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BSCDNet: A Building Change Detection Network
With Category Differentiation Using a Graph
Attention Mechanism and Multitask Learning

Qian Shen , Shikang Tao , Rui Yang , Xin Zhang , and Min Wang

Abstract—Recent building-oriented change detection studies
considered only morphological changes in buildings, and few pub-
licly available change detection datasets further distinguish among
building types. In this study, we propose a semantic change detec-
tion network named BSCDNet that considers both morphological
and semantic changes in buildings. BSCDNet adopts a multitask-
ing branch structure with object classification, change detection,
and segmentation to simultaneously achieve object-level seman-
tic classification and change analysis of buildings in bitemporal,
high-spatial-resolution (HSR) imagery. In the object classification
branch, a graph attention network is utilized to capture the spatial
and semantic correlations among buildings during classification.
The change detection branch applies both spatial and channel at-
tention mechanisms to eliminate nonbuilding interference and en-
hance change features. Moreover, the segmentation branch adopts
a distinctive instance segmentation procedure that improves the ac-
curacy of object segmentation. We created a building change detec-
tion dataset with category differentiation based on HSR imagery to
validate the proposed method. Ablation experiments verify the ef-
fectiveness and advantages of the above-mentioned task branches.
Furthermore, in comparative experiments with several SOTA se-
mantic change detection methods such as HRSCD, SCDNet, and
MR_CD, BSCDNet reached the optimal level in terms of F1 and
mIoU when evaluating the change detection performance, as well
as kappa and score for evaluating the classification performance.

Index Terms—Building, deep learning, graph attention network
(GAT), semantic change detection (SCD), Siamese network.

I. INTRODUCTION

IN THE urban remote sensing field, change detection and
analyses of urban elements, such as buildings, are vital in
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urban planning, land use management, illegal construction de-
tection, and disaster damage assessment [1], [2], [3], [4], [5], [6].
Change detection can generally be categorized into two modes:
binary change detection (BCD) and semantic change detection
(SCD) [7], [8]. The former simply identifies changed/unchanged
areas in binary mode, whereas the latter further obtains the
semantics, i.e., categories of changed areas, by involving certain
image classification processing techniques.

Currently, most research on building-oriented change detec-
tion focuses on morphological changes, such as the appearance,
disappearance, and deformation of buildings [9], [10], [11], [12],
[13]; this detection method is regarded as BCD or single-class
SCD. Obtaining semantic types with morphological changes
provides reasonable clues for analyzing the driving forces of
urban changes. However, research on building change detection
with category differentiation or building semantic change detec-
tion (BSCD) is scarce and urgently needs to be strengthened.

SCD, which can obtain the semantic types of changed build-
ings by certain image classification processes, offers a reason-
able solution for the proposed building change detection issue.
SCD can be categorized into four implementation modes [14],
[15], [16]: training a land cover mapping network to compare
the results for pixels in the image pair (Mode 1); utilizing
two-branched Siamese networks for bitemporal image change
analysis (Mode 2); decoupling the SCD task into independent
BCD subtasks and semantic segmentation subtasks (Mode 3);
and integrating the BCD and semantic segmentation into a single
multitask network so that land cover information can be used
for change detection (Mode 4). In these schemes, multitask
networks can simultaneously extract building semantic types
and morphological changes in an end-to-end manner. Therefore,
a multitask network is a convenient and advanced strategy for
BSCD. However, the collaborative training mode, in cases with
multitasks, has high network design requirements.

Building distributions exhibit strong spatial correlations; i.e.,
buildings of the same type generally exhibit a clustered tendency,
and different building types may have specific accompanying
phenomena. Semantic segmentation, which is commonly uti-
lized in SCD for semantic extraction, can hardly utilize these
object-level classification clues due to its pixel-wise image
classification process. A graph neural network (GNN) is a deep
learning technique that has emerged in recent years for classify-
ing graph-structured data. In image classification using GNNs,
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graph nodes generally represent image objects, whereas graph
edges represent specific relationships among these objects. Spa-
tial positions and neighborhood relationships among objects are
then encoded as an adjacency matrix. In this scenario, GNNs
utilize edges to aggregate node features and generate new feature
representations, which capture the interactions and dependen-
cies among neighboring nodes and enable GNNs to effectively
learn contextual information in classification. Compared with
semantic segmentation technology, GNNs naturally capture and
utilize the correlations among spatial objects, which should be
beneficial for improving the accuracy of object classification,
such as for buildings.

GNNs are divided into several variants, namely the graph con-
volutional network [17], GraphSAGE [18], and the graph atten-
tion network (GAT) [19]. GAT utilizes an attention mechanism
to weigh different nodes according to their importance, which
enables GAT to learn feature representations more accurately
than other variants. In this study, we utilize the GAT for BSCD,
which enables the simultaneous extraction of morphological and
semantic changes of buildings. The characteristics and main
contributions of this study are as follows.

1) A novel BSCD model, BSCDNet, is introduced. BSCDNet
utilizes several deep learning techniques, such as instance
segmentation, graph convolution, and multitask learning,
that enable end-to-end classification and change detection
for buildings via high-spatial-resolution imagery. To our
knowledge, BSCDNet is the first network to consider
building category differentiation within the SCD research
field.

