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Abstract—Ship detection in synthetic aperture radar (SAR) im-
ages is crucial in both civilian and military fields, offering extensive
application prospects. Nonetheless, owing to the distinctive charac-
teristics of SAR imaging, this task confronts numerous challenges.
Specifically, ships with high aspect ratios, dense arrangements and
small sizes in complex environments frequently yield in suboptimal
positioning effects, consequently impacting detection performance.
In response to the challenges in ship target detection, this article in-
troduces a novel approach, termed Inner-alpha-CIOU (IA-CIOU),
that relies on an enhanced intersection over union (IOU). Primar-
ily, the method introduces Inner IOU, which effectively regulates
generation of auxiliary bounding boxes through scale factor r. This
ensures a better fit for dimensions of ship target frames, thereby
enhancing target detection performance as well as expediting model
convergence. Subsequently, this method introduces Alpha 10U,
enhancing robustness of small-size ship targets in complex back-
grounds by adjusting «. This allows the detector to achieve greater
flexibility in ship regression accuracy. Following numerous exper-
imental validations, proposed algorithm consistently outperforms
on both SAR-Ship-Dataset, MSAR-1.0 dataset,and SAR ship detec-
tion dataset (SSDD) dataset. This groundbreaking innovation not
only possesses immeasurable practical worth, but also introduces
a fresh perspective together with enlightening insights for future
research efforts.

Index Terms—Intersection over union (IOU) loss function,
synthetic aperture radar (SAR) images, ship detection, YOLOVS.

I. INTRODUCTION

S A crucial target for marine surveillance and wartime
A attack, ships hold significant practical value in both
civilian and military applications [1]. Compared with optical
ship images, synthetic aperture radar (SAR) ship images
play an indispensable role in various fields, including target
detection and recognition [2], [3], [4], maritime surveillance [5],
disaster prevention [6], and surface segmentation along with
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classification [7]. Because it can provide high-quality images
regardless of day or night and adverse weather conditions, it
has become an essential tool in these fields [8]. Numerous
cutting-edge remote sensing technologies have emerged,
enabling acquisition of high-resolution, extensive SAR images,
greatly aiding related research efforts. However, in complex
environments such as near shore, far shore, inland rivers,
small islands, as well as reefs, SAR ship detection encounters
immense challenges. The presence of small-sized ship targets
together with clutter resembling ships makes accurate detection
of ships in these scenarios a challenging endeavor. In these
environments, background noise, partial occlusions of ships,
as well as high aspect ratio of ships all make it challenging for
current target detection methods to achieve satisfactory results.

To address challenges of ship detection, researchers have
developed various algorithms [9], [10], [11]. From a temporal
classification, ship detection algorithms comprise both tradi-
tional methods and currently popular deep learning algorithms.
Traditional ship detection algorithms encompass sea-land
segmentation, preprocessing, prescreening, and identification.
Among these, a widely utilized traditional detection method is
constant false alarm rate (CFAR) [12], [13]. With false alarm
probability held constant, CFAR dynamically adjusts detection
threshold in response to changes in clutter, thereby optimizing
target detection probability. Nevertheless, balancing the recall
rate along with false alarm rate remains a challenge for CFAR.
To solve this problem, Migliaccio et al. [14] have created an
innovative model that combines CFAR with a physical model.
By integrating CFAR with a physical model, the proposed
approach effectively suppresses clutter and improves algorithm
performance. However, traditional algorithms suffer from poor
adaptability, as their migration application capabilities are lim-
ited, so the detection results of the model can be affected by
background changes.

Deep learning has been widely employed in computer vision
for numerous years [15], [16]. This approach has achieved re-
markable success in these fields, leading to significant attention
from both academic and industrial circles [17], [18], [19]. There-
fore, traditional detection methods are being gradually replaced
by those based on deep learning, indicating a promising appli-
cation outlook. The algorithm for ship detection based on deep
learning comprises both one-stage and two-stage algorithms.
One-stage algorithm achieves target detection through a single
network branch, eliminating the intricate feature extraction to-
gether with candidate box generation steps present in two-stage
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target detection algorithms. Consequently, it boasts a rapid target
detection speed. Notable one-stage detection algorithms include
YOLOV1 [20], SSD [21], RetinaNet [22], YOLOvVS, YOLOv7
[23], YOLOVS, and the latest YOLOV9 [24]. The two-stage
algorithm first extracts object region, then classifies together
with identifies the region. This approach typically exhibits high
detection accuracy, yet it often exhibits relatively slow detec-
tion speeds. Typical two-stage algorithms include R-CNN [25],
Faster RCNN [26], Mask R-CNN [27], and Cascade R_CNN
[28]. In practical applications, selecting appropriate methods
requires careful consideration of specific application scenarios,
as well as balancing demands. To address their shortcomings, re-
searchers are continuously optimizing and enhancing these two
target detection algorithms. As a result, numerous researchers
have integrated deep learning techniques into SAR ship images
to enhance ship detection tasks. Based on Mask-RCNN, Nie et
al. [29] integrated an attention module, resulting in improved
detection results. In order to solve problems of low detection
performance in small size under complex background, Zha
et al. [30] introduced a novel method that effectively resolved
the problems by utilizing multiple feature map transformations
and fusion. Li et al. [31] combined diverse network features to
effectively solve problems of diverse ship scales. In addition,
numerous attention modules have emerged to mitigate noise
interference. Notable modules include CBAM [32] and SE
[33] modules. These techniques have demonstrated impressive
outcomes in SAR ship detection, offering fresh perspectives and
approaches for SAR ship target identification.

