study area. The CMEMS set up and confirmed these masks,
which indicate the locations of eddies. These masks serve as a
dependable foundation for training our model and guarantee the
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Fig. 4. Comparative analysis of mesoscale eddy detection: the first column
depicts the original satellite imagery, while the subsequent columns display
ground truth and the segmentation results for anticyclonic, cyclonic, and no
eddy conditions using (a) Unet-DenseNet121, (b) Unet-MobileNetV2, (c) Unet-
VGG16, and (d) Unet-VGG19 neural network models, respectively.

accuracy of eddy identification and segmentation. By developing
code script regarding visualization of the mentioned images by
using Mat plot library in Python to extract temperature infor-
mation from NetCDF (credited by CMEMS) file images and
sorting and representing based on time, coordinate, temperature
and exporting ground truth classified images via temperature in
interested area based on three mentioned classes.

The images shown here illustrate the relative efficacy of
the Unet-VGG16, Unet-VGG19, Unet-DenseNet121, and Unet-
MobileNetV2 models in accurately detecting and categorizing
different attributes in the photographs. The first figure in the
series depicts the unaltered grayscale input satellite image. The
following images depict the segmentation maps generated by
the corresponding neural network models. Every hue in the seg-
mentation maps corresponds to a distinct categorized attribute
or category in the examined image.

TABLE III
COMPARATIVE ANALYSIS OF U-NET ARCHITECTURES: PARAMETER

DISTRIBUTION ACROSS DIFFERENT CONVOLUTIONAL BACKBONE NETWORKS

The outcomes of the training dataset are summarized in
Table II. The Unet-DenseNet121 model demonstrated superior
performance compared to the other models in almost all param-
eters, attaining the best precision (96.05%), recall (95.56%),
F1 Score (95.79%), and accuracy (99.37%). In addition, this
model demonstrated higher Dice coefficient scores for class 0
(99.43%), class 1 (95.79%), and class 2 (95.98%), as well as
IoU scores for class 0 (98.84%), class 1 (91.47%), and class 2
(91.6%). The Unet-MobileNetV2 also demonstrated impressive
performance, with precision, recall, F1 Score, and accuracy
statistics closely behind those of the Unet-DenseNet121. The
Dice coefficient and IoU scores exhibited comparable high
values, suggesting a resilient model, but somewhat less efficient
than the Unet-DenseNet121. In contrast, the performance of
Unet-VGG16 and Unet-VGG19 has been worse when compared
to the other two models. In terms of various metrics, the VGG16
variation performed somewhat better than the VGG19. How-
ever, both models significantly underperformed compared to the
Unet-DenseNet121 and Unet-MobileNetV2 models, especially
when it came to the IoU scores for classes 0, 1, and 2. This sug-
gests that the VGG models had a lesser capability to accurately
define the borders of these classes.

In the analysis of mesoscale eddy detection within North
Atlantic Ocean satellite imagery, the Unet-DenseNet121 model
notably outperformed its counterparts, delivering top-tier results
across precision, recall, F1 score, and accuracy metrics. The
model’s effectiveness is further underscored by its superior
Dice coefficient and IoU scores for the classified eddy features.
While the Unet-MobileNetV2 followed closely, presenting a
viable option for efficient and accurate segmentation, the VGG-
based models, Unet-VGG16 and Unet-VGG19, lagged in per-
formance, particularly in their precision of class boundary delin-
eation. These insights not only demonstrate the advancements
in neural network applications for oceanographic studies but
also pave the way for future enhancements in satellite imagery
analysis.