2) A new building classification strategy for BSCD is pro-
posed. In contrast to the FCN-based semantic segmenta-
tion approach commonly used in SCD, BSCDNet employs
a specific scheme similar to instance segmentation to
obtain building objects, which are subsequently input into
the GAT for object-level classification. This scheme effec-
tively utilizes the aggregation and adjacency relationships
specific to buildings and thus improves the accuracy of
classification and change detection.

3) A new BSCD dataset. The current publicly available
SCD/BCD datasets lack building category differentia-
tion information. We thus created the first building se-
mantic change detection dataset (BSCDD) with cat-
egory differentiation by visual interpretation and ob-
ject delineation for several scenes of GF-2 and un-
manned aerial vehicle images. The BSCDD will be pub-
licly available at https://github.com/SianGIS/building-
semantic-change-detection-dataset.

The remainder of this article is organized as follows. Section II
presents a review of the current SCD methods. Section III
introduces the design of BSCDNet. Section IV presents experi-
ments on different benchmark datasets and method performance
analyses. Section V presents further discussion, and Section VI
provides the conclusions and discussion of future work.

II. RELATED WORK

SCD based on deep learning typically includes four modes:
postclassification change detection [20], [21], [22], [23], direct

change detection [24], [25], [26], separation of two subtasks
[27], and integration of two subtasks (multitask change de-
tection) [7], [28], [29], [30], [31], [32], [33], [34]. Postclassi-
fication change detection obtains change areas by overlaying
and comparing classification results from bitemporal images.
Its process is quite simple but relies heavily on accurate image
registration and classification. In direct change detection, SCD
is decomposed into a certain amount of BCD and requires output
fusion, which is cumbersome when handling multiple semantic
types. Methods with separate modes are completely independent
without the mutual assistance capabilities of multitask networks,
which could limit the accuracy of the method. Methods based
on multitask SCD networks commonly take change detection as
the main task and classification as an auxiliary task. Bitemporal
image features are extracted through the encoder of a Siamese
network. These features are fed to the classification branches
of the decoder for semantic extraction and fused and fed to
the change detection branch to obtain the binary-mode change
results. In multitask mode, classification training and change
detection tasks are simultaneously performed in a single net-
work, offering a convenient solution for operators. However,
the corresponding network design involves more techniques
than other SCD modes. Subtle network design achieves mutual
promotion among different network branches [15]. Due to its
characteristics and advantages, multitask learning-based SCD
is a popular research field. The most recent topics in this field
include enhancing change features based on semantic constraints
[34], using Siamese semantic-aware encoders to extract multi-
scale features [14], and guaranteeing temporal symmetry via a
temporal-symmetric transformer model [31].

BSCD includes direct change detection [12], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48] and
multitask change detection [10], [20], [49], [50], [51], [52]. In
the former, only changed buildings are detected, whereas in the
latter, all buildings and the corresponding changes are simultane-
ously extracted. In direct change detection, bitemporal features
are extracted from Siamese encoders and fused as changed
features in the decoder. Popular research topics in direct change
detection include multiscale joint supervision [43], introducing
a self-attention mechanism for context modeling in the spa-
tiotemporal dimension [45], and introducing a cross-attention
mechanism to more robustly extract feature differences between
bitemporal images [46]. In multitask change detection meth-
ods, the semantic segmentation branch bitemporally extracts
buildings, and the change detection branch extracts the changed
buildings. The key issue lies in designing the network structure
and controlling losses to ensure balance and consistency among
different tasks. Strategies for this task include utilizing semantic
feature constraints for change detection [50], improving loss
functions to mitigate sample imbalance [52], and introducing
an intrascale cross-interaction module to fuse the feature maps
from different branches [51].

Currently, the publicly released SCD datasets include bitem-
poral images, changed regions, and their semantic class labels.
Representative datasets include the SECOND [7], Hi-UCD [53],
and HRSCD [15] datasets. These datasets cover several urban
and rural areas and include multiple types of land use/land cover
classes; however, buildings are commonly classified as one type
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without further category differentiation. Building change detec-
tion datasets include datasets created for direct change detection
and multitask change detection. The direct change detection
datasets include LEVIR-CD [54], GDS [55], SYSU-CD [56],
etc., in which only changed buildings are labeled. The multitask
building change detection datasets include WHU-CD [57] and
HRSCD [15], in which all the buildings and their changes
are labeled. However, none of these building change detection
datasets further subdivide the building categories.

III. METHOD DESIGN

In pixel-level SCD methods, fragmented or conjoined
building extraction results often exist in semantic segmenta-
tion/classification. However, the GAT needs morphologically
complete building instances to learn the spatial and semantic
correlations among buildings for classification. For this pur-
pose, BSCDNet utilizes an object detection-based approach for
BSCD, which consists of classification, change detection, and
mask branch. Specifically, the building classification branch
uses the buildings detected by object detection as graph nodes
and defines the connection relationships among nodes based
on the geometric and semantic features of buildings to extract
categories. Then, the change detection and mask branches ex-
tract change information and perform segmentation based on
individual building objects.

