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Bitemporal Attention Sharing Network for Remote
Sensing Image Change Detection

Zhongchen Wang , Guowei Gu , Min Xia , Member, IEEE, Liguo Weng , and Kai Hu

Abstract—With the advancement of remote sensing image tech-
nology, the availability of very high-resolution image data has
brought new challenges to change detection (CD). Currently, deep
learning-based CD methods commonly employ bitemporal interac-
tion networks using convolutional neural networks or transform-
ers. Yet, these models overly emphasize object accuracy, leading
to a significant increase in computational costs with limited per-
formance gains. In addition, the current bitemporal interaction
mechanisms are simplistic, failing to adequately account for spa-
tial positions and scale variations of different objects, resulting
in an inaccurate modeling of dynamic feature changes between
images. To address these issues, a bitemporal attention sharing
network is proposed, which tackles the problems effectively by
making bitemporal and multiscale attention sharing the primary
mode of feature interaction. Specifically, the proposed bitemporal
attention sharing module leverages pairs of features preliminar-
ily encoded by a backbone to construct shared global features,
directing attention to target changes. Then, through cross-scale
attention guidance and weighted fusion, it achieves attention shar-
ing of multiscale features, eliminating the need for overrelying on
deep convolutional layers for feature extraction. Experiments on
three public datasets demonstrate that, in comparison to several
state-of-the-art methods, our model achieves superior performance
with low computational cost.

Index Terms—Attention mechanism, convolutional neural
network (CNN), change detection (CD), remote sensing (RS)
images, transformer.

I. INTRODUCTION

CHANGE detection (CD) is a crucial task in the field of
remote sensing, aimed at identifying changes between

images acquired at different times within the same geographical
area. The objective of CD is to detect target changes, particularly
those related to human activities, such as environmental or
land use changes, while avoiding background changes caused
by seasonal variations, shadows, atmospheric conditions, and
lighting changes.

Recently, significant advancements have been made in remote
sensing technology, driven by the development of various sen-
sors including airborne sensors and satellites, such as the Landsat
series and Gaofen series [1], [2], [3], [4]. The advancements in
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data acquisition techniques have made it possible to accurately
obtain multiple images of the same geographical area at different
times. This has led to a revolutionary shift in CD, enabling the
identification and localization of Earth surface changes with the
aid of VHR imagery [5]. Supported by remote sensing technol-
ogy, CD plays a vital role in various applications, such as damage
assessment [6], urban planning [7], ecosystem monitoring [8],
and resource management [9]. It has become a research hotspot,
driving innovation of Earth observation.

In the early stages of CD development, due to limitations
in the hardware development of satellites, optical instruments,
and other factors, the quality of remote sensing data was poor,
characterized by low resolution, making it challenging to support
VHR detection. Simple algebraic calculations or direct pixel
comparisons were commonly employed as cost-effective de-
tection methods. Both principal component analysis [10] and
change vector analysis (CVA) [11] are pixel-based CD methods.
PCV performs direct pixel value comparison, whereas CVA
represents pixels as vectors and calculates vector differences.
This enables CVA to handle more complex images and scenes
effectively. Both methods require image preprocessing to cor-
rect distortions caused by background changes, and the results
are typically binarized using thresholding or clustering tech-
niques [12].

With the rise of machine learning algorithms, such as sup-
port vector machines [13] and decision trees [14], alongside
advancements in remote sensing image technology, object-level
CD methods emerged. By considering global information, they
reduce the salt and pepper effect and achieve better modeling
of contextual information within images while also accounting
for relationships between adjacent pixels [15]. These techniques
utilize approaches such as object segmentation, contour analysis,
fusion of photometric and textural differences, and statistical
testing. They extract object features from multitemporal image
pairs to identify changes in object status [16]. These methods
overcome the reliance on manual intervention and the poorer
robustness exhibited by pixel-level methods. However, despite
these advancements, machine learning-based CD methods still
face two challenging issues. First, they are susceptible to limi-
tations posed by data volume and sample distribution [17]. CD
tasks commonly encounter class imbalances and uneven sample
distributions, potentially leading to insufficient data or sample
bias issues in machine learning methods. Second, there is the
challenge of modeling complex relationships. Some intricate
change patterns and relationships may require more powerful
modeling capabilities to capture and represent. Machine learning
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Fig. 1. Two common CD frameworks. (a) Single-stream. (b) Double-stream.

methods might struggle to fully utilize hidden patterns and com-
plex relationships in large-scale data, thus limiting performance.

