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A Novel Fusion Method for Soybean Yield Prediction
Using Sentinel-2 and PlanetScope Imagery

Khilola Amankulova , Nizom Farmonov , Enas Abdelsamei , József Szatmári , Waleed Khan ,
Mohamed Zhran , Jamshid Rustamov, Sharifboy Akhmedov, Maksudxon Sarimsakov, and László Mucsi

Abstract—This study aimed to develop a new method for com-
bining Sentinel-2 and PlanetScope (PS) imagery. The normalized
difference vegetation indices (NDVI) data were retrieved from the
Earth observation satellites S2 Level-2A and PS Level-3 surface re-
flectance during the soybean growing phase. The proposed method
utilizes the Python implementation of data mining sharpener al-
gorithm, which is a decision-tree-based technique for enhancing
low- and high-resolution images with information from large-scale
images. The robustness and flexibility of a multidimensional data
fusion, deep neural network, and machine-learning-based yield es-
timation model were analyzed based on the within-field variability
in soybean yield. A comparative analysis revealed that the fusion
data with 1.5–2.5 tons significantly outperformed individual predic-
tions, demonstrating higher accuracy and fewer errors. The fusion
data used to predict yields showed relatively small error ranges of
0.5–0.2 t/ha. In contrast, the PS and S2 datasets showed higher
prediction errors. The study employed vegetation indices, and
during validation, crop forecasts were compared using an NDVI
map. The effectiveness of artificial neural networks in predicting
crop yields was highlighted, demonstrating superior performance
across diverse datasets compared with other algorithms. This novel
fusion technique is essential for monitoring crop health and growth,
improving agricultural practices, such as fertilization and water
management, and improving yield forecast accuracy. This study
provides valuable insights into phenology monitoring, image fusion
accuracy, and the effectiveness of machine-learning algorithms in
predicting crop yields, emphasizing the benefits of fused imagery.
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I. INTRODUCTION

CROP productivity research has gained significant im-
portance as a crucial benchmark for farm manage-

ment throughout the agricultural cycle, encompassing planning,
agrotechnological interventions, and pre- and postharvest pro-
cesses [1]. Early yield forecasting at the field and farm levels,
particularly in combination with the mapping of yield variations
within the field, plays a crucial role in crop management. This
enables precise site-specific decisions on fertilization, irrigation,
and weed control [2], [3]. According to Wolfert et al. [4],
the agricultural sector has witnessed a continuous increase in
data-generating devices and sensors, empowering farmers to
adopt data-driven decision-making approaches.

Soybeans are recognized for their high-quality animal feed
and as a crucial protein source for global populations, with
paramount significance [5]. The European Commission esti-
mates that soybeans constitute a significant proportion of annual
and perennial crops. In view of the projected increase in food
demand by 2030, soybean production is expected to grow (EU
Agricultural Outlook, accessed on 17 April 2020).

Due to its commendable macroperformance and periodic data
availability [6], remote sensing has found extensive utility in
agricultural applications, encompassing tasks, such as cropland
cover classification, drought stress assessment, and yield esti-
mation. The availability of high-quality, publicly accessible ter-
restrial data sources, such as Landsat-8 and Sentinel-2 (S2), has
been widely used. Additionally, the emergence of a new genera-
tion of nanosatellites, exemplified by Planet Labs’ PlanetScope
(PS) CubeSat constellation, has democratized high-resolution
spatial and temporal data acquisition at a significantly reduced
cost [7], [8, p. 201]. However, PS imagery is susceptible to
cross-sensor discrepancies that introduce noise into the time
series of observations derived from these sensors [9]. Address-
ing this challenge entails the integration of PS images with a
consistent and dependable dataset, such as S2, offering a means
to effectively mitigate noise in PS data [10].

As highlighted by Sun et al. [11], valuable external data can be
harnessed from remote sensing sources in crop yield prediction.
These sources often tap into the visible red, green, and blue seg-
ments of the electromagnetic spectrum and near-infrared (NIR)
bands. These spectral components are essential in monitoring
critical aspects of crop cultivation, including crop health, soil
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moisture, nitrogen stress, and ultimately crop yields, as evi-
denced by the works of [12], [13], [14], [15], and [16]. Among
these studies, vegetation indices (VIs), with the normalized
difference VI (NDVI) at the forefront, have been widely used
because of their effectiveness, as demonstrated by the authors
in [15], [16], and [17]. Furthermore, additional indices, such as
the soil-adjusted VI (SAVI) [18], enhanced VI (EVI) [19], green
NDVI (GNDVI), and normalized difference red edge (NDRE)
[20], have played crucial roles in estimating crop production.

Researchers commonly use regression or correlation analy-
ses to establish the statistical connection between controlled
variables and crop yield [21]. However, the widespread use
of linear statistical models in current crop yield prediction is
limited, particularly the nonlinear interactions within the data.
Simple or multiple linear regression (MLR) models are the
typical go-to options for predicting crop yield [22], [23]. It is
worth noting that MLR analysis can be constrained when dealing
with highly correlated input parameters, limiting the inclusion
of only a few predictor variables [24]. Additionally, determining
the most suitable algorithm for prediction can be challenging,
even though advanced models, such as the XGBoost algorithm,
are favored by many researchers due to their speed, efficiency,
and minimal data requirements [25].