BSCDNet utilizes and modifies the structure of the two-stage
instance segmentation network of Mask R-CNN [58] to conduct
bitemporal building object extraction. Then, the spatial and
semantic features of building objects are utilized to construct
a dual-branch GAT, and object classification is implemented
through attention mechanism-based spatial relationship reason-
ing among graph nodes. In this section, object classification
implementation based on a GAT is introduced, and the network
and corresponding branch design are described to facilitate
understanding.

A. Building Classification

Given a graph G = (V, E), where V represents the set of
nodes and E represents the set of edges, the adjacency ma-
trix A ∈ RN×N defines the adjacency relationships among the
nodes, where N is the number of nodes. The featureFi represents
the feature vector of node i (i ∈ V ). The GAT adopts an attention
mechanism to allocate different weights to neighboring nodes.
Given a node i and its neighbor node j, the attention coefficients
eij are calculated as follows:

eij = We
T ([WFi||WFj ]) , j ∈ Ni (1)

where W is the weight matrix with shared parameters, vector
We is a learnable weight vector, “||” denotes the channel con-
catenation operation, and Ni is the neighborhood of node i. To
make the coefficients easily comparable across different nodes,
eij is normalized with the softmax function

αij =
exp (eij)∑

k∈Ni
exp (eik)

(2)

where αij represents the normalized attention coefficient. The
aggregated feature of node i is then calculated as follows:

F̂i = LeakyReLU

⎛
⎝∑

j∈Ni

αijWαFj

⎞
⎠ (3)

where Wα represents a learnable weight matrix used for linear
transformation of the input features.

Building objects are obtained by the region proposal network
(RPN) [59], which forms the nodes of the GAT network. The
spatial and semantic relationship graphs are constructed based
on the geometric and semantic features of the building objects.
To construct the spatial relationship graph, the geometric feature
for a node pair (i, j) is defined as follows:

Fs(i,j) =

[
log

( |xi − xj |
wi

)
, log

( |yi − yj |
hi

)
, log

(
wj

wi

)
,

log

(
hj

hi

)]T
(4)

where Fs(i,j) represents the 4-D geometric feature of the node
pair; (xi, yi) and (xj , yj) are the center coordinates of nodes i
and j, respectively; and (wi, hi) and (wj , hj) are the width and
height of the proposed regions of nodes i and j, respectively.
Then, the adjacency matrix Aspa of the spatial relationship graph
is calculated as follows:

Aspa(i,j) = ReLU
(
ReLU

(
WsFs(i,j)

)
Fs(i,j)

)
(5)

where Ws denotes the learnable weight matrix.
The adjacency matrix Asem for the semantic relationship

graph is calculated by evaluating the semantic similarity of every
node pair

Asem(i,j) =
(WiFi)

T ·WjFj√
d

(6)

whereFi andFj represent the proposed region features of nodes
i and j, d is the feature dimension, and Wi and Wj are the
learnable weight matrices.

For building object classification, image features are first
aggregated in the GAT layers based on Aspa(i,j) and Asem(i,j)

and are then fused by concatenation

F l+1
i =

⎡
⎣ ∑

j∈Ni

αspa
i,j W spa

a Aspa(i,j)F
l
j

∣∣∣∣∣∣

×
∣∣∣∣∣∣
∑
j∈Ni

αsem
i,j W sem

a Asem(i,j)F
l
j

⎤
⎦ (7)

where W spa
a and W sem

a denote the learnable weight matrices
and F l

j represents the feature of node j in the lth layer.
BSCDNet includes a three-layer GAT for feature dimension

reduction. The features are subsequently classified via a soft-
max function to obtain building categories. Through the above-
mentioned operations, clustering and proximity relationships
among buildings are obtained for image classification.
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Fig. 1. Design of BSCDNet.

B. Model Structure

1) Overall Architecture: BSCDNet is an SCD method de-
signed based on building objects. As shown in Fig. 1, BSCDNet
adopts ResNet-50 to extract bitemporal features. The building
object proposals are obtained via the RPN, and the object fea-
tures are extracted via ROIAlign [58]. Based on the building
object proposals, BSCDNet incorporates classification, change
detection, and mask branches to extract the category, change
information, and mask, respectively, for each building proposal
in a bitemporal image. The classification branch forms three-
layer dual-branch spatial and semantic graphs, which use the
GAT to learn spatial correlations that buildings of the same type
generally exhibit a tendency to cluster together, and different
building types may have specific accompanying relationships.
The change detection branch obtains change features through
bitemporal object feature subtraction, in which spatial and chan-
nel attention mechanisms are utilized for feature enhancement.
The mask branch uses FCNs to initially extract the binary
building segmentation results and then concatenates the results
with the object features using ROIAlign to instantly segment the
buildings. The changed building proposals are filtered using the
change detection branch. The classification and mask branches
provide semantic categories and masks, respectively, for the
changed building proposals.