Fortunately, in recent years, the latest advancements in deep
learning within computer vision have provided many promising
solutions for CD problems [18]. Two mainstream CD design
frameworks have emerged, known as the single-stream frame-
work and the double-stream framework [19], as shown in Fig. 1.
Considering that CD is a downstream task of semantic segmen-
tation, the single-stream framework leverages mature semantic
segmentation algorithms, such as [20] and [21]. They involve
inputting bitemporal images into the same single-temporal se-
mantic segmentation model and obtaining global feature maps
either through simple fusion at the initial input or final output
stage, or by subtracting to obtain difference feature maps. While
this framework is plug-and-play, it has two main drawbacks.
First, the multiscale features generated by the encoder–decoder
are challenging to correlate, leading to limited interaction be-
tween the bitemporal features and making the model susceptible
to background changes interference [22], [23]. Second, since
semantic segmentation is designed for single-temporal tasks,
it often uses high depth to improve segmentation accuracy for
small objects and edges [24], [25]. When directly applied to
CD, this approach would double the computational cost un-
necessarily. Thus, the double-stream framework, which focuses
on bitemporal interaction, is a more suitable choice. Through
thoughtful design, this framework can eliminate background
changes with the same semantic concept based on different
spectral features of bitemporal images, while also exploring
target changes related to different semantic concepts [26].

Despite the current development of deep learning-based CD
methods toward the double-stream framework, two significant
challenges still persist. First, intentional bitemporal feature fu-
sion or exchange can lead to confusion in semantic informa-
tion between the bitemporal images, as seen in [27] and [28].
Networks that frequently adopt pixel-level differencing, addi-
tion, channel concatenation, or direct feature swapping may
reduce the ability to perceive background changes effectively.
Second, as seen in [29] and [30], an excessive reliance on deeper
backbone networks and multiple convolutional layer modules
has emerged, resulting in significant computational costs for

marginal performance improvements. This scenario has raised
the threshold for the practical application of CD.

Some recent works attempt to address these two types of
challenges. For instance, SARASNet [31] employs a relation-
aware module to analyze deep-learned multichannel features
before performing subtraction on bitemporal features. This en-
hances the interaction between features extracted from two input
images, helping the model efficiently handle data with highly
imbalanced samples. However, SARASNet suffers from a large
number of parameters. Another example is DPCCNet [32],
which utilizes an improved lightweight ResNet50 as the back-
bone network and employs dual-perspective fusion (DPF) to
explore temporal information between paired images. DPF uses
one of the bitemporal images as a reference and queries the ref-
erence image with the other image to identify differences. Since
the selection of the reference image does not interfere with the
recognition of changing regions, the model can consider change
information from two perspectives [33]. This is advantageous
for the model to cope with complex change scenarios. However,
the overall accuracy is constrained by the lightweight backbone.
Therefore, achieving efficient interaction while balancing com-
putational cost and accuracy is a key focus of research. Hence,
we are dedicated to developing a double-stream structure for a
bitemporal interaction network, emphasizing the construction
of same-scale and cross-scale attention-sharing mechanisms to
replace the usage of certain convolutional layers, effectively im-
proving computational efficiency. Specifically, the network first
utilizes a pruned ResNet18 as the backbone network for feature
encoding. Then, multiscale features from two temporal states
construct a shared attention through the bitemporal attention
sharing (BAS) module. The attention is guided to target changing
regions, addressing the issue of semantic information confu-
sion in bitemporal features. The cross-scale attention guidance
(CAG) module, connecting high-level and low-level features,
enhancing the efficiency of utilizing stage features to reduce
reliance on the backbone network. Next, pixel-level addition and
subtraction are employed to explore homogeneous and differen-
tial information in bitemporal features, respectively. Finally, the
weighted fusion (WF) module is used for the decoding of the
dual features.

Our main contributions in this work are as follows.
1) A BAS module is proposed, which can capture the global

attention of bitemporal images to build a bitemporal
shared attention sequence. This module guides attention
toward target changes and suppresses attention to back-
ground changes, achieving efficient bitemporal informa-
tion interaction.

2) Two cross-scale attention sharing modules, namely CAG
and WF, are proposed. CAG leverages attention param-
eters from high-level features to weight low-level fea-
tures, optimizing the attention density of output features
at different stages and enhancing the utilization efficiency
of features. WF can gather global attention from single
temporal multiscale images to construct multiscale shared
attention. It then applies this shared attention to weight
multiscale features, suppressing semantic information loss
in the decoding stage.
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3) Quantitative and qualitative experiments on three public
datasets demonstrate that our proposed BASNet outper-
forms the state-of-the-art methods in the field of CD.