The accurate and reliable estimations of crop yields neces-
sitate the use of high-quality remote sensing data and the im-
plementation of sophisticated and automated technologies [26].
Deep learning (DL) models, particularly convolutional neural
networks, have unequivocally demonstrated significant poten-
tial across a spectrum of critical remote sensing applications,
including crop yield estimation [11], [27]. These DL models
possess the intrinsic ability to autonomously discern features
across various levels of statistical modeling, a marked departure
from traditional regression methodologies that often mandate
feature engineering and domain expertise for feature extraction
from imagery [28].

Artificial neural networks (ANNs) take inspiration from the
human learning process and adopt a fundamental architecture
composed of interconnected nodes to construct classification
models primarily based on the statistical data, reducing the
need for task-specific, explicit rule-based programming [6]. DL
models, or deep ANNs characterized by more than two hidden
layers, offer a solution to the challenges posed by the curse of
dimensionality, enabling them to construct classification models
directly from data in an end-to-end fashion. This contrasts with
the conventional approach of manual feature engineering, which
relies on human intuition and prior experience [29].

A few endeavors to fuse PS imagery with S2 visual images
into high spatiotemporal datasets were prompted by the lack of
results of high spatial and temporal resolution time series from
well-calibrated satellite images. For example, the moderate-
resolution imaging spectroradiometer-Landsat SaTellite dAta
IntegRation (STAIR) integration product and PS data were
combined to generate daily leaf area index (LAI) assessments
for corn and soybean in the United States Corn Belt [30]. The
STAIR approach uses a resilient adjustment that reports for mul-
tiple land cover types via feature extraction [31], [32]. Soybean
was estimated through RGB, multispectral, and thermal sensors
using deep neural network (DNN) R2 with an accuracy of 0.720

Fig. 1. Study area.

[32]. Additionally, soybean yield prediction was investigated
using RS and crop yield at the field scale [33]. MLR models
were developed based on the L8 and S2 NDVI at the soybean
growth stages. It was discovered that soybean grain yield can be
predicted between 29 and 46 days after planting, with a mean
prediction error of 153.9 kg/ha. Previous research supports the
individual capability of S2 and L8 for estimating soybean yield.
However, the full potential of these sensors has yet to be realized.
Most of these studies relied solely on RS data, limiting the
applicability of these methods to other areas. Therefore, there is
a need for more research and development to create a reliable
model for predicting soybean yield.

The main objectives of this study are summarized as follows.
1) We use a time series and select the most substitute period

to fuse two constellations.
2) PS images (spatial resolution of 3 m and daily revisit time)

are fused with S2 images (spatial resolution of 10 m and
five-day revisit time), and VIs are calculated for fusible
images.

3) Based on the within-field variability of soybean yield,
we analyze the robustness and flexibility of a multidi-
mensional data fusion, DNN, and machine-learning (ML)
based yield estimation model and compare all datasets.

II. MATERIALS AND METHODS

A. Study Area

The study parcel is in Mezhegyes town, Békés county, south-
east Hungary, near the Romanian border (latitude 46°19′N,
longitude 20°49′E), near the Mezhegyes experimental farm (see
Fig. 1). The town has 4950 residents and a total administrative
area of 15 544 ha. For our research, we utilized two plots: the first
plot, serving as the training site, covered an area of 78 ha, while
the second plot, designated for validation purposes, covered 37
ha. Soybean is the most widely grown crop with a total of 1090
ha. Chernozem is a popular type of soil that promotes plant
development and produces abundant crops. Meadow and low-
land chernozem are excellent foundations for field cultivation
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because of their high lime content. The fertile soil of chernozem,
which is best suited for cultivating crops, particularly cereals and
oilseeds, provides high agricultural yields and excellent agro-
nomic conditions. Mezhegyes’ experimental farm, Mezhegyesi
Ménesbirtok Zrt., has a significant impact on Mezhegyes and
surrounding communities. In 2021, the average annual rainfall
was 645 mm (428.9 mm for crops). In the study area, the average
annual temperatures range from 7.8 to 11.1 °C.

B. Field Data Collection

The high-resolution soybean yield data were collected using
a combined machine equipped with a yield monitoring system
and GPS between 7 and 18 October 2021, harvesting season.
Soybean yield crops in Hungary are usually planted in April and
harvested in September. Raw yield data were cleaned to remove
inaccurate grain yield measurements caused by the harvesting
dynamics of the combine harvester and the precision of the posi-
tioning data [34]. Commercial yield monitors will likely produce
inaccurate data when harvested rows overlap, indicating a poor
crop yield in certain parts of the field. Therefore, straight-line
sequences of locations with yields near zero were eliminated.
The company that owns and operates farms in the study area
calibrated and filtered the crop yield data. Only crop yield data
with the same width and length as the header dimensions of
the combined harvester (i.e., 2 m × 6 m) remained. To match
the resolution of the satellite images, we converted the crop
yield data to raster format using QGIS v.3.16s inverse distance
weighted interpolation method at 3-, 10-, and 30-m resolutions.

C. Imagery

1) S2 Image Processing: The European Space Agency
Copernicus S2 contains a constellation of two polar-orbiting
satellites arranged in the same sun-synchronous orbit but phased
at 180° to each other. S2 is equipped with an optical sensor
payload that samples 13 spectral bands: four, six, and three at
10, 20, and 60 m spatial resolution, respectively. A Level-2A
(L2A) product provides images of the bottom of the atmosphere
reflectance covering the visible and NIR spectral range derived
from associated Level-1C datasets. MSIs are equipped on S2 A
and B, allowing agricultural monitoring on regional and global
scales at various spatial resolutions [35]. We downloaded 18
cloud-free S2 L2A satellite images during the study period.