The methods of deep learning exhibit strong expressive power
and excellent nonlinear fitting capabilities, making them highly
competitive. In natural scenes, optical images contain color
features as well as detailed texture information that can be
leveraged for target detection based on optical properties of the
objects [34], [35]. However, in SAR images, image values rep-
resent electromagnetic scattering information, rendering these
methods unsuitable for target detection in SAR images [36].
At the same time, many challenges will be encountered during
SAR ship detection. Ship detection has a complex background,
which causes ships with high aspect ratios, dense arrangements
and small sizes to encounter issues such as land interference,
image blurring and noise. These issues ultimately affect SAR
ship imaging quality, leading to poor ship target positioning ef-
fects during target detection and ultimately impacting detection
performance.

To address challenges encountered in ship detection tasks,
this study introduces a novel loss function, Inner-alpha-CIOU
(IA-CIOU), for YOLOVS algorithm. This loss function com-
prehensively considers length and width of ships, as well
as position parameters of ship center point. First, Inner-IOU
[37] is introduced to enhance IOU. This allows for effec-
tive control of auxiliary bounding box size through scale fac-
tor r, thereby expediting model regression. Second, based on
Inner-intersection over union (IOU), Alpha IOU [38] is intro-
duced, and sensitivity of loss function is adjusted using pa-
rameter «. Finally, YOLOVS is enhanced by replacing com-
plete intersection over union (CIOU) with novel IA-CIOU.
In this article, a meticulous series of experiments have been
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carefully crafted across three publicly available ship datasets.
On SAR-Ship-Dataset, the article undertakes a thorough
comparison and analysis of various IOU algorithms alongside
conventional detection methods, aiming to comprehensively
assess the performance of our proposed approach. Further-
more, ablation experiments were crafted on MSAR-1.0 dataset
to examine distinct functions of each component within IA-
CIOU, aiming to disclose their individual impacts on overall
performance. Finally, cross-experiments were systematically
conducted on SSDD dataset to comprehensively demonstrate
noteworthy generalization ability and robust effectiveness of [A-
CIOU. Through meticulously designed experiments, superior
performance and practical applicability of IA-CIOU in realm of
ship detection have been unequivocally confirmed. Following
are the key contributions.

1) The aim of IA-CIOU is to enhance CIOU loss func-
tion, enabling faster bounding box regression (BBR) and
improved model generalization, ultimately leading to su-
perior algorithm performance.

2) The improved algorithm has better detection ability for
high aspect ratio, dense arrangement, and small size ship
targets in complex background.

3) A large number of experiments have been carefully de-
signed to prove the effectiveness of IA-CIOU and achieve
significant performance enhancements on public datasets.

In conclusion, IA-CIOU addresses some challenges in ship

detection tasks, offering valuable insights for future research in
this area.

II. RELATED METHODS

This section aims to review and comprehensively summarize
prior research outcomes related to object detection algorithms
and optimization of loss functions.

A. Target Detection Algorithm

As technology progresses, numerous target detection al-
gorithms have emerged. Among traditional methods, sliding
window method and feature pyramid method (FPN) [39] are
particularly prevalent. Sliding window method slides windows
of various sizes and aspect ratios across image, and employs a
classifier to determine whether window contains target. How-
ever, this method incurs significant computational overhead
and struggles to effectively handle targets of varying scales
and proportions. FPN detects targets of various sizes by con-
structing image pyramids of varying scales to process images
across different scales. Since introduction of concept of deep
learning by researchers, target detection algorithms have un-
dergone significant changes. When processing images, detec-
tion model of deep learning can be divided into two cate-
gories according to processing stage. One category includes
one-stage algorithms that achieve detection through direct for-
ward propagation. While these algorithms are fast, they may
sacrifice accuracy. Other algorithm is a two-stage approach.
Initially, candidate boxes are utilized in image to identify
potential object locations. Subsequently, each candidate box
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undergoes classification and positioning to produce final de-
tection outcome. While two-stage approach offers high ac-
curacy, it comes with a high computational complexity and
relatively slow speed. To exploit advantages of both algo-
rithms, several hybrid methods have been gradually introduced.
These methods combine direct regression with candidate region
generation techniques to achieve faster speeds and enhanced
accuracy. In practical applications, choosing appropriate algo-
rithm requires careful consideration of specific requirements,
computational resources, and performance needs.

After thoroughly analyzing strengths and limitations of both
traditional methods and deep learning methods, as well as vari-
ous algorithms within deep learning, this article made informed
decision to adopt YOLOVS algorithm for further enhancement.
YOLOVS excels in predicting position of target boxes and their
corresponding categories through direct regression, making it
an effective choice for our needs. Network architecture encom-
passes backbone network, neck segment and head segment. To
enhance prediction precision and model generalization, several
preprocessing techniques are utilized, including image augmen-
tation and adaptive anchor frame. Additionally, Mosaic data en-
hancement technology is employed. Backbone network employs
CSPDarknet53 network, while neck segment utilizes PANet
[40]. PANet is an advanced instance segmentation framework
that utilizes bottom-up path enhancement and low-level posi-
tioning information to enhance overall feature representation,
thereby optimizing information flow. Head segment generates
three distinct scales of feature maps, a prediction box is gener-
ated based on features at varying scales. It undergoes nonmaxi-
mum suppression processing. Network structure of YOLOVS is
displayed in Fig. 1.