II. RELATED WORK

A. CD Methods Based on CNN

With the remarkable advancements of CNNs in computer
vision, a plethora of CNN-based CD methods have emerged.
Daudt et al. [27] introduced the FC-CD series based on fully con-
volutional neural networks, enabling end-to-end pixel-level CD.
This approach utilizes skip connections to learn contextual in-
formation from images and exhibits exceptionally fast detection
speed. However, it struggles to handle highly complex scenarios.
ChangeNet [34] employs multiscale features, excels in object
tracking, and finds utility in domains such as video surveillance
and action recognition. IFNet [35] and DTCDSCN [36] employ
channel or spatial attention mechanisms, to focus on significant
change areas, yet they face challenges distinguishing small
objects from noise. Changer [37] and SAGNet [38] intertwine
bitemporal interaction schemes between encoding levels, com-
bining hybrid layers and backbone structures to enhance the
similarity in bitemporal feature distribution. This integration
achieves automatic domain adaptation between bitemporal do-
mains.

B. CD Methods Based on Transformer and Self Attention (SA)

The widespread adoption of transformer-based methods in
natural language processing [39] has provided new insights for
computer vision [40]. Many researchers have endeavored to
design networks based purely on the transformer backbone [41],
[42], [43]. ChangeFormer [44] unifies layered transformer en-
coders with the multilayer perceptron decoders of siamese
network architecture, effectively rendering multiscale distant
details. SwinSUNet [45] solely employs a hierarchical swin
transformer as the encoder–decoder, allowing SA computations
within segmented windows and utilizing window shifts to asso-
ciate global information. However, the pure transformer incurs
substantial computational costs and often requires larger datasets
compared to CNNs to realize its potential due to the lack of
inductive biases.

The fusion of CNN with transformer has emerged as a
more economical option [46]. STANet [47] combines multi-
scale pooling and SA mechanisms to model spatial–temporal
relationships, extracting more discriminative features. BIT [48]
initially employs a CNN backbone to extract features from
bitemporal images and transforms them into token sequences. It
then uses a transformer encoder–decoder to connect token-based
contextual information and feedbacks enriched tokens to the
pixel space, refining original features. ACABFNet [49] connects
CNN and transformer backbones in parallel to bridge their
hierarchical features and employs cross-attention for bitempo-
ral interaction. DPCCNet [32] enhances temporal information
extraction through the fusion of bitemporal data and context
modeling.

III. METHODOLOGY

As shown in Fig. 2, the architecture of BASNet comprises
two main components. The first part involves feature encoding,
executed by the backbone network. To minimize computation
costs, we select the lightweight ResNet18 as the backbone and
remove its last layer. The bitemporal images undergo hierar-
chical encoding to generate three distinct hierarchical features
of different sizes. The second part involves attention sharing,
categorized into same-scale and cross-scale attention sharing.
Same-scale attention sharing includes BAS modules, element-
wise addition and subtraction. BAS utilizes features from both
temporal images to construct shared global attention tokens,
enhancing their attention distributions. Elementwise addition
captures common information and shared features between the
two moments. Conversely, elementwise subtraction extracts dif-
ferences between the two temporal instances, allowing the model
to focus more on areas with actual changes. Cross-scale atten-
tion sharing encompasses CAG module and WF module. CAG
employs attention from high-level features to guide low-level
features, enhancing their attention intensity. WF harmoniously
fuses interaction features, laying the foundation for generating
prediction maps.

A. BAS Module

Differences naturally exist in remote sensing images captured
at different time points, yet only the changes in the objects
of interest demand attention. Effectively interacting bitemporal
features to suppress interference from background changes and
uncover regions of shared attention represents a critical chal-
lenge [31], [50]. To address this, we have devised BAS module,
as shown in Fig. 3 which consists of two parts. First, a pair of
transformer blocks based on SA mechanism and feed-forward
network are employed. Second, a global attention sharing layer
is sandwiched between these two blocks. Initially, after passing
through three convolutions, the input features are subjected to
channel transformations to map them into the feature space of
query (Q), key (K), and value (V). This facilitates subsequent
SA computations. To be more precise, the triple features re-
sulting from channel mappings are denoted as Fq ∈ R

C
r ×H×W ,

Fk ∈ R
C
r ×H×W , and Fv ∈ RC×H×W . In order to align with

transformer calculations, the reduction factor r for both Fq

and Fk should remain consistent. This operation not only aids
in amalgamating channel information but also reduces com-
putational complexity. Each pixel of the triple features serves
as a token, and subsequently, these tokens are flattened into
a sequence Q,K, V ∈ RC×N that can be understood by the
transformer block. Here H and W , respectively, signify the
vertical and horizontal pixel count of the feature map,C denotes
the channel count of the feature map and tokens, and N = HW
reflects the total number of pixels in the transformed sequence
of tokens. The triple sequence can be represented as follows:

Q = Reshape (Convq(Fq))

K = Reshape (Convk(Fk))

V = Reshape (Convv(Fv)) (1)



WANG et al.: BITEMPORAL ATTENTION SHARING NETWORK FOR REMOTE SENSING IMAGE CHANGE DETECTION 10371

Fig. 2. Overall structure of BASNet.