2) PS Image Processing: PS super dove (PSB.SD), a new
generation of DOVE CubeSat, was used in this study. The
PSB.SD instrument has eight spectral bands (red edge, red,
green, green I, yellow, blue, coastal blue, and NIR) and a pixel
size of 3 m. The PS orthorectified product was geometrically
and radiometrically corrected for surface reflection before being
projected onto a UTM/WGS84 cartographic map (Planet Team,
2017). These images were harmonized with S2 for consistent
radiometry. A total of 81 available cloud-free PS Level-3 surface
reflectance products collected during the soybean growing phase
between April and October were downloaded from the Planet
Explorer website1 (accessed on 25 August 2022).

1[Online]. Available: https://www.planet.com/explorer/

Fig. 2. Sample of the training site’s S2 and PS fusion results. Image from (a)
S2(10), (b) PS(3), and (c) fused (3 m).

D. Data Fusion

Although S2 satellite imagery has been widely used for yield
prediction or vegetation detection, we decided to test a fusion of
S2 imagery with PS because of its higher spatial resolution. The
primary goal of this study is to develop a new method for combin-
ing S2 and PS imagery. The PS + S2 method introduces geome-
try information from the higher resolution image by aligning all
edges of the higher resolution image with each lower resolution
multispectral band. The method assumes that images taken in
different spectral bands share common geometric information
and that the higher resolution image can be approximated as a
linear combination of the high-resolution multispectral bands
to obtain the spectral information for the fused image. Each S2
band was first fused with a high-resolution PS band with similar
spectral properties (see Fig. 2).

As a novel approach, we developed an automated fusion
method using the Python implementation of data mining sharp-
ener (pyDMS) algorithm, which is a decision-tree-based tech-
nique for enhancing low-resolution images with information
from high-resolution images [36]. The input data for this method
consist of high-resolution PS images with a spatial resolution of
3 m and shortwave reflectance data.

Data Preparation: Data preparation involves several key
steps, including aggregation and calibration. Aggregation refers
to the process of combining low-resolution and high-resolution
bands to match the spatial resolution of PS imagery. Calibration
ensures that the data are adjusted and interpreted correctly to
maintain accuracy and consistency throughout the fusion pro-
cess.

Homogeneity Check: To ensure the effectiveness of the fusion
process, a homogeneity check is conducted to assess the level of
consistency between high-resolution and low-resolution pixels.
This step aims to identify and exclude any sources of noise or
interference that may affect the quality of the fused imagery.

Fusion Process: The pyDMS algorithm employs an ensem-
ble of decision-tree regressors, utilizing the bagging technique,
which involves creating multiple subsets of the original dataset
through random sampling with replacement [37]. Each decision
tree, also known as an RF, is trained on a bootstrap sample, and
the final result is a combination of the predictions from indi-
vidual trees. This ensemble approach enhances the robustness

https://www.planet.com/explorer/
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Fig. 3. Flowchart of the image fusion.

TABLE I
MULTISPECTRAL VIS WERE INVESTIGATED IN THIS STUDY

and accuracy of the fusion process, enabling the generation of
high-quality fused images from PS and S2 data.

By incorporating the pyDMS algorithm and employing a rig-
orous fusion process, we ensure the production of high-quality
fused imagery that enhances the accuracy and reliability of
soybean yield prediction models.

1) Local and Global Regression: The ensemble decision tree
is performed locally (through a moving window) and globally
(entire study area). These results are combined based on the
regression outputs and low-resolution data. The pyDMS appli-
cation uses an ensemble of decision-tree regressors, employing
a bagging technique that creates multiple subsets of the origi-
nal dataset through random sampling with replacement. These
processes are presented in Fig. 3.

E. Fused VIs

We calculated five VIs for the new fuse dataset, as well
as the original S2 and PS images (see Table I). NDVI [38]
and GNDVI [43] are well established and can easily retrieve
spectral reflectance indicators of crop heat stimuli [44], [45],

TABLE II
CORRELATION (R2) AMONG S2, PS, AND THE FUSED IMAGES OF ALL THE

IMAGES ANALYZED FOR EACH BAND AND ALL FIVE BANDS

[46], [47], [48]. GNDVI was developed by Gitelson et al. [39]
to address saturation issues observed with NDVI for some veg-
etation types at later growth stages. However, Thompson et al.
[40] demonstrated that red-edge bands based on NDRE could
effectively identify crop populations with a higher correlation
using indicators, such as plant nitrogen accumulation, to address
the saturation resolution problem. GNDVI is more useful for
assessing leaf chlorophyll variability when LAI is relatively high
because it uses the green band instead of the red band in the
NDVI estimator [39]. Gianelle et al. [49] recognized that GNDVI
was less affected by saturation and produced consistent results
for various leading indicators of vegetation effectiveness. EVI
reduces soil background and atmospheric factors that influence
reflectance data by including reflectance in the blue band of
the electromagnetic spectrum in addition to the red and NIR
bands [41]. Meanwhile, SAVI includes a soil adjustment factor
to compensate for the difference in soil brightness influence.
This factor ranges from 0 to 1 depending on the amount of visible
soil. Maximum levels should be used in areas with more visible
bare soil [50].