2) Building Classification Branch: BSCDNet first utilizes
an encoder to extract multistage image features F . Then,
building proposals are generated through the RPN, and
a high-confidence set of building proposals P = {(xn, yn,
wn, hn), n ∈ {1, 2, 3, . . . , 512}} is used for subsequent classi-
fication, change detection, and mask extraction. In the building
classification branch, F and P are processed with ROIAlign
to obtain the semantic features of each building proposal. The

object features are then flattened and passed through two fully
connected layers to obtain semantic feature vectors with a length
of 512 to form Fsem ∈ R512×512

Fsem = MLP (ROIALign (F, P )) (8)

where MLP denotes two fully connected layers. To utilize the
spatial relationships among different categories of buildings to
assist in building classification, the classification branch uses the
building proposals as nodes to construct spatial and semantic
relationship graphs. The geometric features Fspa among the
nodes are calculated based on the spatial information of the
objects recorded in P using (4).

The connectivity between the nodes is defined using (5) and
(6). On this basis, a dual-branch structure with parallel pro-
cessing and multilayer spatial and semantic relationship graphs
is designed for feature aggregation, as shown in Fig. 2. The
attention matrices αsem and αspa associated with the semantic
relationship graph and spatial relationship graph are computed
using the GAT. Subsequently, attention-based aggregation is
performed on each node’s geometric and semantic features

F̂spa = σ (αspaWspaFspa)

F̂sem = σ (αsemWsemFsem)
(9)

where F̂spa and F̂sem represent the weighted spatial and se-
mantic features, σ is the LeakyReLU activation function and
Wspa and Wsem are learnable weight matrices. To alleviate
gradient vanishing during the stacking of multiple GNN layers,
BSCDNet introduces residual connections in the dual-branch
structure. The feature vectors before and after aggregation are
fused via pixel-wise addition. The fused features of different
branches are then concatenated

F l+1
g =

[
F̂ l
spa + F l

spa

∣∣∣ ∣∣∣F̂ l
sem + F l

spa

]
, l = 0, 1, 2 (10)
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Fig. 2. Dual branches of spatial and semantic relationship graphs.

where F l+1
g represents the output features of the lth dual-branch

layer. The dimensions of F l+1
g are compressed through the fully

connected layer, and the features are subsequently fed to the
next layer. A three-layer dual-branch structure is formed for the
classification branch. The first two layers output feature vectors
with lengths of 256 and 128, respectively, and the third layer
conducts building classification through a fully connected layer
and a softmax function.

3) Change Detection Branch: As shown in Fig. 3, bitemporal
image features are processed via subtraction, and ROIAlign
obtains the changed building features Fd. The object features
are extracted based on the rectangular regions of the building
proposals. When using Fd directly for change detection, non-
building regions may have a negative impact on the change
detection results. The spatial attention mechanism (SAM) [60]
adaptively learns the attention weights of features and focuses
on the importance of different regions. To suppress nonbuilding
interference, a SAM is introduced to enhance Fd

F sam
d = σ (Conv1×1 ( [max (Fd)| |avg (Fd) ]))Fd (11)

where F sam
d is the spatial attention weighted change feature,

σ is the sigmoid function, and max(·) and avg(·) represent
maximum pooling and average pooling, respectively. The chan-
nel attention mechanism (CAM) [61] then selects the key chan-
nels of the features. The features first undergo global max and
average pooling, and the two output feature vectors are fused
and processed with a sigmoid function to obtain the channel
attention coefficient for feature enhancement

F cam
d = σ (GMP (F sam

d ) +GAP (F sam
d ))F sam

d (12)

where F cam
d represents the feature after CAM enhancement and

GMP (·) and GAP (·) represent the global max and average
pooling, respectively. The enhanced features are subsequently

flattened and input into a fully connected layer for final change
detection. The change detection branch performs the aforemen-
tioned operations on both bitemporal buildings to extract the
change information.

4) Mask Branch: The Mask RCNN, a representative method
for instance segmentation, uses ROIAlign to obtain a low-
resolution feature map (28 × 28), which is insufficient for
capturing object details in FCN-based object segmentation. To
address this issue, BSCDNet adopts a different scheme for ac-
curate building instance segmentation [62]. The image features
extracted by the encoder are first fed to the FCNs for the pixel-
level semantic segmentation of buildings, as shown in Fig. 4. The
image features and semantic segmentation results are processed
by ROIAlign, and the outputs are concatenated to obtain image
features that jointly represent object boundaries and masks.
Then, the features are upsampled by three upsampling blocks
consisting of 3 × 3 convolution and deconvolution layers.
Finally, the object masks are obtained via 1 × 1 convolution
and resampling.

5) Loss Function: Change detection, GAT classification, and
RPN classification all use the multiclass cross-entropy loss
function

L = − 1

N

N∑
i = 1

K∑
j = 1

yij log pij (13)

where N is the number of samples, K is the number of classes,
and yij and pij represent the label and the predicted probability
of the ith sample, respectively.

In the segmentation branch, the FCNs and object seg-
mentation process both utilize the binary cross-entropy loss
function

L = −y log (ŷ)− (1− y) log (1− ŷ) (14)



15766 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 4. Mask branch.