Fig. 3. Structure of BAS module.

where Reshape(·) denotes the transformation of a matrix into
sequence tokens. Convq,k,v(·) denote three types of 1× 1 con-
volution operations.

Then, Q and the transposed K calculate their similarity
through matrix multiplication and provide feedback to V . The
traditional transformer SA is computed using the following dot
product formula:

Att(Q,K, V ) = δ
(
Q⊗KT

)⊗ V (2)

where δ(·) denotes softmax activation function, T indicates a
transpose operation, and ⊗ represents matrix multiplication.

To enhance the interaction between a pair of transformer
blocks, we concatenate the input bitemporal features along the
channel dimension. We then employ adaptive average pooling
to compress the feature size to 1× 1 and reduce the number
of channels to achieve global channel attention. In order to
obtain similar information mapping capability asK, single-pixel
feature matrix is treated as an individual token and cloned to

itself, resulting in a total of N pixels for the sequence tokens.
This sequence is denoted as the attention sharing sequence
S ∈ RC×N . The calculation formula for the above-mentioned
process can be expressed as

S = Repeat(Reshape(PWConv(Avgpool(Cat[F1, F2])))) (3)

where Repeat(·) denotes unit replication. PWConv(·) refers to
pointwise convolution operation. Avgpool(·) indicates adaptive
average pooling. Cat[·] represents channel concatenation.

Similarly to the K, S is also transposed and multiplied with
the Q to obtain their similarity through matrix multiplication.
The two types of similarities are fused by elementwise addition,
resulting in the attention sharing matrix. This process allows
the global attention to influence the semantic understanding of
the single temporal state. After normalization using the softmax
function, attention weights are obtained and multiplied with
the V through matrix multiplication. Finally, the original input
feature size is restored through transformation. The attention
sharing can be computed using the following dot product for-
mula:

AttShare(Q,K, V, S) = δ
(
Q⊗KT +Q⊗ ST

)⊗ V. (4)

Finally, a residual connection is applied before the output to
prevent potential feature divergence. The bitemporal image will
experience the above-mentioned operations synchronously. In
terms of functionality, BAS comprehensively learns global infor-
mation from the single temporal images and effectively guides
the attention distribution of the bitemporal images through
shared attention. This process suppresses irrelevant interfer-
ences and enables more precise identification of regions with
changes. This attention-guided interaction modeling, where
attention weights guide the interaction, avoids direct contact
between the bitemporal features. It reduces semantic confusion
caused by traditional interaction modules, such as pixelwise
subtraction or cross-attention.
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Fig. 4. Structure of CAG module.

B. CAG Module

Because our model pursues low computational complexity,
the encoder has few convolutional layers, which limits the
semantic perception ability of hierarchical features. To make full
use of the existing multiscale features, as shown in Fig. 4, we
introduce the CAG module. Low-level features F1 ∈ RC×H×W

guided by high-level features F2 ∈ R2C×H
2 ×W

2 in two ways.
The first approach is to keep the high-level features unchanged,
reduce the channel and pool the low-level features to the same
size as the high-order features, and then use the sigmoid ac-
tivation function to obtain the weight matrix. The weighted
low-level features are finally upsampled to restore the size. The
first approach can be expressed as

F ′ = Up(Avgpool(DWConv(F1)� σ(DWConv(F2))). (5)

The second approach involves maintaining the integrity of
low-level features while restoring high-level features to match
the dimensions of the low-level features through upsampling.
A weight matrix is then obtained using the sigmoid activation
function, which is used to weight the low-level features. The
second approach can be expressed as

F ′′ = DWConv(F1)� σ(Up(DWConv(F2))) (6)

where F1 and F2 denote low-level and high-level features,
respectively. DWConv(·) denotes depthwise separable convo-
lution operation. Avgpool(·) denotes adaptive average pooling.
Up(·)denotes upsampling.σ(·)denotes sigmoid activation func-
tion. � represents elementwise multiplication.