Crop phenology is dynamic during the growing season [51].
Farmers and researchers conducted bimonthly phenological ob-
servations and recorded transition dates throughout the soybean
growing season. These observations were made for all soybean
plots. They also compared the spectral reflectance patterns ob-
tained from satellite data with the on-ground field observations.
In QGIS 3.16s polygon tool, points were obtained using the
random point feature. To determine the crop phenology and
transition dates, NDVI values were retrieved from the soybean
fields using QGIS’ point sample tool and open-source plugin.
Phenological phases for soybeans were created by averaging and
distributing the 65 NDVI points randomly generated in soybean
field boundaries using QGIS (Fig. 4).

F. Phenology Monitoring

In this study, we employed the phenological stages from the
NDVI data obtained from PS and S2 satellites. The spatial res-
olution of the NDVI data was significantly improved using this
approach. This enhanced dataset facilitates the precise determi-
nation of soybean phenological periods. Identifying the growth
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Fig. 4. Soybean phenological stages based on (a) S2 and (b) PS NDVI during
the growing season.

stage with the most substantial impact on potential yield is instru-
mental in optimizing agricultural management practices [52].
For example, understanding how yield is influenced by specific
growth stages, such as fertilization or pesticide application, as
well as responses to stressors, such as cold weather, hail, low soil
moisture, and plant diseases, can guide effective management
strategies. Fig. 2 illustrates distinct temporal patterns extracted
from satellite data. Notably, NDVI derived from PS and S2 data
displayed nearly identical and consistent temporal patterns. The
graph depicts initial lower values during the early vegetative
period, followed by a steady increase, signifying the onset of
vegetative stages, including leaf development and robust growth.

G. Fused Image Accuracy

We selected the date of 7th August based on the vegeta-
tion characteristics and combined the spectral mapping and
correlation between PS and S2 satellite data to align their
spectral profiles for subsequent band-to-band fusion. Table I
illustrates the appearance of the chosen area in its original PS
and S2 constellations, along with the fused image. The spectral
properties of the acquired 3-m simulated image closely resemble
the corresponding S2 bands, even though they exhibit some
variability. Moreover, the simulated image is more than just a
spectral data source, as demonstrated by Liu et al. [53]. This
is because it has a real 3-m spatial resolution in every band,

making it an essential source of spatial information for further
fusion processes.

We buffered the yield data to be 15 m from the field boundaries
to reduce any edge effects related to mixed pixels. Processing
and utilization were made easier by organizing the data into
attribute tables, especially when combined into a point vector
file. We conducted the processing using QGIS 3.16.

Correlations among S2, PS, and the fused images were eval-
uated at the pixel level. The correlation between PS and S2 was
notably the highest in the NIR wavelength, reaching 0.96 for
PS-S2 and 0.88 for fused_PS and fused_S2. The red-edge wave-
length showed the lowest correlation, measuring 0.85. Across all
five bands, the fused images exhibited significant correlations
with the PS-S2 images, surpassing the correlations between the
fused_PS and fused_S2 images, as presented in Table II.

H. ML Algorithms

ML is a subset of artificial intelligence and computer sci-
ence dedicated to leveraging data and algorithms to emulate
human learning processes, aiming to enhance accuracy through
continuous improvement. It plays a pivotal role in the rapidly
advancing field of data science. Through the application of
statistical techniques, algorithms are trained to make classifica-
tions or predictions, unveiling valuable insights in data mining
endeavors. Subsequently, these insights inform decision-making
processes within various applications and enterprises [54].

1) Random Forest Regression (RFR): RFR is an ML tech-
nique based on the decision-tree algorithm and is commonly
used to forecast crop yields [55]. The RFR model creates a col-
lection of tree predictors, each associated with distinct randomly
chosen feature vectors. These trees, called decision trees, are
developed with an emphasis on decorrelation during training.
The final prediction from the RFR model is derived by averaging
the output values from all these individual trees. In the RFR
model, the learner bagging algorithm is employed to train each
individual tree [37]. RFR is widely recognized for its exceptional
accuracy, capability to handle large datasets with higher levels
of complexity, and ability to handle missing data points. It also
has great application in feature selection, which is evident from
its feature importance rankings [56].

2) K-Nearest Neighbors (KNNs): KNN is an ML technique
used for regression and classification tasks. It relies on distance
metrics, such as Manhattan or Euclidean, to estimate the target
value for new data points by considering the k nearest neighbors.
In this study, we used the Euclidean distance formula (1) to
determine the distances between data points. The choice of k
significantly impacts the prediction; a small value of k leads to
high variability and low bias, whereas a large value of k leads
to reduced variability and higher bias. The key advantage of
KNN is its lack of training phase or optimization requirements.
However, it has the limitation of high computational complexity
and time consumption due to its dependence on historical data
to make predictions for new observations [57]

d (p, q) =

√√√√ n∑
i=1

(qi −pi)
2 (1)



AMANKULOVA et al.: NOVEL FUSION METHOD FOR SOYBEAN YIELD PREDICTION USING SENTINEL-2 AND PLANETSCOPE IMAGERY 13699

where d represents the Euclidean distance, which measures the
distance between two points in space; p and q represent the data
points, and they can have multiple dimensions; n denotes the
total number of data points in a dataset, and i denotes an index
number used to refer to a specific data point within the dataset.

3) Support Vector Regression (SVR): In a high-dimensional
feature space, SVR creates a linear regression model by trans-
forming the data using a nonlinear function. This process helps
improve the model’s ability to capture complex relationships
within the data [58].