Fig. 3. Attention-based change detection branch.

where y represents the ground truth of the given sample (which
is 0 or 1) and ŷ is the network prediction. SmoothL1 was used
in bounding box regression

L (y, ŷ) =

{
0.5(ŷ − y)2 if |ŷ − y| < 1
|ŷ − y| − 0.5 otherwise

. (15)

The total loss of BSCDNet is finalized as follows:

L = Lclass1 + Lclass2 + Lrpn1 + Lrpn2 + Lseg1

+ Lseg2 + Lcd1 + Lcd2 (16)

where Lclass1 and Lclass2 denote the losses of the classification
branches in phases 1 and 2,Lrpn1 andLrpn2 represent the losses
of RPN classification in phases 1 and 2, Lseg1 and Lseg2 denote
the losses of the mask branches in phases 1 and 2, and Lcd1

and Lcd2 denote the losses of the change detection branches in
phases 1 and 2.

IV. EXPERIMENTS

A. Experimental Procedure

1) Datasets: The publicly released SCD datasets were pri-
marily designed for multiclass SCD of urban scenes. None
of the SCD datasets further subdivide the building categories,
and it is impossible to verify the performance of BSCDNet in
building SCD. Therefore, the research team collected several

high-resolution aerial and satellite remote sensing images to
create the BSCDD. The BSCDD encompasses partial regions of
the Beijing urban area (BSCDD_BJ) and Yangzhou rural area
(BSCDD_YZ). These two regions significantly differ in terms
of data sources, building morphology, and distribution; these
differences are used to comprehensively evaluate the proposed
method.

a) BSCDD_BJ: For BSCDD_BJ, bitemporal images cov-
ering parts of Beijing in 2015 and 2019 were collected from
GF-2 and were 9785 × 10061 in size with spatial resolutions
of 1 m. The buildings in the dataset were divided into six cat-
egories: shantytowns, low-rise (LR) apartments, medium- and
high-rise (M&HR) apartments, commercial and office (C&O)
buildings, industrial and warehouse (I&W) buildings, and aux-
iliary buildings. The building objects were delineated using
ArcGIS software, and their categories and change information
were annotated at the object level. A total of 19 000 build-
ings were identified in the bitemporal images, as illustrated in
Fig. 5. These images and labels were cropped to 512 × 512
nonoverlapped image patches, producing 400 image pairs. The
pairs were further randomly divided into training (250 pairs),
validation (50 pairs), and testing (100 pairs) sets. The training
sets and validation sets were expanded using rotation, cropping,
and copy-paste [63] for sample enhancement.

b) BSCDD_YZ: BSCDD_YZ consists of three pairs of
aerial images covering Yangzhou. The data were captured in
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Fig. 5. BSCDD_BJ dataset.

Fig. 6. BSCDD_YZ dataset.

2017 and 2020, with a spatial resolution of 0.1 m and image sizes
of 33 774 × 23 946, 36 927 × 29 164, and 26 238 × 24 841.
The buildings in these images were classified as low-rise res-
idential buildings, M&HR apartments, C&O buildings, I&W
buildings, or auxiliary buildings. A total of 20 544 buildings were
delineated, as illustrated in Fig. 6. The images were cropped to
512 × 512 image patches without overlap, which produced
462 image pairs. The pairs were further randomly divided into
training (300 pairs), validation (62 pairs), and testing (100 pairs)
sets. The training sets and validation sets were augmented in the
same way as the BSCDD_BJ.

2) Method Implementation: Several pixel-level and object-
level SCD methods were selected and implemented for com-
parison. The pixel-level change detection methods include
HRSCD.str1 [15], HRSCD.str4 [15], SCDNet [28], Bi-SRNet
[30], and MTSCD [14]. The semantic segmentation and change
detection branches adopted cross-entropy loss and binary cross-
entropy loss with loss weights of 0.25 and 0.5, respectively.

HRSCD.str1: In this method, UNet is used to extract multi-
class buildings. The extraction results are compared to conduct
pixel-wise SCD.

HRSCD.str4: This method involves a multitask learning net-
work with a semantic segmentation branch and a change detec-
tion branch. The category of the changed building is obtained
by comparing the change detection and semantic segmentation
results at the pixel scale.

SCDNet: This is a typical multitask SCD method. The se-
mantic segmentation branch classifies an image into unchanged
regions and changed regions with category information. The
change detection branch utilizes multiscale difference features
to achieve BCD. Similarly, the change detection and semantic
segmentation results at the pixel scale are compared for SCD.

Bi-SRNet: In this method, the bitemporal features are merged
through a deep CD unit to extract the changed areas. The
segmentation branch uses Siamese and cross-temporal semantic
reasoning blocks to improve the semantic representations and
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model the semantic correlations of features to achieve the se-
mantic segmentation of changed regions with temporal feature
alignment.

MTSCD: This method adopts a two-level difference feature
model to extract change information and generate a spatial atten-
tion weight map to provide prior information regarding change
areas for the semantic segmentation branch. The semantic seg-
mentation branch directly classifies the two temporal image
features constrained by spatial attention weights via FCNs.