B. Optimization of Loss Function

The two core tasks of detector are classification and regres-
sion of objects. Classification task aims to classify detected
items, while regression task aims to accurately localize detected
items, such as ships. Therefore, total loss for each anchor frame
comprises two components: one is classification loss, which is
closely linked to category recognition, and the other is regression
loss, which is intimately connected to location positioning. In
target detection, mathematical expression for total loss typically
reads as follows [41]:

LOSSai (p,p",1,1") = aq LOSSgs (p, p*) + BLOSSyeg (1,17) .
ey
In the formula, ! stands for position of prediction box, [*
represents position of ground truth box, p represents probability
of being classified into a specific category for prediction box, and
p* is corresponding category probability for ground truth box.
Classification loss LOSS,js and regression loss LOSS;, together
constitute total loss in target detection. These two types of
losses collaboratively determine performance. «; and /3 are two
hyperparameters utilized to regulate weights of class loss and
regression loss. By adjusting these two parameters, emphasis of
model on classification accuracy and regression accuracy can be
evenly balanced.
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Fig. 1. ' YOLOVS network structure diagram.

In target detection, majority of methods rely on BBR module
to accurately identify target location. To ensure the effectiveness
of BBR, it is essential to develop an appropriate loss function.
Currently, there are two main categories of BBR loss function:
norm-based [42] and IOU-based [43]. While initial norm-based
loss function was simple, it was highly susceptible to scale
variations. To overcome limitations of norm-based loss function,
researchers have introduced refined techniques. For instance,
YOLOVI effectively mitigates impact of large bounding boxes
on target detection by adjusting their size and implementing
square root transformation. In addition, YOLOvV3 [44] intro-
duces a novel loss function that aims to enhance target detection
performance by adjusting offset and scale of anchor box. These
norm-based functions calculate regression loss for four corners
of bounding box independently, but without considering their
correlation, they tend to bias model toward larger objects. While
four corners may appear to be independent, they are actually
interrelated.

To address the aforementioned limitations, researchers pro-
posed IOU loss as an alternative to In-norm loss. IOU loss
treats each of four corners of candidate box holistically, en-
suring that values remain nonnegative, satisfy identity, exhibit
symmetry, and satisfy triangle inequality. In comparison with
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In-norm loss, IOU loss offers scale invariance, meaning its
output remains within range of [0, 1], thereby enabling more
accurate predictions of regression results. IOU loss is calculated
by considering intersection and union ratios and incorporating
coordinate information of rectangular box. Its expression is as
follows:

inter = max((min (229", x5) — max (z,%,x})),0)

x max ((min (y17, 1) — max (y27,55)) .0) (2)

union = (229" — 219%) * (119" — 129")

+ (x§ — x¥) * (¥} — y4) — inter 3)

10U — 1nFer @
union

Lioy = 1 — IOU. )

Here, the coordinates of top-left and bottom-right corners of
prediction box b are (x],y}) and (x5, yb),respectively. Simi-
larly, top-left and bottom-right coordinates of ground truth box
b9t are (z19%, y19") and (229%, y29), respectively. By employing
IOU loss, similarity between two bounding boxes can be more
accurately evaluated, thereby improving accuracy and robust-
ness of model. The range of IOU loss spans from O to 1. As
10U approaches 1, the more similar two frames are, resulting
in more precise positioning. Consequently, corresponding loss
function value nears 0, leading to smaller penalties. Conversely,
as IOU decreases, penalty increases accordingly. Nevertheless,
IOU Loss has some limitations: when there is no common area
between two boxes, IOU value is 0, which prevents effective
gradient backpropagation by loss function. Consequently, in
certain scenarios, model fails to effectively update its parameters
via gradient descent method, thereby compromising its training
and performance.

To address this limitation, GIOU [45] enhances IOU loss
by introducing a minimum bounding box term. DIOU [46]
uses minimum center point distance between two boxes as a
penalty term, effectively addressing issue where GIOU fails
to distinguish relationship between two boxes when they are
inclusive. CIOU loss [46] considers impact of shape similarity
on BBR and incorporates shape loss term in DIOU loss. Since
area and center distance are already considered in DIOU Loss,
CIOU Loss introduces an additional penalty term to adjust aspect
ratio of prediction box. Definition of CIOU loss is as follows:

2

LCIOU = 1-10U+ % + o (6)
v
_ - 7
“2TT 7100 r o ™
4 w w,\ 2
v = — | arctan—< — arctanp> . (8)
Ls ( hg hyp

In CIOU function, p signifies distance between center points
of two boxes, while C' denotes diagonal length of smallest
bounding box. Furthermore, wy and h, stand for width and
height of ground truth box, respectively, whereas w,, and h,
represent width and height of predicted box. CIOU aims to
maintain identical aspect ratios and diagonal angles between
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frames to ensure consistent shapes. During optimization, CIOU
Loss not only focuses on common area and center distance be-
tween two boxes, but it also emphasizes adjusting length-width
ratio of prediction box. By incorporating shape loss, CIOU aims
for more precise interframe matching, ultimately enhancing
positioning accuracy and model performance.

Numerous researchers have introduced various detection al-
gorithms, and bounding box loss function has undergone con-
stant innovation in recent years. For instance, EIOU penalty
term [47] is derived from CIOU penalty term, and shape loss
is separated to independently optimize length and width of
candidate box. SIOU [48] introduces angle between two boxes
as anovel constrainton BBR loss, leading to a faster convergence
rate. MPDIOU [49] uses corner distance between two boxes as
apenalty term, simplifying calculation process and significantly
enhancing detection performance. Furthermore, WIOU [50] not
only takes into account overlap between two frames, but also
places emphasis on region between bounding boxes, exhibiting
dynamic nonmonotonic FM property. Inner IOU loss function
series proposed by Zhang Hao not only takes into account
aforementioned geometric constraints, but also emphasizes ra-
tionality of IOU itself. By utilizing auxiliary bounding box
calculations for regression acceleration, Inner IOU loss func-
tion effectively expedites convergence speed, thereby further
enhancing detection performance.