4) XGBoost: XGBoost is an ML model commonly used to
predict stock market trends over time [59]. It employs a group
of decision trees and uses a gradient descent algorithm to create
subsequent trees. This algorithm minimizes the loss function as-
sociated with the previous tree to improve the overall predictive
performance [60]. XGBoost accelerates tree training through
parallelization, significantly improving the training speed. This
feature has found extensive application in tasks, such as predict-
ing crop yields [61], [62], [63].

III. DEEP LEARNING

DL is an ML technique that draws inspiration from the ar-
chitecture of the human brain [64]. It involves the process of
training neural networks consisting of numerous layers. In DL,
data representation is acquired at diverse levels of abstraction
through multiple layers. The ability to learn complex functions
is facilitated by employing DL with abundant data and numerous
layers, each capturing features at different levels of abstraction
[29].

A. Deep Neural Networks

DNN refers to a densely connected layer with a more sig-
nificant number of layers in the network structure, allowing it
to create more powerful and complex nonlinear representations.
This advancement in network depth can effectively enhance the
model’s capabilities [65]. DNN models are effectively trained
using gradient-based optimization techniques to minimize the
specific loss function relevant to their intended task. These DNN
models have demonstrated remarkable achievements, surpass-
ing traditional ML approaches, in accurately predicting crop
yields [28], [66], [67].

B. Artificial Neural Network

A three-layer ANN is employed to model and capture the
complex, nonlinear relationships between the yield and various
input features [68]. Information is gathered by neural networks
through the identification of connections in data. Initially, the
raw data are taken in by the first layer, undergoes processing,
and relays to a hidden layer. Subsequently, the information is
transmitted from the hidden layer to the final layer to generate
the output [69].

C. Model Evaluation

Various common metrics are used to assess the performance of
predictive models, including R-squared (R2), root-mean-square

error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). These metrics are widely used to
evaluate the prediction performance of a model. The equations
that describe the derivatives of these metrics are provided in [2],
[3], [4], and [5]

R2 =

⎧⎨
⎩ 1

N
∗
∑(

Xi −
↼

X
)
∗
(
Yi −

↼

Y
)

(σX − σY )
2

⎫⎬
⎭

2

(2)

RMSE =

√∑n
1=0 |Ai − Pi|2

n
(3)

MAE =
1

N

N∑
i=1

∣∣∣Yi −
↼

Y
∣∣∣ (4)

MAPE =
1

N

N∑
i=1

∣∣∣∣∣Yi −
↼

Y

Yi

∣∣∣∣∣ ∗ 100 (5)

where Ai and Pi represent the measured and predicted values,
respectively; N denotes the number of observations; Xi and

Yi are the X and Y values of observation i, respectively;
↼

X

and
↼

Y are the mean X and Y , respectively; σx and σ y are the
standard deviations of X and Y , respectively; and Si represents
an intertemporal variance.

IV. RESULTS

A. Determine Peak Phenology Date

We used the NDVI data obtained from the PS and S2 sensors
during the growth season to determine the peak phenological
stage. Additionally, we used the smoothing spline method to
improve the clarity of identifying the ideal time. The beginning
of the growth season produced the lowest values in the NDVI
values from both sensors. Consequently, an ongoing rise in
NDVI was observed between 18 May and 12 June, indicating the
start of vegetative phases, including cotyledon emergence and a
significant increase in soybeans. In late July and early August,
from 31 July to 8 August, soybean growth peaked, which is
consistent with the highest NDVI values (see Fig. 2). Soybeans
reached the early seed and seed stages when the NDVI started to
decrease in late August. The lowest NDVI levels were observed
during the September harvest season when the soybeans were
fully mature.

B. Crop Yield Prediction With ML and DL Algorithms

In this study, we selected a single training field using PS, S2,
and fusion imagery with VIs to facilitate crop yield prediction.
This training field was subsequently partitioned into an 80/20
split to evaluate the prediction techniques. The effectiveness
of these methods was assessed through the implementation of
ML and DL algorithms. We comprehensively analyzed various
evaluation metrics, including R2, RMSE, MAE, and MAPE, to
assess the performance of different algorithms on the dataset.
Subsequently, we compared the results obtained from these
metrics to determine which algorithm yielded the most favorable
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Fig. 5. Scatter plots comparing actual and predicted yields for training data,
employing S2 and VIs with ANN, DNN, KNN, RFR, SVR, and XGBoost.

outcomes. We also generated scatter plots for each of the three
datasets to provide a visual representation for the comparative
analysis of the algorithms. This comprehensive analysis allowed
us to identify the algorithm that exhibited superior performance
across the evaluated datasets (see Figs. 5–7).

By comparing the scatter plots generated from the three
datasets, we observed that the highest values were associated
with the fusion dataset, followed by the PS and S2 datasets.
Specifically, R2 was 0.86 for the fusion dataset when analyzed
using ANN, whereas it was 0.86 and 0.85 for the PS and S2
datasets, respectively. Additionally, when RMSE, MAE, and
MAPE were used, the fusion dataset yielded values of 0.215 t/ha,
0.160 t/ha, and 6.49%, respectively (see Fig. 7). Comparatively,
the PS dataset yielded values of 0.216 t/ha, 0.163 t/ha, and 6.61%
(see Fig. 6), whereas the S2 dataset yielded values of 0.234 t/ha,
0.180 t/ha, and 7.41% (see Fig. 5). Notably, these values were
marginally lower using alternative algorithms compared with
ANN. Additionally, DNN and XGBoost achieved high results
but slightly lower than ANN. Based on this, we chose the ANN
algorithm for validation.