The outputs of the two approaches are merged by channelwise
fusion. Through this process, CAG guides the information from
high-level features to low-level features, enhancing the semantic
expression capability of the low-level features. As a result,
the low-level features retain multichannel information while
gaining richer semantic information. This effectively enhances
the overall feature representation.

C. WF Module

Although there may exist subtle differences in the fusion pro-
cess of features from different stages, they still contain valuable
attention information that is worth sharing [51]. Therefore, as
shown in Fig. 5, we introduce the WF module to harmonize the
differences between multiscale features and effectively fuse the
semantic information at various scales. First, it merges features
from adjacent scales and performs feature processing both glob-
ally and locally, resulting in features denoted as Fg ∈ RC×1×1

and Fl ∈ RC×H×W , respectively. This process aims to enhance

Fig. 5. Structure of WF module.

the contextual awareness of the fused features. Then, to sim-
plify the representation of complex semantic information, we
use the sigmoid activation function to convert abstract feature
information into weight matrices w and 1− w, ranging from
0 to 1. This allows the module to perform soft selection or
weighted averaging of input features. The calculation formula
for the above-mentioned process can be expressed as

Fl = PWConv(Avgpool(F1 + F2)) (7)

Fg = PWConv(DWConv(F1 + F2)) (8)

w = σ(Fl + Fg) (9)

Fout = (1− w)� F1 + w � F2 (10)

where F1 and F2 denote adjacent-scale features. PWConv(·)
refers to pointwise convolution operation. DWConv(·) denotes
depthwise separable convolution operation. Avgpool(·) denotes
adaptive average pooling. σ(·) denotes sigmoid activation func-
tion. � represents elementwise multiplication.

Within the feature decoding layer, a depthwise convolution
followed by upsampling is employed to decrease the feature
channel count by half, while simultaneously doubling the spatial
dimensions. This progressive feature decoding process enables
the gradual restoration and reconstruction of feature representa-
tions, thereby furnishing subsequent processing steps with richer
and more informative data. WF offers a lightweight approach
to handle multiscale feature fusion, effectively preventing fea-
ture divergence and enhancing the precision of detecting edges
within regions of target change.

IV. EXPERIMENTS

A. Datasets

The experiments were conducted on three different public
datasets, and the input images were data augmented to increase
the diversity of the training data, including horizontal flipping,
vertical flipping, and random rotation.

LEVIR-CD [52]: This dataset employs VHR remote sensing
images obtained from Google Earth. The target changes include
variations in different types of buildings found in cities and
villages. The images in this dataset are collected over varying
time spans, introducing variations caused by seasonal changes
and lighting conditions. It effectively validates the ability of
network to focus on target changes.

CDD [53]: This dataset employs multiple pairs of remote
sensing images captured in different seasons of the same ge-
ographical area using Google Earth, encompasses a diverse
range of target changes. These changes encompass various types,
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TABLE I
EXPERIMENTAL DATASETS PARAMETERS

Fig. 6. Training loss curve and validation loss curve generated by BASNet using different loss functions on LEVIR-CD.

including manmade objects of varying sizes, such as roads, cars,
buildings, as well as natural objects, such as individual trees and
forests. Pronounced seasonal differences result in substantial
brightness variations, which make it challenging for the network
to distinguish between target changes and background changes.

GZ-CD [54]: This dataset utilizes 19 pairs of remote sens-
ing images acquired from Google Earth, capturing the city of
Guangzhou in the years 2006 and 2019. The target changes
in this dataset include various types of buildings. Notably,
this dataset comprises a smaller number of samples, making
it possible to examine the extent to which the network relies
on a substantial amount of labeled data through a horizontal
comparison with the other two datasets. For further details about
the three datasets, refer to Table I.

B. Implementation Details

In terms of hardware, our experiments are conducted using an
Intel Core i5-13600KF CPU and an NVIDIA RTX 3090 GPU.
On the software side, we employ Python (3.9) and PyTorch
(1.13.1). Batch size is set to 32. As depicted in Fig. 6, we
evaluate three commonly used loss functions for both semantic
segmentation and CD tasks: Dice loss, cross-entropy loss, and
BCEWithLogitsLoss. Training is carried out for 100 epochs, and
we compare the convergence speed and loss values of these loss
functions. Ultimately, we select BCEWithLogitsLoss (BCE) as
the optimal choice. It combines the sigmoid activation function
and BCE loss to make the calculation more stable and efficient.
The mathematical expression is as follows:

BCE(x, y) = −y log(σ(x))− (1− y) log(1− σ(x)) (11)

where x is the model output, y is the real label, σ(·) is the sig-
moid activation function. We employ the Adam [55] optimizer
and utilized the poly learning rate adjustment during network
training. The initial learning rate (Irbase) is set to 0.001, the

maximum training iterations (max epoch) are set to 200, and the
learning rate (lr) of each epoch is

lr = lrbase ×
(
1− epoch

max _epoch

)
. (12)

Six typical metrics are employed to assess the performance
of the models, with higher values indicating better performance.
Among these, four metrics are utilized for evaluating target
change: Precision (Pre.), recall (Rec.), F1-score, and intersection
over union (IoU). In addition, two metrics are employed to
evaluate the overall classification accuracy: Overall accuracy
(OA) and kappa coefficient. Formally, six evaluation metrics are
defined as follows:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2

Precision−1 +Recall−1
(15)

IoU =
TP

TP + FP + FN
(16)

OA =
TP+ TN

TP + TN+ FP + FN
(17)

Kappa =
OA− CA

1− CA
(18)

where TP, TN, FP, and FN represent the quantities of true
positives, true negatives, false positives, and false negatives,
respectively. CA denotes the hypothetical probability of chance
agreement between predictions and actual values, which can be
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TABLE II
COMPARISONS ON MODEL ARCHITECTURE AND EFFICIENCY

TABLE III
QUANTITATIVE COMPARISONS

formulated as

CA =
(TP + FP)(TP + FN) + (FN + TN)(TP + TN)

(TP + TN+ FP + FN)2
.

(19)

C. Comparative Experiments

BASNet is evaluated by qualitative and quantitative com-
parisons with seven competitive CD methods. There are two
categories of comparison methods: the first category includes
FC-Siam-diff, FC-Siam-conc [27], DTCDSCN [36], and SAG-
Net [38], which are based on CNN and traditional atten-
tion mechanisms; the second category includes STANet [47],
BIT [48], and DPCCNet [32], which combine CNN and trans-
former mechanisms. The specific properties of different methods
are shown in Table II. In terms of architecture, our BASNet
has all the advantageous properties to ensure appealing per-
formance, including overall multiscale modeling, same-scale
and cross-scale interaction. In contrast, most competitors lack
consideration for certain properties. In terms of efficiency, we
compare the computational efficiency of our proposed model
with other models based on parameters (Params.), floating-point
operations (FLOPs), and average time to train a single epoch.
It can be seen that BASNet has lower computational cost and is
more efficient than some state-of-the-art methods.

1) On LEVIR-CD: In Table III, BASNet achieves the best
performance in terms of precision, F1-score, IoU, OA, and
kappa. While its recall is slightly inferior to DPCCNet. Both BIT
and DPCCNet exhibit high levels of precision and recall, indicat-
ing that the SA mechanism is beneficial for enhancing the global
perception, reducing false positives and false negatives. STANet
lacks bitemporal interaction, resulting in poor anti-interference

ability. DTCDSCN and SAGNet, lacking in global perception,
tend to miss detection of large objects. FC-Siam-conc and
FC-Siam-diff underperform across various metrics, suggesting
that simple bitemporal interaction methods, such as channel
concatenation and elementwise subtraction might inadvertently
confuse bitemporal semantics when handling significantly dif-
ferent image pairs.

Visual comparisons of six typical cases are illustrated in
Fig. 7. Among these, Fig. 7(a)–(b) was captured under different
lighting conditions, where ground reflection and tree shadows
near the buildings can interfere with detection. However,
effective bitemporal interaction and global perspective of
BASNet mitigate the negative impact of lighting changes and
ground color. In Fig. 7(c)–(d), small objects such as small
houses with colors similar to the land and expanded factories
are present. Most compared methods struggle to capture these
nuances, whereas the parallel multiscale element addition and
subtraction of BASNet can enhance homogeneous features and
differentiating features, respectively, enabling the detection of
subtle areas of change. In Fig. 7(e)–(f), where the changed
areas are substantial, the compared methods demonstrate weak
performance in handling intraclass inconsistencies, resulting in
a significant number of false positives at the edges. In contrast,
BASNet through the fusion and mutual guidance of multiscale
features, enhances the correlation between pixels, mitigating
most of the intraclass inconsistencies.