Throughout their research, numerous experts have integrated
innovative loss functions into ship target detection algorithms.
For instance, Guo et al. [51] analyzed angle information of ship,
introduced SIOU into model, and successfully completed ship
detection task. Additionally, Yu et al. [52] developed ECIOU,
an advancement upon CIOU. Their primary objectives were to
address two key challenges: fragility of penalty term v in terms
of outliers and limited value range of tangent function, which
did not meet normalization requirements of loss function. To
achieve numerical normalization, CIOU incorporates unique
coefficients, leading to increased computational complexity.
Distance loss function proposed by Zhou et al. [53] integrates
10U for comprehensive evaluation and utilizes distance between
two coordinate points to enhance ship target detection accuracy.
These studies continue to drive progress of ship detection task.

III. PROPOSED METHODS AND MODEL ARCHITECTURE

This section will explore the working principle of Inner IOU.
Later, it will separately and in depth explore Inner CIOU and
IA-CIOU.

A. Inner IOU

To address the issue of existing IOU loss that exhibits poor
generalization and slow convergence speed in various detection
tasks, this study introduces an innovative approach: utilizing
auxiliary bounding boxes for loss computation. This technique
significantly expedites BBR process. In Inner IOU, scaling
factor r is used to adjust size of auxiliary box. By utilizing
auxiliary bounding boxes of various scales in various datasets
and detectors, limitations of existing methods in generalization
have been successfully overcome.
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Auxiliary boxes are aligned precisely with center points of both ground truth box and prediction box. By using scaling factor r, size of auxiliary box can

be adjusted to meet needs of actual scene. On the left side of figure, it is evident that when value of scale factor r exceeds 1, auxiliary box enlarges proportionally.
Conversely, on the right side of figure, a scale factor r below 1 result in auxiliary box contracting.

As demonstrated in Fig. 2, algorithm generates two aux-
iliary boxes, b9%-"™r and pP-"Mer - Auxiliary box b9t-inner
created by ground truth box b9" has vertex coordinates
(Xi]t_mner, yglgt_mner) an d(th_mner, ygt_mner)’ respectively, while
auxiliary box b?fi““er created by prediction box b” has vertex
coordinates (x}=""", y="""") and (x5-"™", y£-"""). The expres-
sion for Inner IOU is as follows:

(z29" — 119")

gmer _ gt Ay 9)
th_inner — 29t 4 (w29 ; xlgt)_*r (10)
gatcimer _or @ ; v (11)
gotimes _ gt " _ w?).,, (12)
ey M*r (13)
p-mer _ p M*r (14)
gomer _up (ylp—;?ﬂp)w (15)
yg—i"“ef =P — M*r. (16)

In the formula, auxiliary box b9-"" and ground truth box
b9t share a central point (z9%,y¢'), and auxiliary box bP-nner
and prediction box bP also share a central point (22, y). Scaling
factor r determines size of auxiliary box. If r exceeds 1, auxiliary
box expands. In the case of low IOU samples, absolute value of

IOU gradient surpasses absolute value of gradient pertaining
to ground truth box IOU. Conversely, when r is less than 1,
auxiliary box contracts. For high IOU samples, absolute IOU
gradient of smaller auxiliary box exceeds absolute value of gra-
dient of ground truth box IOU. Based on this analysis, employing
auxiliary boxes of smaller scales for IOU loss calculation en-
hances regression of high IOU samples, thus facilitating faster
convergence. Conversely, use of auxiliary boxes of larger scales
for IOU loss calculations expedites regression process of low
IOU samples. Inner IOU is defined as follows:

. 1 . t . .
winter'™®" = max <(m1n (Xg ~inner Xg—m“er)

gt_inner _ p_inner
— max (xl x )),o) (17)
hinter™e" = max ((mln (yglyt_n‘mer7 yglj_mner)
gt_inner _ p_inner
— max (y§" 55 ) o) (18)
inter'™" = winter" xhinter™" (19)
N t_i t_i t_i t_i
gtunlonmner _ (Xg _inner X‘% Jnner) % (y;ly _inner yg mner)
(20)
. inner __ _ pinner pinner p_inner p_inner
punion™™" = xb" — <P (v] — Y5 ) 21
union™*" = gtunion™" -+ punion™" — inter"™"*" (22)
) interinner
inner __
10U " unioninner * (23)
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Inner IOU loss exhibits its unique advantages by inheriting
characteristics of IOU loss. Inner IOU, like IOU loss, has a value
range of [0, 1]. Due to similarity in scale between two frames,
calculation of Inner IOU is identical to that of IOU loss. Given
significant proportion of high IOU samples within ship dataset,
this article specifically assigns a value of r = 0.8. By adopting
this configuration, absolute value of IOU gradient exhibited by
auxiliary box of a smaller scale surpasses absolute value of IOU
gradient at ground truth box. This particular setting contributes
to enhancing convergence rate of model, ultimately leading to
an improvement in its detection performance.