Considering that semantic building change detection stud-
ies are lacking and that BSCDNet is an object-level change
detection method, two object-level SCDs were implemented
based on several classic networks, i.e., the two-stage instance
segmentation network MaskRCNN and the one-stage instance
segmentation network SOLO [64]. The encoder for both of these
comparative methods is ResNet-50.

MR_CD: In this approach, a dual RPN is used to extract
bitemporal building proposals. Then, the semantic categories
and masks of the building objects are extracted through the
classification branch and mask branch of the Mask R-CNN.
The change detection branch fuses the bitemporal image fea-
tures of the objects and classifies the objects into changed and
unchanged categories. The segmentation branch adopts binary
cross-entropy loss, as do both the classification branch and the
change detection branch.

SOLO_CD: This method uses Siamese encoders to extract
bitemporal image features and divides them into a grid of fixed-
size cells. The segmentation and classification branches extract
the categories of objects in the grid. The change detection branch
concatenates the bitemporal grid features to perform change
detection.

All the models were implemented with PyTorch 1.7.1, which
was powered by two NVIDIA 2080ti GPUs with 11 GB of
RAM. The batch size was uniformly set to 4 for all model
training, the same hyperparameters were used, and the number
of training epochs in all experiments was uniformly set to 50.
The Adam optimizer was used with a default learning rate of
1e-4. During the training process, the model with the lowest
loss in the validation set was saved as the final training result.

3) Accuracy Measures: To comprehensively evaluate the
performance of the models, accuracy metrics such as precision,
recall, F1-score, and mIoU were selected to evaluate the accu-
racy of the changed areas. The kappa coefficient and score were
used to evaluate the categories of the changed pixels. These
measures are calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision × Recall
Precision + Recall

mIOU =
1

2

(
TP

TP + FP + FN
+

TN

TN + FN + FP

)

(17)

where TP denotes the number of positive samples that were
correctly predicted, TN denotes the number of negative samples
that were correctly classified,FP denotes the number of positive
samples that were incorrectly classified as negative, and FN
denotes the number of negative samples that were incorrectly
detected as positive.

Assuming that the number of categories in the dataset is C,
where 0 represents the nonchanged class, the SCD confusion
matrix is Sij(0 ≤ i ≤ C − 1, 0 ≤ j ≤ C − 1). The kappa co-
efficient is calculated as follows:

Kappa =
p0 − pe
1− pe

p0 =

∑C−1
i=0 Sij∑C−1

i=0

∑C−1
i=0 Sij

pe =

∑C−1
i=0 (Si+ × S+i)(∑C−1
i=0

∑C−1
i=0 Sij

)2 (18)

where Si+ denotes the sum of the rows of confusion matrix Sij

and S+i represents the sum of the columns of this matrix. Based
on mIoU and kappa, the comprehensive score can be calculated

Score = 0.3×mIOU + 0.7× Kappa. (19)

B. Results and Comparison

1) Quantitative Analysis:
a) BSCDD_BJ: As shown in Table I, the precision of

MTSCD is lower than that of SCDNet and Bi-SRNet. How-
ever, other metrics for MTSCD were significantly higher than
those of the other pixel-based change detection methods. The
quantitative indicators of MR_CD were higher than those of the
other comparative methods. The F1-score and mIoU, which are
related to the changed area, of this method were 77.42% and
79.16%, respectively. The kappa and score, which evaluate the
categories of change areas, were 68.19% and 71.48%, respec-
tively. These indicators were significantly higher than those of
the other comparative methods. The precision of BSCDNet was
4.63% higher than that of the second-ranked MR_CD, indicating
that BSCDNet reduced the number of false alarms. BSCDNet’s
F1-score and mIoU were 2.59% and 2.1% greater than those of
MR_CD, respectively. The kappa and score values of BSCDNet
were also higher than those of all other comparative methods,
which indicated that BSCDNet performed better in building
classification.

b) BSCDD_YZ: The quantitative results of BSCDNET
and the seven comparative methods on YZ are shown in Table II.
Similar to the results on BSCDD_GF, in this case, object-based
methods performed much better than pixel-based methods. The
mIoU, kappa, and score of MR_CD were higher than those
of MTSCD. BSCDNet performed the best in terms of all the
accuracy metrics, among which kappa was the most improved;
notably, the kappa coefficient of BSCDNet was 4.9% and 1.41%
higher than those of SOLO_CD and MR_CD, respectively. In
addition, the mIoU of BSCDNet was 4.32% and 0.8% higher
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TABLE I
QUANTITATIVE RESULTS OF BCDNET AND THE SEVEN COMPARISON METHODS ON THE BSCDD_BJ DATASET

TABLE II
QUANTITATIVE RESULTS OF BCDNET AND THE SEVEN COMPARISON METHODS ON THE BSCDD_YZ DATASET

than those of SOLO_CD and MR_CD, respectively. This indi-
cated that BSCDNet improved the change detection and classi-
fication abilities, leading to a 4.73% improvement in the score
metric.

