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Abstract—A new forward model (FM) was developed to charac-
terize the influence of precipitation on L-band passive ocean surface
measurements. The FM, which relates rain-induced brightness
temperature (TB) variations to the rain rate and wind speed (WS),
was established through a machine learning approach (referred
to as the ML-FM). The soil moisture active passive (SMAP) data
matched with integrated multisatellite retrievals for global precip-
itation measurement (IMERG) rain rate data and cross-calibrated
multiplatform (CCMP) wind data were binned as a function of the
rain rate, WS, and wind direction. The ML-FM was validated by
comparing the simulated top-of-atmosphere (TOA) TB values with
SMAP measurements. The results showed favorable agreement
between the ML-FM outputs and SMAP data, with a root mean
square error (RMSE) smaller than 0.55 K for both the horizontal
and vertical polarizations. The validation results for ensuring more
reasonable rainfall intensity distributions showed that the ML-FM
returned stable results with a slightly reduced RMSE of ∼0.75 K
for both the horizontal and vertical polarizations. Based on the
ML-FM, we found that sea surface emission exhibited significant
dependence on the rain rate for both polarizations. In addition,
the ML-FM demonstrated signal saturation when the rain rate ex-
ceeded 45 mm/h, while precipitation slightly affected the directional
characteristics of sea surface emission. These effects accounted for
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∼0.3 K at a rain rate of 50 mm/h. Overall, our analyses demon-
strated that the proposed ML-FM achieved superior performance
in retrieving the TOA TB for both the vertical and horizontal
polarizations with a higher accuracy than existing models.

Index Terms—L-band, microwave remote sensing, radiometer,
rain.

I. INTRODUCTION

THE accurate measurement of the hydrological properties
of the ocean surface is essential for understanding vari-

ous atmospheric and oceanographic processes and elucidating
the complex dynamics of the Earth’s climate system [1], [2],
[3]. Recognizing their importance, remote sensing techniques,
particularly L-band passive microwave remote sensing, have re-
ceived considerable attention for their ability to provide frequent
and global assessments of the sea surface salinity (SSS) [4], [5],
wind speed (WS) [6], and storms [7], [8]. With the successful
launches of the soil moisture and ocean salinity (SMOS) [9],
Aquarius/SAC-D [10], and soil moisture active passive (SMAP)
[11] missions, the ability of L-band radiometry for accurately
measuring the hydrological properties of the ocean surface has
become evident in previous studies.

Passive microwave remote sensing of sea surface properties
heavily depends on the ability to successfully mitigate the in-
fluence of nontarget parameters on satellite measurements [12].
For this purpose, numerous models have been developed for
determining the relationships between the observed microwave
radiation and geophysical variables of interest. However, pre-
vious studies have focused mainly on modeling the effects
of the WS and sea surface roughness [13], [14], [15], [16],
whereas characterization of the impact of rainfall conditions
on satellite measurements remains limited. Past theoretical and
experimental studies have focused on evaluating specific rainfall
effects, such as rain-induced seawater dilution [17], [18], rain-
induced ring-wave spectra [19], [20], rain-induced local winds
[21], [22], and rain-induced atmospheric attenuation [23], [24].
However, no comprehensive model exists that incorporates the
main influencing factors to comprehensively assess the effects
of rainfall on L-band measurements of the ocean surface. In
addition, within this array of studies, the obtained conclusions
differ, particularly regarding the phenomenon of rain-induced
salinity dilution. The relationship between salinity anomalies
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and rain rate exhibits a notable degree of variability [25]. Within
the context of frequent and intense rainfall in ocean areas, it
becomes vital to characterize the influence of precipitation to
advance L-band passive microwave remote sensing of ocean
surface properties [26].

Earlier studies based on machine learning (ML) approaches
have shown considerable promise in addressing the critical need
for characterizing precipitation effects. With a high computa-
tional efficiency, ML models can automatically extract features
from L-band measurements through hidden layers and effec-
tively capture complex nonlinear relationships [27]. Applying
an ML approach to develop a forward model (FM) provides
relative advantages over certain physics-based approaches, in-
cluding coupled air–sea radiative transfer models (RTMs) [28]
or two-scale rough sea surface models [29]. For instance, ML
approaches offer better computational efficiency and consis-
tency with satellite measurements [30], [31]. In addition, the
ML-FM is readily adaptable to a broader range of environmental
conditions as a data-driven constraint. A pertinent example is the
rain impact model, which was developed under relatively low
rain rates (less than 25 mm/h) and is subject to uncertainties
when extrapolated to higher intensities [17], [18], [32], [33].
Given these advantages, a robust ML-based FM that can consider
diverse rainfall conditions is critical for L-band measurements of
ocean surfaces. This approach could also serve as a valuable ref-
erence to guide refinements in theoretical modeling approaches.