B. Inner CIOU

By integrating Inner IOU and CIOU, this article has suc-
cessfully developed Inner CIOU. Inner CIOU Loss introduces
a novel penalty term to further optimize shape of predicted
box, beyond what is considered in DIOU Loss. This penalty
term ensures that shapes of both boxes remain consistent. The
mathematical expression for Inner CIOU Loss is as follows:

Linner—CIOU == LCIOU —+ 10U — IOUinner

2

= 1—[oU™mmer 4 oz T (24)
v
S 25
2717100+ v ()
4 w w, \ 2
v=— (arctanhj - arctanhj> ) (26)

The Inner CIOU Loss is designed to achieve a more harmo-
nious shape between two boxes by balancing their width-to-
height ratio and diagonal tilt angle. This ensures a more precise
alignment of their shapes. Not only does Inner CIOU uphold
rationality of IOU, but it also significantly enhances convergence
speed of model by incorporating an auxiliary box mechanism.
Furthermore, during optimization, Inner CIOU Loss takes into
account not only common area and center distance between two
boxes but also strives to maintain a consistent shape between
them through shape loss, thus adjusting shape of prediction box.

C. IA-CIOU

This study introduces Alpha IOU, a novel target detection
loss function, aimed at enhancing generalization performance
of detection algorithms across diverse tasks. By introducing
an additional parameter «, it can be flexibly adjusted within
a certain range. Alpha IOU introduces a weighted combination
in traditional IOU calculations, enabling flexible adjustment of
loss function. This allows model to better adapt to scale and
shape of objects. Design concept of Alpha IOU aims to address
limitations of existing IOU losses in various tasks, providing a
more flexible and effective loss calculation method for enhanc-
ing development of target detection. The expression of IA-CIOU
is as follows:

. o 2 « o
Lia_ciov = 1 — (IO0U™")" 4 (&) + (agv) (27)
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TABLE I
EXPERIMENTAL ENVIRONMENT

Software and Hardware Version or Model

Operating system Windows10
CPU Intel(R) Core (TM) i5-11400F
GPU NVIDIA GeForce RTX 3060
Display memory 12G
CUDA 12.2
CUDNN V8.0.5
Pytorch version 1.11
Python version 3.7
Software PyCharm2021
v
= Tiou T 9
4 Wy Wy 2
v = ) (arctanhg — arctanhp> . 29)

Alpha IOU possesses a distinct characteristic as an adjustable
index parameter. When its value exceeds 1, it effectively mag-
nifies the weight of high IOU targets within loss function. This
attribute enables detector to concentrate more intently on high
IOU targets and become more responsive to their associated
losses, ultimately enhancing regression precision of these tar-
gets. Given preponderance of high IOU samples within ship
dataset, this study specifically sets Alpha IOU parameter to 3. By
bolstering loss and gradient contributions of high IOU samples,
BBR accuracy has undergone a notable enhancement. Therefore,
IA-CIOU takes into account not just shared area and distance
between centers of two boxes, but also incorporates shape loss
to maintain congruity of their shapes. By aptly adjusting scaling
factor r and parameter o, IA-CIOU can expedite convergence
rate of high IOU samples within ship dataset, thereby enhancing
ship detection performance even further.

IV. EXPERIMENTS

In this part, this article designs a large number of experiments
on three public ship datasets. The results clearly show that TA-
CIOU model performs well in mAP, precision, and recall, which
verifies the effectiveness of the method.

A. Experimental Environment and Parameters

In Table I, this article presents a comprehensive overview of
training environment and fundamental parameters used in this
experiment. The entire experiment was conducted on a GPU,
utilizing PyTorch framework for model training. Refer to Table IT
for a detailed display of parameters used in this experiment.

B. Data Set

To thoroughly assess the performance of IA-CIOU method
introduced in this article, this chapter undertakes experimental
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TABLE II
EXPERIMENTAL PARAMETERS

Parameter Name Version or Model

weights YolovS5s.pt
img-size 640x640
epochs 300
batch-size 16
max-det 1000
conf-thres 0.25
iou-thres 0.45
a 3
r 0.8

verification across multiple public datasets, encompassing SAR-
Ship-Dataset [54], SSDD dataset [55], and MSAR-1.0 dataset
[56]. SAR-Ship-Dataset, in particular, comprises a substantial
collection encompassing 102 scenes from GF-3 satellite and 108
scenes from Sentinel-1 SAR satellite. This compilation boasts a
comprehensive total of 43 819 ship images, averaging approxi-
mately 256 x256 pixels in size. Ship scenes within this dataset
exhibit remarkable diversity, encompassing both optimal and
adverse sea conditions, as well as intricate landing scenarios and
simpler offshore environments. Notably, a total of 59 535 ship
targets have been meticulously annotated within this dataset.
These targets range significantly in size, with smallest ship target
measuring merely 6 pixels wide and 4 pixels tall, encompassing
a mere 24 pixels in total. Conversely, largest ship target spans
129 pixels in width and 207 pixels in height, encompassing a
whopping 26 703 pixels. To ensure precision and credibility of
our experiments, this article has randomly selected 6000 images
from this extensive dataset as representative samples. These
large samples encapsulate a broad array of ship usage scenarios,
including both distant offshore and near-shore environments,
thereby enhancing universality and representativeness of our
experimental outcomes.

MSAR-1.0 dataset boasts an extensive collection of SAR
image resources, totaling 28 449 detection slices. These slices
are sourced from both Haisi-1 and Gaofen-3 satellites, ensur-
ing multisource diversity and comprehensiveness of dataset.
Breadth of scenarios represented is immense, ranging from
airports and ports to inshore environments, islands, open seas
and urban areas, offering a rich tapestry of materials for diverse
application scenarios. As for target types, dataset encompasses
four categories: aircraft, oil tanks, bridges and ships. Detailed
data breakdown includes 1851 bridges, 39 858 ships, 12 319 oil
tanks and 6368 aircraft, providing ample labeled data for target
detection tasks.