In the comparative analysis of U-net architectures with differ-
ent backbones, Table III presents a summary of the total, train-
able, and nontrainable parameters for each model variant: U-net
with VGG16, U-net with VGG19, U-net with DenseNet121, and
U-net with MobileNetV2 backbones. The Unet-VGG16 model
comprises a total of 20177859 parameters, of which 5461251
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are trainable. The remainder, 14716608 parameters, are non-
trainable, indicating that a significant portion of the network’s
parameters is fixed during training, likely due to the incorpo-
ration of pretrained weights. Unet-VGG19 shows an increase
in complexity with a total of 25487555 parameters. Trainable
parameters remain consistent with the Unet-VGG16 model at
5461251, suggesting a similar strategy for training. However,
the nontrainable parameter count rises to 20026304, reflecting
the model’s deeper architecture. The Unet-DenseNet121 archi-
tecture demonstrates a total parameter count of 16408259, a
reduction compared to the VGG-based models. It also has a
higher number of trainable parameters at 9368835, suggesting
a more flexible model that adapts more substantially during
training. The nontrainable parameters are significantly lower at
7039424, which may suggest a leaner pretraining component or
a more efficient parameter utilization.

Finally, the Unet-MobileNetV2 architecture boasts the fewest
parameters with a total of 6504227. Of these, 4660323 are
trainable, which is relatively high given the total parameter count
and indicative of the network’s design for efficient training. The
nontrainable parameters are the lowest at 1843004, aligning with
the network’s goal of being lightweight and suitable for envi-
ronments with constrained computational resources. From these
figures, it can be inferred that each U-net variant offers different
advantages. The VGG-based U-nets, with their high number of
nontrainable parameters, may benefit from faster convergence
times due to pretrained features. In contrast, Unet-DenseNet121,
with its balanced distribution of trainable parameters, might
offer a good tradeoff between flexibility and efficiency. Unet-
MobileNetV2 stands out for its minimal parameter count and
high proportion of trainable parameters, which is likely to offer
rapid training times and model adaptability, albeit potentially at
the cost of reduced feature extraction capability due to fewer
parameters. This distribution of parameters impacts the models’
training dynamics and their suitability for different deployment
scenarios, a critical discussion point for the results and discus-
sion section of an academic paper.

V. DISCUSSION

The segmentation map generated by the Unet-DenseNet121
model exhibits a remarkable amount of detail and accuracy,
which is consistent with the reported high quantitative metrics.
The model demonstrates a discernible differentiation among
several characteristics, and it has a reduced rate of incorrectly
categorized pixels in comparison to the other models. The
accuracy of the segmentation indicates that the DenseNet121
backbone allows the model to comprehend the geographical
context inside the satellite images in a more detailed manner,
resulting in improved accuracy when predicting class labels.
The segmentation map of Unet-MobileNetV2, albeit less in-
tricate than that of Unet-DenseNet121, exhibits a significant
level of precision. The little integration of classes may stem
from the architectural compromises made to enhance efficiency
in the creation of MobileNetV2. However, its performance is
praiseworthy, particularly when considering its low weight and

ability to be used in systems with limited computing power. Con-
versely, the segmentation maps generated by the Unet-VGG16
and Unet-VGG19 models have a higher level of noise and a
lower level of separation across classes. The elevated levels
of misclassification may be clearly seen by the presence of
dispersed and uneven color patches that deviate from the forms
and bounds in the original picture. The observed visual results
support the lower precision and recall scores obtained by these
models. This indicates that although VGG architectures are
strong for image classification tasks, they may not be as efficient
for the detailed pixel-level predictions needed for semantic seg-
mentation in complex images such as satellite data. The visual
outcomes emphasize the significance of choosing a suitable
neural network structure for certain tasks. In addition, they
emphasize the potential advantages of using more sophisticated
models, such as Unet-DenseNet121, in situations when precision
is of utmost importance. Nevertheless, it is crucial to take into
account the compromises in terms of computing expenditure
and inference duration, which might be pivotal limitations in
practical scenarios.