2) Qualitative Analysis:
a) BSCDD_BJ: Fig. 7 shows eight representative change

detection results obtained on BSCDD_BJ. HRSCD.str1 yielded
more regular boundaries for the extracted changed buildings
than did the other methods. However, errors exist in the mor-
phology and categories of the semantic segmentation results
for bitemporal buildings, with numerous false alarms in var-
ious areas, as shown in Fig. 7. Among the pixel-based SCD
methods, Bi-SRNet and MTSCD had the most complete results
and displayed high accuracy but yielded obvious classification
errors and missed alarms. Many missed alarms were observed
for HRSCD.str4 and SCDNet, in which the extracted changed
buildings were fragmented and the building classification was
inaccurate, as illustrated in areas 2 and 4. SOLO_CD exhibited
many missed alarms. MR_CD exhibited missed and false alarms,
as illustrated in areas 3 and 4, respectively. In addition, C&O
buildings exhibited classification errors, as illustrated in area
2. The changed buildings extracted by BSCDNet were most
consistent with the morphology and category labels.

b) BSCDD_YZ: Fig. 8 shows eight representative change
detection results obtained on the BSCDD_YZ dataset.
HRSCD.str1 yielded many false alarms, as shown in areas 2
and 4. Other pixel-level comparative methods cause missed

alarms and inaccurate classifications. For example, the results
of HRSCD.str4 and SCDNet in areas 2 and 3 included the
misidentification of I&W buildings as C&O buildings. Bi-SRNet
had missed alarms and classification errors in areas 3 and 4,
respectively, and MTSCD displayed relatively low segmentation
and classification accuracy in area 1. The object-based change
detection methods performed better than did the pixel-based
methods, but defects still existed. Among all these comparative
methods, BSCDNet performed best in changed building classi-
fication, exhibiting almost no missed alarms.

C. Ablation Experiments

We conducted several ablation experiments to evaluate the
module performance on BSCDD_BJ dataset. The experiments
were conducted with the combined attention-based change de-
tection modules, segmentation branches, dual-branch GAT clas-
sifiers, and three branches.

The base network (first row in Table III) is a multitask change
detection network based on object detection. On the basis of
building object detection in bitemporal images, the base network
includes a change detection branch, a classification branch, and
an object segmentation branch with two ResNet-50 encoders.
The change detection branch concatenates the bitemporal image
features and extracts the change features of each building object
via ROIAlign. The change features are input into the fully
connected layer for change detection. The classification branch
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Fig. 7. Typical change detection results of BSCDNet and comparison on the BSCDD_BJ dataset.

TABLE III
QUANTITATIVE ANALYSIS RESULTS OF ABLATION EXPERIMENTS

uses a fully connected layer to classify objects. The object
segmentation branch adopts three upsampling blocks consisting
of 3× 3 convolutional layers and deconvolution layers to extract
the masks of building objects.

To verify the impact of the attention-based change detection
branch on change detection, the change detection branch in
the base network was replaced with that of BSCDNet (second
row in Table III). Introducing the attention-based change detec-
tion branch significantly increased the precision of the method

from 74.92% to 80.2% compared to that of the base network,
indicating that introducing the attention mechanism significantly
reduced false detection issues. Although the recall decreased,
the F1-score, mIoU, and score increased by 1.88%, 1.58%,
and 2.53%, respectively. The base network with the mask
branch of BSCDNet performed better than the base network
in all the metrics except for recall (third row in Table III);
additionally, the two comprehensive indicators, F1-score and
mIoU, increased by 3.12% and 2.58%, respectively. Improving
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Fig. 8. Typical change detection results of BSCDNet and comparison on the BSCDD_YZ dataset.

the building segmentation accuracy also improved the kappa
coefficient.

The dual-branch GAT classifier was introduced in the base
network for comparisons among different classifiers (fourth row
in Table III). The kappa coefficient of the classifier introduced
in the dual-branch GAT was significantly higher than that of the
CNN-based base network. The other indicators used to measure
BCD performance were similar to those of the base network.
The dual-branch GAT improved the building classification and
change detection performance of the models.

To verify whether different modules can jointly improve
network performance, all branches were added to the base net-
work to form BSCDNet for comparative analyses by separately
introducing different modules (fifth row in Table III). BSCDNet
performed best on all the accuracy measures, among which
the precision improved the most; the precision of BSCDNet
was 8.88% higher than that of the method with the branch
added to the base network separately. This suggested that jointly
using different branches reduced the number of false alarms.
An increased kappa coefficient indicates that the classification
performance was improved.

Several typical sets of results of ablation experiments with
different model branches are shown in Fig. 9. Introducing
the attention-based change detection branch resulted in better
performance and fewer false alarms than those for the base

network. For example, in area 1, many false alarms existed
in the result of the base network in the I&W building; the
attention-based change detection branch performed better in this
area. In the comparison of mask branches, the mask branch of
BSCDNet provided the most accurate building masks. In area 1,
the mask branch of BSCDNet yielded more complete extraction
of large C&O buildings than did the base network. In area 2, the
boundaries of the changed buildings from the mask branch of
BSCDNet were more regular. In the comparison of classifiers,
the base network identified M&HR apartments in area 1 and
C&O buildings in area 2 as C&O buildings and I&W buildings,
respectively. The GAT helps capture the spatial and semantic
correlations among the building category during classification,
and the model with the introduced dual-branch GAT correctly
predicted these building categories. BSCDNet extracted the
changed buildings and their categories more robustly than did
the base network.