SSDD dataset comprises 1160 SAR image samples sourced
from Radar Sat-2, Terra SAR-X and Sentinel-1 satellites. Each
image averages approximately 484 x 329 pixels in size. These
images not only capture ships in various environmental contexts,
ranging from calm sea surfaces to turbulent conditions, but also
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present both intricate shoreline scenarios and simpler offshore
views. Dataset is extremely rich in content, encompassing a total
of 2587 ships. Among them, smallest ship target is astonishingly
minute, measuring just 4 pixels wide and 5 pixels tall, totaling a
mere 20 pixels. In stark contrast, largest ship target is immense,
boasting a width of 308 pixels and a height of 180 pixels,
amounting to a whopping 55 440 pixels. This staggering size
difference is remarkable, with largest ship target being a colossal
2772 times larger than smallest one.

C. Evaluation Metrics

The evaluation of model performance is crucial, and this
article uses metrics such as precision and recall and mAP to
evaluate the performance of IA-CIOU model. Their respective
formulas are as follows:

TP

Precision —
recision TP - Fp (30)
TP
Il = ——. 31
Recall = 75755 (D

In the given formula, TP represents count of positive sam-
ples that have been accurately predicted, FP denotes number
of negative samples that have been falsely predicted, and FN
signifies count of positive samples that have been incorrectly
predicted. In this article, IOU is used as judgment criterion.
When IOU surpasses a pre-determined threshold, predicted
box is considered a positive sample. Efficacy of model is then
assessed by computing average precision (AP) and mAP. The
detailed calculation formula is outlined as follows:

1
AP = / P x RdR (32)
0

1 c
AP = — AP;. 33
m - Zjl (33)
In the provided formula, C represents type of sample, P and
R stand for precision and recall rates, respectively. These rates
combine to form AP, which has a value range between 0 and 1.

When AP reaches 1, it means model performs best in given task.

D. Experiments on SAR-Ship-Dataset

Many researchers have conducted extensive research on this
dataset [57], [58]. To showcase the effectiveness of IA-CIOU,
this paper executed rigorous experiments, utilizing same datasets
and equipment conditions. Through detailed comparisons of
various performance indicators, excellent performance of algo-
rithm in various complex environments has been confirmed. This
article compares popular IOU algorithms and object detection
models, and thoroughly tests uniqueness and rationality of [A-
CIOU algorithm.

1) Compare the Performance of Different Inner-Alpha-10Us:
This article conducted an experimental comparison of common
IOU models, specifically selecting GIOU and DIOU as bench-
mark models for comparison. In order to ensure rationality of
experiment, these algorithms were improved to Inner Alpha
GIOU and Inner Alpha DIOU, and they were compared with
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TABLE III
PERFORMANCE COMPARISON DIAGRAM OF DIFFERENT I0US
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TABLE IV
PERFORMANCE COMPARISON DIAGRAM OF DIFFERENT DETECTION MODELS

Algorithm R (%) P(%) mAP(%) Algorithm R (%) P (%) mAP(%)
GIOU 92.0 91.6 95.5 SSD 88.5 91.5 94.8
Inner-Alpha-GIOU 92.6 93.1 96.1 Faster R-CNN 98.3 62.9 95.2
DIOU 89.8 93.0 96.1 YOLOV9 91.4 91.5 95.8
Inner-Alpha-DIOU 93.2 92.1 96.3 YOLOV7(CIOU) 90.7 91.7 95.0
CIOU 92.7 90.4 95.4 YOLOv7(IA-CIOU) 92.8 90.9 95.3
IA-CIOU 92.7 91.8 96.4 YOLOvS(CIOU) 92.2 91.9 95.4
YOLOV8(IA-CIOU) 94.1 91.8 96.0
YOLOVS5(CIOU) 92.7 90.4 95.4

IA-CIOU algorithm proposed in this paper in depth. During

YOLOV5(IA-CIOU) 92.7 91.8 96.4

this process, key evaluation metrics such as recall, precision,
and mAP were used to comprehensively measure performance
of each algorithm. Table III provides a detailed summary of
these experimental results, clearly demonstrating superior per-
formance of IA-CIOU algorithm in various indicators.

As evident from Table III, enhanced IOU algorithm exhibits
superior performance within YOLOvV5 framework. Precisely,
mAP value of Inner-Alpha-GIOU surpasses that of GIOU.
Similarly, Inner-Alpha-DIOU and IA-CIOU exhibit higher mAP
values than DIOU and CIOU, respectively. These comparisons
not only firmly establish efficacy of Inner IOU and Alpha IOU
in enhancing model detection accuracy but also underscore their
vast applicability. Notably, IA-CIOU emerges as top performer
among all improved algorithms, surpassing both Inner-Alpha-
DIOU and Inner-Alpha-GIOU. This is primarily attributed to
comprehensive consideration of crucial factors like overlapping
area, center point distance, and length—width ratio in its design
of IA-CIOU, leading to its exceptional detection performance.
These discoveries further validate the effectiveness of the pro-
posed algorithm.

2) Compare With the Mainstream Algorithms: This article
conducted a thorough comparative analysis of IA-CIOU algo-
rithm, not merely confining ourselves to extensive experiments
with other leading target detection models, including SSD,
Faster R-CNN, YOLOv7, YOLOvS8, and YOLOV9. In addition,
by integrating IA-CIOU algorithm into YOLOv7 and YOLOVS,
algorithm was further analyzed for a more detailed comparison.
To ensure breadth and accuracy of evaluation, key indicators
such as precision, recall, and mAP were used for comprehensive
evaluation. As evident in Table IV, IA-CIOU algorithm clearly
demonstrates superior performance in detection metrics when
compared to other prominent target detection models.