2) On CDD: In Table III, BASNet achieves the best perfor-
mance in terms of recall, F1-score, IoU, OA, and kappa, while
slightly trailing behind BIT in precision. Although BIT exhibits
high precision, it is prone to the influence of dataset sample im-
balance, leading to lower recall. The multiscale spatiotemporal
attention of STANet effectively focuses on objects of various
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Fig. 7. Visualization results of different methods on LEVIR-CD. (a)–(f) denote prediction results of all the compared methods for different samples, respectively.
In color classification, white for true positive, black for true negative, red for false positive, and green for false negative.

sizes, but its limited depth hampers performance. DTCDSCN
and SAGNet demonstrate overall high accuracy, indicating that
traditional channel attention and multiscale fusion are advan-
tageous for segmenting diverse small targets. However, their
global retrieval capability still lags behind DPCCNet and BAS-
Net, which leverage bitemporal SA interaction. FC-Siam-conc
and FC-Siam-diff suffer from severe intraclass inconsistencies
and perform poorly, especially on CDD with higher target di-
versity.

Visual comparisons of six typical cases are illustrated in Fig. 8.
In Fig. 8(a)–(b), where the primary targets are buildings with
larger dimensions, BASNet effectively avoids interference from
shadows of houses and trees during edge detection, while fully
mitigating intraclass inconsistencies when handling extensive
changes. In Fig. 8(c)–(d), focused on vehicles with smaller sizes,
BASNet is capable of delineating the outlines of differently
colored cars clearly. In Fig. 8(e)–(f), encompassing two different
types of roads, snowy and dirt roads, BASNet showcases robust
pixel-level recognition ability, allowing it to identify the distinct
reflection and shadows caused by snowy roads. Its powerful
generalization capability enables it to perform highly accurately
in dealing with various road types.

3) On GZ-CD: In Table III, BASNet achieves the best perfor-
mance in terms of recall, F1-score, IoU, OA, and kappa, while its
precision performance is moderate. A cross-sectional compari-
son of results on the large-scale datasets reveals that STANet is
significantly affected by sample imbalance, leading to a severe
P-R imbalance, and the F1-score is greatly negatively impacted.
Due to the limited labeled samples, the accuracy of BIT sig-
nificantly decreases, and the predictive performance is far less

effective than the other two datasets. This phenomenon indicates
that, compared to purely CNN-based methods, transformer-
based methods rely more on a large amount of labeled data and
pretrained weights.

Visual comparisons of six typical cases are illustrated in Fig. 9.
In Fig. 9(a)–(b), significant seasonal and lighting differences are
evident. In Fig. 9(c)–(d), the detected objects are small, with
similar colors causing interference. In Fig. 9(e)–(f), within a
large construction area, structural differences and color vari-
ations result in intraclass inconsistency, while edge shadows
lead to interclass ambiguity. Through comparison, BASNet can
quickly learn and adapt to significant features of target changes
from a small amount of labeled data, demonstrating stronger
generalization than typical transformer-based models. This is
because BASNet does not rely on the transformer for encoding
and decoding such as BIT but only uses it as a medium for
bitemporal attention interaction.

D. Ablation Study

To validate the effectiveness of BASNet, we conduct ablation
experiments by adding or removing the proposed modules while
keeping the backbone network unchanged. The experimental
results are presented in Table IV. In addition, Fig. 10 visually
demonstrates the impact of the proposed modules on feature
mappings using channel visualization. Different scale features
are upsampled to their original image size.

1) Effect of BAS Module: Compared with the network (a),
the F1 and IoU of (b) are increased by 0.92% and 1.49%,
respectively, indicating that adding this module on the basis
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Fig. 8. Visualization results of different methods on CDD. (a)–(f) denote prediction results of all the compared methods for different samples, respectively. In
color classification, white for true positive, black for true negative, red for false positive, and green for false negative.

Fig. 9. Visualization results of different methods on GZ-CD. (a)–(f) denote prediction results of all the compared methods for different samples, respectively. In
color classification, white for true positive, black for true negative, red for false positive, and green for false negative.
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Fig. 10. Example of network visualization. (a) Input image. (b) Selected multiscale bitemporal features generated by the backbone network. (c) Selected interaction
features produced by the BAS module. (d) Selected bitemporal features generated by the CAG module. (e) Selected interaction features produced by the WF module.
(f) Change probability map and prediction map of the final output.

TABLE IV
ABLATION STUDY OF THE PROPOSED MODULES ON LEVIR-CD

TABLE V
ABLATION STUDY ON SAME-SCALE ATTENTION SHARING MODULES

of the backbone network can effectively link the bitemporal
information and improve the network performance. Compared
with the network (h), the F1 and IoU of (e) are reduced by 0.71%
and 1.17%, respectively, indicating that the BASNet network
relies heavily on the BAS mechanism. For visualization, in
Fig. 10(b), B1 and B2 represent bitemporal multiscale features
encoded by the ResNet18 backbone. The attention distribution of
features appears relatively disordered. After the initial encoding,
the features undergo BAS, resulting in C1 and C2 in Fig. 10(c).
This emphasizes buildings to a greater extent, and the shared
bitemporal attention leads to similar attention distributions be-
tween the two. Further, Table V compares multiple same-scale
attention methods on multiple datasets. Among them, SA [39]
aims to use the SA mechanism independently in each tense,
while cross-attention (CA) [56] is to exchange bitemporal query
vectors on the basis of SA. Thanks to the anti-interference
brought by the attention sharing mechanism, the performance

TABLE VI
ABLATION STUDY ON CROSS-SCALE ATTENTION SHARING MODULES

of BAS in training small-scale data and complex target data is
significantly improved compared with CA and SA.