C. Model Optimization

In the context of our RFR analysis, we evaluated the future
selection of the RFR model using all VIs (see Fig. 8). Our
findings revealed that the most significant values were given by

Fig. 6. Scatter plots comparing actual and predicted yields for training data,
employing PS and VIs with ANN, DNN, KNN, RFR, SVR, and XGBoost.

NDVI and SAVI, with R2 values of 0.83 and 0.82, respectively.
Following closely were GNDVI at 0.79 and EVI at 0.76; the
weakest correlation was observed with red edge at 0.74. Based
on this, we also used the NDVI map when comparing predicted
maps in Section V.

V. VALIDATION

In the validation phase, we comprehensively analyzed the
ML and DL algorithms, initially focusing on a single parcel,
as shown in Figs. 5–7. Subsequently, we extended our analysis
to another parcel based on the best-performing algorithms. Our
evaluation encompassed the generation of predicted, residual,
and normalized NDVI maps for two distinct satellite images and
their fused data. Particularly, our comparative analysis revealed
a consistent pattern across the datasets. Specifically, the fusion
data consistently outperformed both individual satellite images
during crop yield prediction. As shown in Fig. 9, the predicted
yield map derived from the fusion image predominantly exhib-
ited values ranging from 1.5 to 2.5 t/ha. In contrast, the PS image
yielded predictions ranging from 0.5 to 2 t/ha, and the predictions
for the S2 image ranged from 0.5 to 2.0 t/ha.

Fig. 10 illustrates the residual map that shows the difference
between the actual and predicted yield values. The fusion data,
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Fig. 7. Scatter plots comparing actual and predicted yields for training data,
employing fusion data and VIs with ANN, DNN, KNN, RFR, SVR, and
XGBoost.

when employed for yield prediction, demonstrated a relatively
minor error range, with discrepancies ranging from −0.5 to
0.2 t/ha. In contrast, the PS and S2 datasets showed greater
prediction errors. Our investigation extended to the analysis
of NDVI maps, as shown in Fig. 11. This analysis revealed a
clear correlation between NDVI values and crop productivity
predictions. In regions with high predicted productivity, NDVI
values were significantly higher, whereas lower NDVI values
were observed in areas with lower predicted yields.

We generated boxplots for fusion, PS, and S2 data to visualize
the distribution of observed and predicted crop yields as a part
of model validation (see Fig. 12). The boxplots serve as model
validation, visually comparing observed crop yields with their
corresponding predicted values. The boxplot shows a significant
correlation between the observed and predicted crop yields
across all three datasets, indicating a substantial and consistent
relationship.

VI. DISCUSSION

A. Time-Series Analysis of Phenology

In this study, the NDVI was computed from April to October.
The phenological stages of soybean growth were identified using
information from the S2 and PS satellites. Because the data

Fig. 8. Example of future selection of the VIs with random forest model.

Fig. 9. Predicted crop yields of the validation field at the pixel level.

Fig. 10. Residual map: Differences between the observed and predicted yield.
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Fig. 11. NDVI map for the three datasets.

Fig. 12. Boxplots for actual and predicted yield values using the model.

were interpolated at a consistent five-day interval, temporal
smoothing was accomplished, resulting in an NDVI time series
that vividly demonstrates the phenological period. To ensure the
integration of the two datasets, the accurate point, i.e., the be-
ginning of August when soybean growth peaks, was specifically
chosen. This result is consistent with the study by Skakun et al.
[70]. This choice was based on the finding of the most important
growth stages in both satellite imagery and practical feasibility.
Seasonal peak VI values provide more accurate yield estimates
[71], [72].

B. Advantages of ML Fused Imagery

Planet’s PS satellites are known for their cost-effectiveness,
providing high spatiotemporal imagery at a more economical
price than conventional satellites. However, CubeSat constella-
tions, such as PS, often grapple with challenges related to varia-
tions in radiometric quality between different sensors within the
constellation and disparities in their spectral responses. These
factors contribute to noise in the time-series data collected from
these sensors [8], [73]. The noise in the PS data can be removed
by fusing the image with a reliable and consistent dataset, such
as S2, to get over this restriction [31], [33].

The fusion technique presented in this study successfully
resolves the problems with PS spectral responses. As shown
in Fig. 3, the outcome is the creation of images that maintain

the spectral quality of S2 while retaining the higher spatial and
temporal resolution qualities of PS. This means that surface
reflectance images in RGB, red edge, and NIR compatible with
S2 can be produced, as well as bands compatible with PS at a
high resolution of 3 m. Similar fusion methods were used in
[8]; however, there was a difference in the quantity of bands
used. They used four bands from PS in this method. In contrast,
we used the new PS bands, which enabled us to incorporate
the red-edge band. This addition made it easier to calculate the
red-edge VI, setting our fusion approach apart by adding this
extra spectrum data.