Table IV clearly demonstrates that IA-CIOU algorithm sig-
nificantly enhances detection indicators of YOLOv5, YOLOV7,
and YOLOVS models, particularly in the case of YOLOv5
model. This remarkable effect strongly validates widespread ap-
plicability and efficient performance of IA-CIOU algorithm. Ad-
ditionally, when compared to mainstream algorithms like SSD
and Faster R-CNN, IA-CIOU algorithm exhibits notable advan-
tages in detection metrics. Integrating IA-CIOU into YOLOvS
results in a 1.6% increase in mAP compared to SSD and a

4.2% enhancement in recall. Furthermore, precision of YOLOv5
algorithm with IA-CIOU integrated surpasses Faster R-CNN by
28.9%. These substantial improvements reconfirm efficacy of
IA-CIOU algorithm. It is noteworthy that even when contrasted
with the latest YOLOV9 algorithm, integrating IA-CIOU into
YOLOVS still demonstrates distinct advantages, further empha-
sizing advancement and robust competitiveness of IA-CIOU
algorithm. The significant advantage observed can be attributed
to abundant ship images in this dataset, featuring high IOU sam-
ples. Thanks to combined effects of Inner IOU and Alpha IOU,
convergence speed of the model has undergone a remarkable
enhancement. Additionally, CIOU incorporates the shape factor
of ship, ensuring more precise positioning by model, thereby
further enhancing its detection capabilities. Collectively, these
advantages contribute to outstanding performance of IA-CIOU
algorithm in ship detection tasks.

3) Label Visualization and Experimental Results Analysis:
In Fig. 3, this article presents a carefully chosen set of 12 ship
images, representing two distinct environments: offshore and
open sea. These images illustrate various scenarios, including
single ships, multiple ships and ships arranged in a dense for-
mation. Through a comprehensive analysis of ship visualization,
performance of original CIOU training was compared with that
of IA-CIOU training.

In contrast, IA-CIOU shows significant advantages over
CIOU in terms of detection performance. Specifically, as ob-
served in subplot (a), (d), (g), and (j) in Fig. 3, IA-CIOU has
high confidence in detection of small ships with high aspect
ratio in open sea environment and offshore complex background.
Furthermore, as seen in subplot (b), (e), (h), and (k) in Fig. 3,
under identical environmental backgrounds, IA-CIOU signifi-
cantly reduces false alarm rate for such small-sized ships. Lastly,
as observed in subplot (¢), (), (i), and (1) in Fig. 3, IA-CIOU
exhibits a higher detection rate for this type of ship within
same context. Therefore, regardless of whether it is situated in
a solitary environment in far-reaching sea or within intricate
backdrop of nearshore, IA-CIOU demonstrates a lower false
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Fig. 3. Visualization results of SAR-ship-dataset. Among the 12 images, three images (a), (b), and (c) represent ship detections achieved by CIOU method in
open sea environment, while three images (d), (e), and (f) demonstrate detections achieved by IA-CIOU method in same environment. Similarly, the three images
of (g), (h), and (i) present ship detections using CIOU in offshore environment, and the three images of (j), (k), and (1) display detections achieved by IA-CIOU in
offshore environment. In these images, the yellow box represents actual ship frame, and the red box represents predicted ship frame.
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alarm rate and superior detection performance for ships with
dense arrangements and an elevated aspect ratio.

4) Visualization of Detection Indicators and Analysis of Ex-
perimental Results: This article has displayed detection perfor-
mance of CIOU and IA-CIOU in form of pictures, comparing
mAP, recall, and precision metrics before and after refinement.
A cursory examination of Figs. 4-6 shows that refined model
outperforms across all indicators.

By juxtaposing outcomes obtained prior to and following en-
hancement, it is evident that optimized IA-CIOU has witnessed
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TABLE V
TABLE OF ABLATION EXPERIMENTS

Algorithm R(%) P(%) mAP(%)
10U 86.8 93.1 92.0
CIOU 91.5 93.0 94.6
Alpha CIOU 92.7 91.8 94.9
Inner CIOU 91.8 93.1 94.9
IA-CIOU 92.0 93.5 95.4

significant improvements across key metrics such as mAP, recall,
and precision. This substantial improvement offers irrefutable
evidence of efficacy and superiority of the refined model.

E. Experiments on MSAR-1.0 Dataset

Numerous researchers have conducted extensive studies on
this dataset [59]. In experimental section, this article conducted
in-depth research on IA-CIOU algorithm. In order to more
accurately understand individual contributions of each compo-
nentin [A-CIOU, ablation experiments were conducted. Table V
presents these findings. For ship detection tasks, CIOU loss func-
tion in YOLOVS was used as a reference to visually demonstrate
the performance differences before and after enhancement.

The analysis of Table V reveals that optimized model has
demonstrated remarkable enhancements in key performance
metrics during training process, including precision, recall and
mAP. Notably, within YOLOVS framework, IA-CIOU approach
has yielded a 3.4% increase in mAP compared to IOU, a 5.2%
boostinrecall, and a 0.4% enhancement in precision. Significant
improvement can be attributed to CIOU algorithm, which takes
into account not only the length and width of the ship, but
also the distance of its center point. This consideration has
significantly enhanced detection accuracy. Furthermore, this
article has innovatively combined Alpha IOU with CIOU to
create Alpha CIOU. This innovation enables model to excel
in detecting and identifying ship targets with greater accuracy,
particularly in small ship datasets with intricate backgrounds.
Additionally, integration of Inner IOU and CIOU, known as
Inner CIOU, has also significantly improved the performance of
model. It not only elevates mAP, recall, and precision values but
also markedly accelerates convergence speed of model, thereby
further optimizing its detection capabilities.