2) Effect of CAG Module: Compared with the network (a),
the F1 and IoU of (c) are increased by 0.36% and 0.57%,
respectively, indicating that this module can help low-level fea-
tures to obtain the target attention ability of high-level features.
Compared with the network (h), the F1 and IoU of (f) are reduced
by 0.27% and 0.44%, respectively, indicating that CAG is very
important to improve the utilization efficiency of hierarchical
features. For visualization, low-level features are guided by
the attention of adjacent high-level features, producing features
D1 and D2 in Fig. 10(d). Clearly, background changes are
suppressed, but the attended areas do not fully cover the tar-
gets.Further, Table VI compares multiple cross-scale attention
sharing modules on multiple datasets, where channel attention
block (CAB) [57] aims to change the stagewise functional
weights to enhance consistency, and bilateral guided aggregation
(BGA) [58] combines feature representations at different scales
by compensating for semantic and resolution gaps. Compared
with them, CAG has no obvious advantage in improving accu-
racy, but due to the use of deep separable convolution instead of
general convolution, the computational cost is greatly reduced
when multiplexed multiple times.

3) Effect of WF Module: Compared with the network (a),
the F1 and IoU of (d) are increased by 0.65% and 1.08%,
respectively, indicating that the feature fusion mechanism of
this module can improve the accuracy of feature recovery during
upsampling. Compared with the network (h), the F1 and IoU of
(g) are reduced by 0.55% and 0.91%, respectively, indicating
that the feature fusion decoding of WF is an indispensable
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part of the network codec structure. For visualization, mul-
tiscale WF can identify the semantic information of similar
details and different details of multiscale features, and locate the
contour of the target completely, so as to obtain E1 and E2 in
Fig. 10(e).

V. DISCUSSION

Although our proposed supervised model has achieved re-
markable results in CD tasks, we must recognize that it still
relies on a large amount of labeled data. There is still room for
improvement in big data acquisition and model training meth-
ods. In response to this problem, we consider the advantages
of unsupervised learning methods. Unsupervised CD methods
usually rely on the statistical characteristics and spatiotempo-
ral information of remote sensing images without premarked
change information. Among them, pixel-based methods, such as
threshold-based methods and clustering methods, are the most
common. Threshold-based methods usually distinguish between
changed and unchanged pixels by setting thresholds, but they
may be sensitive to factors, such as illumination and noise.
The clustering method attempts to cluster the image pixels into
groups with similar features, and use the clustering results to
detect changes. However, these methods often fail to make full
use of the spatial relationship between pixels.

In view of the previous, we believe that it is necessary to
explore how to combine supervised and unsupervised learning
methods in future work. By introducing semisupervised learn-
ing, transfer learning, or weakly supervised learning, we can re-
duce the dependence on massive labeled data and improve model
performance and generalization ability. At the same time, we can
also consider introducing domain adaptation and data enhance-
ment techniques to further enhance the generalization ability
of the model, so that it can show better robustness and effect in
different scenarios and data distributions. These efforts will help
our model achieve better performance in future applications.

VI. CONCLUSION

In this article, we address the challenges of high computa-
tional cost and lack of effective bitemporal interaction in existing
CD methods by proposing an efficient model, BASNet. It is
composed of a backbone network, BAS module for bitemporal
interaction, CAG module for same-scale guidance, and WF mod-
ule for cross-scale integration. Specifically, we first encode the
bitemporal remote sensing images into coarse-grained features
using the backbone network, generating multiscale representa-
tions. BAS then optimizes the arrangement of bitemporal SA
through the construction of a shared global attention. Within
CAG, high-level features enhance low-level features by lever-
aging their attention weights, enhancing the efficiency of multi-
scale utilization. Next, bitemporal feature interaction is achieved
through elementwise addition and subtraction. Finally, WF ef-
fectively strengthens detection capabilities for small objects and
edge information through multiscale fusion. Experimental re-
sults demonstrate that BASNet achieves excellent performance
on three public datasets with low computational cost.
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