The proposed fusion technique makes it possible to observe
plant phenological stages by creating an extensive time series of
images throughout the growth cycle. Users can hypothetically
integrate images from different sensors due to the robustness
and flexibility of this approach. The method’s adaptability is
increased by the fleets of Earth observation satellites continuing
to expand, enabling unprecedented spectral resolution in several
bands. Remarkably, the technique is not limited by the number of
bands, utilizing high spatial resolution bands to include a wider
spectrum of lower resolutions. Furthermore, other researchers
employing fusion imagery from satellites achieved exceptional
outcomes. For instance, the grain yield predicted by the SAFY
model was compared with the harvester’s yield map [10]. The
yield prediction accuracy of LAI, derived from the fusion of
PS and S2 images, was higher (RMSE = 69 g/m2) than that of
S2 LAI alone (RMSE = 88 g/m2). Meanwhile, a 2.5 m spatial
resolution was used in [74], expanding the use of the process
to ten S2 bands (B2, B3, B4, B8, B5, B6, B7, B8a, B11, and
B12) with noticeably higher accuracy. The potential of DL for
image fusion integrating numerous satellites and sensors will
be explored in future studies. The proposed approach exhibits
outstanding local spectral and spatial precision at the scale of
the studied S2 tile. Each band, the major land cover, and the PS
strip (i.e., individual PS satellite and orbit) are precisely defined.

C. Effectiveness of ANN for Training and Validation

First, we computed VIs for three distinct datasets: PS, S2, and
fused data. Subsequently, we applied the ML and DL algorithms
to the same training dataset. We assessed the performance of
these algorithms using various metrics, including R2, RMSE,
MAE, and MAPE, for RFR, SVR, KNN, XGBoost, DNN, and
ANN. ANN consistently outperformed the other algorithms
across all three datasets. The ANN model executed in [75]
demonstrates superior performance for crop yield prediction in
agriculture. Thus, we employed an ANN for the validation phase
to generate predictive maps.

For the predicted maps, we generated map-based VIs. The
results show that the fused predicted map outperformed the
other two predicted maps, as depicted in Fig. 9. Notably,
the fused predicted map displayed the highest values, with
the 1.8–2 t/ha range being more prominently detected than PS
and S2. Analyzing the model’s residuals provides important
information about the model’s accuracy and fitness. Assuming
that errors (residuals) have an expected value of zero, that they
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are uncorrelated, and that their variance is equal, demonstrating
the homoscedasticity of errors, the parameters evaluated in the
residual analysis are consistent with the Gauss–Markov theorem
[76]. We also evaluated them to determine whether the residuals
from the two models adhered to a normal distribution. The
residual map for the fused dataset in Fig. 10 reveals that the
errors in the PS dataset are clustered around zero, indicating
minimal deviations. In contrast, the S2 dataset exhibits slightly
higher error values.

D. Comparative Analysis of Fusion Techniques

We generate another fusion technique and compare it with
new fusion methods.

1) PyDMS is a decision-tree-based algorithm used for im-
age sharpening or disaggregation. PyDMS takes a low-
resolution image and uses information from a correspond-
ing high-resolution image to enhance the details and res-
olution of the low-resolution one. PyDMS is first trained
on a set of paired images—low-resolution versions and
their corresponding high-resolution counterparts. During
this phase, the algorithm builds a decision-tree model
that learns the relationship between the low-resolution
and high-resolution data. Once trained, PyDMS can be
applied to any new low-resolution image. It uses the
decision-tree model to predict the missing details and re-
construct a higher resolution version of the image. PyDMS
can produce sharper and more accurate results compared
with other methods, especially for complex images with
fine details [38]. The algorithm can be easily adapted to
different types of images and resolutions. It also allows
for customizing the decision-tree model and adding ad-
ditional features for improved performance. PyDMS is
an open-source Python library, making it freely available
for anyone to use and modify. This allows for further
development and contributions from the community.

2) S2 data were first resampled to a spatial resolution of 3 m,
following that a subset containing the relevant bands was
produced. The field-level reflection values were retrieved
for each band. The steps were to add together both bands’
pixels, divide the total by 2, and then put the processed
bands combined to create a fusion image [8]. The QGIS
3.16 software was used to carry out all these assignments.

3) Utilize the high-pass filter (HPF) resolution merge tech-
nique to integrate high-resolution panchromatic data with
lower resolution multispectral data, yielding an output that
exhibits both fine detail and an authentic representation of
the original multispectral scene colors [77]. This function-
ality is an implementation of the “HP resolution merge”
method, developed and proposed by Ute Gangkofner from
Geoville, Inc., and Derrold Holcomb from ERDAS, Inc.
The procedure entails applying a convolution with an HPF
to the high-resolution data, followed by its combination
with the lower resolution multispectral data. We pan sharp-
ened the corresponding bands individually as our data are
not panchromatic, and we finally merged all the bands for
creating fusion dataset; the whole process was done in
ERDAS 2020 software.

Fig. 13. Prediction of soybean yield by RFR and KNN algorithms using three
different fusion techniques. (a) pyDMS fusion technique. (b) Band-to-band
fusion method. (c) HPF fusion method.

Then, we predict soybean yield with two algorithms RFR and
KNN for comparing all fusion techniques.

After analyzing all the fusion methods, the pyDMS fusion
yielded the most favorable results, indicating its better perfor-
mance in both algorithms. The outcomes are as follows in partic-
ular: R2 values 0.87 and 0.85. The second-best performance is
the band-to-band fusion method, with R2 values of 0.86 and
0.83. In our dataset, the HPF fusion approach produced the
lowest results, with R2 values between 0.68 and 0.64. With every
aspect considered, the pyDMS approach proved to be the most
effective, as seen by its outstanding results on other metrics
(Fig. 13).