The TA-CIOU algorithm significantly outperforms original
CIOU algorithm. By incorporating an auxiliary box mecha-
nism, it heightens sensitivity of model to positional information,
thereby bolstering detection accuracy. Furthermore, introduc-
tion of Alpha IOU not only elevates generalization capabili-
ties of model but also ensures consistent performance across
diverse scenarios. Given significant proportion of ship images
with high IOU samples in dataset, synergy between Inner IOU
and Alpha IOU substantially accelerates convergence speed of
model. Notably, CIOU algorithm also factors in shape of ship,
enhancing positioning accuracy and further refining detection
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performance. Collectively, these advantages propel IA-CIOU
algorithm to excel in ship detection tasks. Figs. 7-9 provide
a vivid demonstration of superior performance of IA-CIOU
algorithm across various performance metrics.
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TABLE VI
TABLE OF CROSS EXPERIMENTS
Algorithm R (%) P (%) mAP(%)
CIOU (M weight) 72.3 83.6 79.9
IA-CIOU (M weight) 72.8 84.4 81.9
CIOU (S weight) 84.6 70.0 74.9
IA-CIOU (S weight) 81.7 71.8 77.1

F. Experiments on SSDD Dataset

In the experiment, the study conducted a complex analysis
of IA-CIOU. In order to provide a more comprehensive and
accurate evaluation of its detection ability, a cross-validation
experiment was designed. Specifically, using IA-CIOU weights
trained on SAR-Ship-Dataset and MSAR-1.0 dataset, the study
further evaluated their performance on a randomly selected
subset of 500 ship images in SSDD dataset. Table VI summarizes
this information. In order to gain a more intuitive understand-
ing of performance enhancement achieved by IA-CIOU, this
article specifically chose CIOU loss function in YOLOVS as
our benchmark, which was trained on SAR-Ship-Dataset and
MSAR-1.0 dataset. By comparing these results, performance
differences of IA-CIOU before and after optimization can be
clearly distinguished.

M weight represents the weight obtained through training on
MSAR-1.0 dataset, whereas S weight corresponds to the weight
derived from training on SAR-Ship-Dataset. As evident from
comparison results presented in Table VI, mAP values of M
weights trained on CIOU and IA-CIOU surpass mAP values of
S weights when tested on SSDD dataset. This superiority can be
attributed to rich diversity of ship types present in MSAR-1.0
dataset, along with a substantial number of training samples.
Furthermore, on SSDD dataset, mAP value of M weight trained
using IA-CIOU is 2.0% higher than that of M weight trained on
CIOU. Similarly, mAP value of S weight trained with IA-CIOU
exceeds mAP value of S weight trained on CIOU by 2.2%.
These observations underscore enhanced detection performance
of TA-CIOU weights trained on both SAR-Ship-Dataset and
MSAR-1.0 dataset, thus conclusively demonstrating superior
generalization capabilities of IA-CIOU.

V. CONCLUSION

The technology of SAR ship target detection holds a cru-
cial position in various fields, including marine monitoring,
ship traffic management, and military reconnaissance. However,
traditional algorithms often falter when dealing with SAR im-
ages that feature dense ship distributions and intricate back-
grounds. This can result in inaccurate positioning, thereby com-
promising the overall effectiveness of detection. To address this
challenge, this article introduces a groundbreaking SAR ship
target detection algorithm aimed at significantly improving the
detection performance of ship targets.
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A novel loss function has been designed, utilizing the unique
characteristics of ships. By seamlessly integrating it into the
YOLOVS algorithm and enhancing its key components, an en-
hancement in detection performance was observed. To further
improve ship positioning, this article introduces IA-CIOU to
ensure higher accuracy. Specifically, the introduction of a scaling
factor r into Inner IOU can effectively control the generation of
auxiliary boxes, thereby accelerating the convergence process
of the model. Additionally, the inclusion of Alpha IOU aims
to increase the generalization performance of the model. This
can be achieved by carefully adjusting the parameters r and «,
accelerating the regression of high IOU samples, and ultimately
improving the detection performance of ships.

In experimental stage, this article thoroughly compared IA-
CIOU with traditional detection models on three datasets.
Specifically, ablation experiments were conducted on MSAR-
1.0 dataset, carefully examining the role of each component
in TA-CIOU and ultimately validating the effectiveness of
method. Our detection results were presented on SAR-Ship-
Dataset, indicating that IA-CIOU has a low false alarm rate and
superior detection performance in both high seas and complex
marine environments. In addition, this article conducted cross
experiments and found that IA-CIOU weights trained on SAR-
Ship-Dataset and MSAR-1.0 dataset showed enhanced detection
performance on SSDD dataset. This discovery strongly cor-
roborates remarkable generalization capabilities of IA-CIOU.
Our findings indicate that our algorithm excels at precise ship
positioning and achieving outstanding detection results in chal-
lenging environments, particularly for ships with high aspect
ratios, dense arrangements and small sizes.

While TA-CIOU has indeed demonstrated improvement in
detection performance, there remains ample opportunity for
further exploration. Our future endeavors will focus on devel-
oping novel loss functions, particularly pertaining to auxiliary
frame scaling factor » within IA-CIOU methodology. This ar-
ticle aims to meticulously investigate strategies that seamlessly
integrate scaling factor r with IOU of ship, enabling a more
rational and adaptive approach to auxiliary box generation.
This approach will enhance adaptability of our algorithm to
varying ship target sizes. By implementing these advance-
ments, this article anticipates a substantial enhancement in de-
tection performance, ultimately leading to more precise target
detection.
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