The Unet-DenseNet121’s superior performance can be at-
tributed to its architectural features. DenseNet121 is known
for its efficient feature propagation and reuse, which likely
contributed to the model’s enhanced capability in recognizing
patterns and features in the satellite imagery. Its consistently
high scores across precision, recall, and the F1 Score suggest
not only that it is good at predicting the correct classes but
also at minimizing false positives and negatives. The Unet-
MobileNetV2’s results were also noteworthy, especially consid-
ering that MobileNetV2 is designed to be a lightweight model
suited for mobile and edge devices. Its performance underscores
the potential for deploying effective segmentation models in
resource-constrained environments, although with a slight trade-
off in the precision of class boundary delineation compared to the
Unet-DenseNet121. The lower performance of the VGG-based
models could be due to the inherent architecture limitations,
which may lead to less effective feature extraction in the context
of the specific segmentation tasks required by this study. It is
also possible that these models are more prone to overfitting,
given their large number of parameters and deeper architectures,
which might not generalize as well to the varied features present
in satellite oceanic imagery. In conclusion, our findings indicate
that Unet-DenseNet121 is the most suitable model for semantic
segmentation tasks in the domain of satellite oceanic imagery for
the North Atlantic Ocean, given its high precision in classifying
various objects or phenomena. Future work should focus on
validating these results across different oceanic regions and in
different conditions to ensure the robustness and generalizability
of the Unet-DenseNet121 model. Additionally, the exploration
of further model optimizations and the potential for real-time ap-
plication in edge devices using models like Unet-MobileNetV2
could be valuable avenues for research (shown in Fig. 5 and
Table II). While our study identifies the Unet-DenseNet121
as a robust CNN model for segmenting mesoscale eddies, its
application is limited by the use of data from only the North
Atlantic and for a single year, which may not be representative
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Fig. 5. Training performance of different convolutional neural network archi-
tectures: the graphs display the progression of model accuracy and loss over
epochs for (a) Unet-DenseNet121, (b) Unet-MobileNetV2, (c) Unet-VGG16,
and (d) Unet-VGG19 when applied to satellite imagery segmentation tasks,
highlighting their learning efficiency and convergence behavior during the
training process.

of other regions or periods. Additionally, the computational
intensity of the model could be prohibitive for real-time analysis
on platforms with limited resources. The study also did not
investigate ensemble models or the interpretability of the CNN
decisions, which are critical for operational trustworthiness.

VI. CONCLUSION

In this comparative analysis of four advanced CNN mod-
els applied to satellite imagery of the North Atlantic Ocean,
we have determined the Unet-DenseNet121 to be the superior

architecture for segmenting mesoscale eddies into cyclonic,
anticyclonic, and noneddy categories. The Unet-DenseNet121’s
performance stands out with the highest Dice coefficient and
IoU values, indicating its exceptional ability to delineate the
boundaries of eddies accurately. Following closely was the
Unet-MobileNetV2 model, notable for its efficiency in situations
where computational resources are limited. Its lightweight struc-
ture is particularly beneficial for onboard satellite processing or
real-time analysis, making it a practical option for immediate
application. In contrast, the Unet-VGG16 and Unet-VGG19
models, despite being foundational in DL, lagged behind in
segmentation quality, as reflected in their lower IoU scores. This
suggests a potential need for improvement or the possibility that
they may be outperformed by more contemporary architectures.
The quantitative findings are bolstered by visual inspections
of segmentation outputs and training performance graphs. The
Unet-DenseNet121 consistently produced segmentation maps
with high fidelity to the original satellite images and exhib-
ited stable learning curves, indicative of reliable learning and
generalization capabilities. The implications of this research
are twofold. First, the study underlines the enhanced accuracy
and efficiency that advanced CNNs can bring to the identifi-
cation of oceanic features, which is vital for monitoring ma-
rine environments and understanding their temporal dynamics.
Second, it paves the way for future research, emphasizing the
need for extensive validation of these models across diverse
datasets, exploration of ensemble methods to leverage each
architecture’s strengths, and investigation into the transparency
of model decisions to build trust in AI-driven analyses. The
integration of these CNN models into operational frameworks
used by meteorological and oceanographic institutions could
revolutionize real-time analysis and monitoring. By harnessing
the computational power and pattern recognition prowess of
CNNs, we can significantly improve the timeliness and accuracy
of oceanographic assessments. This study serves as a critical
evaluation of CNN architectures for mesoscale eddy detection
in satellite imagery, contributing to the advancement of oceano-
graphic research and environmental monitoring. Future endeav-
ors should aim to refine these DL models, tailor them to the
complexities of oceanographic data, and incorporate them into
holistic systems that foster sustainable ocean management and
protection.
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