D. Building Classification Accuracy Analysis

In this section, SCDNet and MR_CD were selected as two
representative methods for comparing and analyzing the perfor-
mance of different SCD networks in the task of building classifi-
cation. The semantic segmentation branch of SCDNet, a typical
pixel-level SCD method, uses an attention mechanism and a
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Fig. 9. Typical change detection results of different modules of the ablation experiment.

TABLE IV
QUANTITATIVE RESULTS OF BCDNET AND THE TWO COMPARISON METHODS ON THE BSCDD_BJ DATASET

deep supervision strategy for image classification. Moreover,
MR_CD is a typical object-based BSCD method that performs
building classification via instance segmentation.

The qualitative and quantitative analyses of the building
classification results are shown in Fig. 10 and Table IV.
The recall and kappa coefficient of SCDNet were 65.68% and

65.08%, respectively, which were significantly lower than those
of the other methods and were caused by missed detections.
BSCDNet’s mIoU and kappa were 3.3% and 1.47% higher
than those of MR_CD, respectively, indicating that BSCDNet
performed better than the latter in building classification. Fig. 10
shows three representative building extraction results obtained
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Fig. 10. Typical building semantic segmentation results of BSCDNet and comparative methods on the BSCDD_BJ dataset.

on BSCDD_BJ. Despite improvements in attention modules
and deep supervision, the semantic segmentation branch of
SCDNet still produced fragmented buildings, as shown in the
buildings indicated with red boxes in area 2. MR_CD performs
image classification without considering contextual information
among buildings; this method occasionally classifies partial
I&W and M&HR buildings as C&O buildings, as illustrated
by the red boxes in areas 1 and 2. On the other hand, BSCD-
Net provides more accurate classification results than do the
other two methods for clustered buildings, as illustrated in
area 1. These results verify the superiority of the GAT-based
semantic extraction mechanism of BSCDNet, as aggregation
and adjacency relationships specific to buildings are utilized in
classification.

V. DISCUSSION

A. Further Analysis of Pixel-Level and Object-Level Change
Detection Methods

The results of the comparative experiments show that the
accuracies of the object-based building SCD methods, namely
MR_CD and BSCDNet, are higher than those of the pixel-based
SCD methods, namely Bi-SRNet and MTSCD. HRSCD.str1

is a postclassification change detection method that extracts
bitemporal buildings through semantic segmentation and sub-
sequently determines changes in pixels. The change detection
performance depends on the semantic segmentation accuracy.
Thus, classification errors and small bitemporal image posi-
tional deviations might cause false alarms. The pixel-level mul-
titask SCD methods, HRSCD.str4, SCDNet, Bi-SRNet, and
MTSCD, consist of change detection and semantic segmentation
branches, and the latter provides semantic information for the
former. Both the classification and change detection branches are
pixel based, and errors in each branch easily lead to fragmented
and inaccurate classifications. Fig. 11 shows the results for dif-
ferent branches of SCDNet and BSCDNet based on BSCDD_BJ.
BSCDNet, as an object-based change detection method, results
in more accurately extracted changed buildings and semantic
classes than pixel-based methods.

B. Model Efficiency Analysis

The model parameters (params) and floating-point opera-
tions per second (FLOPs) were selected to evaluate the model
efficiency. The params and FLOPs values of the different meth-
ods are shown in Table V. Among the methods, HRSCD. str1
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Fig. 11. Result comparison of pixel-based and object-based BSCD methods.

TABLE V
COMPARISON OF COMPUTATIONAL COMPLEXITY

and HRSCD. str4 yielded the lowest params values and compu-
tational complexity. BSCDNet is at a medium level in terms of
parameters and FLOPs. Compared with SCDNet, MTSCD, and
SOLO_CD, BSCDNet has fewer params. In terms of FLOPs,
BSCDNet outperforms BiSRNet and MTSCD and is on the same
level as SCDNet. BSCDNet has higher accuracy in change de-
tection on the BSCDD_BJ and BSCDD_YZ datasets than does
the other methods. This demonstrates that BSCDNet achieves
a balance between efficiency and accuracy. The combination of
low computational complexity and high accuracy validates the
ability of BSCDNet to achieve the highest performance while
maintaining reasonable computational utility.

VI. CONCLUSION

In this study, we propose a novel BSCD method, BSCDNet,
that considers both morphological and semantic changes in
buildings. As a multitask method, BSCDNet conducts object
classification, change detection, and segmentation simultane-
ously and utilizes a GAT by adopting an attention mechanism to
capture the spatial and semantic correlations among the building
objects during classification. In future work, we will expand
the BSCDD into a more generalized dataset by including more
regions and building types for developing and testing BSCD
methods. Moreover, we will adopt weakly supervised change
detection technology to improve the performance of BSCDNet
with unlabeled samples.
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