E. ML and DL Techniques in Use

ANN Adaptability: ANN demonstrated better adaptability to
the complexity of the dataset. ANNs can learn intricate patterns
and relationships within data, especially when the dataset is large
and exhibits nonlinear characteristics [78].
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DNN Overfitting: DNNs may suffer from overfitting when
dealing with complex data. The depth of the network can lead
to capturing noise in the training data, reducing generalization
performance.

1) Hyperparameter Tuning. Optimized Parameters: The su-
perior performance of ANN could also be attributed to thorough
hyperparameter tuning. Proper tuning of the learning rate, num-
ber of hidden layers, and neurons in each layer enhanced the
ANNs ability to converge to an optimal solution [79].

2) Handling Nonlinear Relationships. SVR Limitations:
SVR might struggle with capturing complex nonlinear relation-
ships in the data. In scenarios where the relationships are highly
nonlinear, ANNs or ensemble methods, such as XGBoost, may
perform better [80].

3) Model Interpretability. Interpretability Tradeoff: While
RFR and XGBoost performed well, they might sacrifice some
interpretability due to their ensemble nature. The choice of ANN
over DNN could be influenced by the need for a balance between
performance and interpretability.

4) Training Time and Computational Efficiency. Computa-
tional Efficiency: The computational efficiency of ANNs, es-
pecially in training, might have been favorably compared with
DNN, making them more practical for large-scale datasets.

The superior performance of ANN over DNN, RFR, KNN,
SVR, and XGBoost in the study can be attributed to their adapt-
ability to data complexity, feature sensitivity, effective handling
of nonlinearity, optimized hyperparameters, and computational
efficiency. These factors collectively contributed to the selection
of ANN as the preferred ML/DL technique for the specific task
of predicting crop yields.

F. Selection Rationale for ML and DL Techniques

The selection of ML and DL techniques for soybean yield pre-
diction was meticulous, considering their proven effectiveness
in handling agricultural datasets. Here is a concise overview of
the chosen algorithms.

1) RFR: Known for versatility and robustness, RFRs en-
semble learning and feature selection capabilities make
it adept at capturing nonlinear relationships in complex
agricultural datasets [81].

2) KNN: Despite its computational intensity, KNNs simplic-
ity and effectiveness in regression tasks suit the dynamic
and spatially correlated nature of agricultural data.

3) SVR: Selected for its ability to model complex relation-
ships in high-dimensional spaces, SVR excels in capturing
nuanced factors affecting soybean crop yields [82].

4) XGBoost: Popular for its speed, efficiency, and capacity to
handle missing data, XGBoost’s feature selection capabil-
ities contribute to the accurate soybean yield predictions
[83].

5) DNN and ANN: Chosen for their prowess in capturing
intricate, nonlinear relationships, the multilayered archi-
tectures of DNN and ANN prove valuable in representing
complex patterns for soybean yield prediction [84]. The
decision to employ these techniques was well founded,
considering their strengths and track records in similar

studies. Comprehensive performance evaluations indi-
cated that ANN consistently outperformed other methods,
justifying its preference as the primary method for soybean
yield prediction in this study.

G. Limitations

One of the limitations of this study is that we employed
phenological data to fuse data from only one day. However,
we intend to create a time series in our subsequent research.
Fusion methods may face challenges in achieving perfect spatial
and spectral alignment between PS and S2 data, leading to
discrepancies in the fused datasets. There are two challenges
in current image fusion approaches, as identified in [85]. First,
these methods commonly presume short time intervals between
images, a condition not always met in large-scale high-resolution
images and numerous real-world scenarios. Second, the po-
tential spectral misalignment between multispectral and RGB
images can lead to spectral distortions in S2 imagery during the
fusion process. Although S2 data can be used for free, PS data
application is not free. However, even if the results are positive, it
could be difficult for farmers to predict future agricultural crops.
To further improve agricultural convenience, the same method
will be used in the future for forecasting other crop types using
either Sentinel-1 and S2 or Landsat data.

VII. CONCLUSION

In this study, we fused S2 data with the new PS eight-band data
to predict soybean production and compared each prediction.
The findings showed that the fusion data from 1.5 to 2.5 tons
were mainly responsible for the yield prediction from fusion
with higher values and fewer errors. For PS data, it was between
0.5 and 2 t/ha, whereas it was between 0.5 and 2.0 t/ha for S2. We
also used Vis for the evaluation of the models. In the validation
phase, we compared crop prediction using an NDVI map. This
study demonstrated the effectiveness of ANN in predicting crop
yields, outperforming other algorithms across diverse datasets.
The fusion of PS and S2 data is advantageous because it enhances
spatial and temporal resolution while maintaining spectral qual-
ity. Model validation demonstrated the superior performance
of the fusion dataset in predicting crop yields compared with
individual satellite images. This study provides valuable in-
sights into phenology monitoring, image fusion accuracy, and
the effectiveness of ML algorithms in predicting crop yields,
emphasizing the benefits of fused imagery.

Although S2 and PS data integration has proven effective for
crop prediction, the new fusion method expands its use to com-
bine several image sources with different spectral, spatial, and
temporal resolutions. This novel fusion method’s adaptability
makes it possible to monitor crops broadly and continuously on
a daily basis at high resolution on a wide scale. In addition to
crop prediction, it offers potential opportunities for precision
agriculture. This fusion technique is essential for monitoring
crop health and growth, improving agricultural practices, such
as fertilization and water management, and improving yield
forecast accuracy.
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