In this article, a new FM was established based on the ML
approach for modeling rainfall effects on L-band radiomet-
ric measurements (referred to as the ML-FM). The data and
methodology used in this study are described in Sections II and
III, respectively. The model development stages and ML-FM
architecture are introduced in Section IV. The model results
are presented in Section V. A discussion and conclusions are
provided in Sections V and VI, respectively.

II. DATA

A. Data Preparation

In this study, we used several datasets to develop the ML-FM
for L-band radiometry. In this section, we present a detailed
description of these datasets.

1) Satellite data: SMAP Level 2 (L2) data obtained from the
Remote Sensing System (RSS) Corporation were used in
this study [34]. This publicly available SMAP L2 dataset
was generated by the RSS Corporation and made available
online.1 Specifically, we extracted both horizontally and
vertically polarized top-of-atmosphere (TOA) brightness
temperatures (TBs) and azimuth angles along the radiome-
ter look direction from the data records. The extracted
TOA TB measurements exhibit a spatial resolution of
approximately 40 km and an Earth incidence angle of
approximately 40° [35]. The use of these SMAP L2 data
allows leveraging the calibrated and quality-controlled

1[Online]. Available at: https://data.remss.com/smap/SSS/V05.0/FINAL/
L2C/

TB measurements needed to develop and evaluate the
ML-FM.

2) SSS and sea surface temperature (SST) data: SSS data
were sourced from the Hybrid Coordinate Ocean Model
(HYCOM) [36]. As the HYCOM provides a compre-
hensive three-dimensional (3-D) representation of various
oceanic parameters, salinity data from the top layer were
selected as model input data. Notably, the HYCOM SSS
represents the bulk salinity, which is considered unaf-
fected by precipitation. This characteristic allows the ML
model to incorporate seawater dilution effects induced by
precipitation in the training process. The SST is another
input parameter for the ML-FM and was obtained from
the Group for High-Resolution Sea Surface Temperature
Sea Surface Temperature Analysis dataset (V3.0).

3) Rain rate data: Rain rate data were obtained from the In-
tegrated Multi-satellitE Retrievals for global precipitation
measurement (IMERG) product [37], which is provided
within the SMAP Level 2 data records. The IMERG sup-
plies global precipitation estimates at a spatial resolution
of 0.1°. To match the 0.25° resolution SMAP data, a
resampling procedure was applied to accordingly adjust
the spatial resolution of the IMERG rain rate data. The
averaged rain rate data were obtained by integrating the
original IMERG data over the antenna gain using a circular
Gaussian function characterized by a half-power width of
40 km.

4) Wind speed data: WS and direction data were obtained
from the cross-calibrated multiplatform (CCMP) version
3.0 product [38], which provides wind vector estimates
over the global oceans. The CCMP Level 4 (L4) data were
produced by combining the measurements from various
satellite microwave sensors (including QuikSCAT, SSM/I,
SSMIS, TMI, GMI, AMSR-E, AMSR2, ASCAT, and
WindSat) and background fields from ERA5 reanalysis
10-m neutral stable winds. The quality-controlled CCMP
wind data provide the WS and direction inputs needed at
resolutions aligned with the SMAP measurements.

B. Data Selection

These data were selected based on the following criteria.
1) Eliminating land and sea ice contamination: To mitigate

potential land or sea ice contamination [39], [40], we
filtered the measured TOA TB data to ensure their distance
from land and polar regions. This approach also helped
to minimize the influence of sidelobes and reduced the
impact of radio frequency interference (RFI), providing
the quality-controlled TB data necessary for developing
the ML-FM for open ocean areas [41], [42].

2) Eliminating the foam effect: To eliminate the impact
of ocean surface foam caused by high-wind condi-
tions, TOA TB values associated with a WS value ex-
ceeding 12 m/s were excluded from the analysis. This
WS filtering criterion removes TB data likely contam-
inated by foam under high-wind conditions, providing
a quality-controlled dataset for evaluating rain effects

https://data.remss.com/smap/SSS/V05.0/FINAL/L2C/
https://data.remss.com/smap/SSS/V05.0/FINAL/L2C/
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Fig. 1. Rain rate distribution of the dataset used in this study.

without the confounding influences of wind-driven foam
[43].

3) Consideration of the rainfall intensity: Considering the
negligible rainfall effects on both the sea surface and
atmosphere at low intensities, only TOA TB data with rain
rate values exceeding 1 mm/h were included in this study.
This threshold ensured that the selected data adequately
captured the significant rain-induced variations.

An additional threshold for data selection was established
in this article. This threshold excludes sea surface emission
variability caused by precipitation greater than 0.2 times the
rain rate. This threshold was determined based on our previous
studies ([24], Fig. 8) and served several purposes. First, it
effectively removed a substantial proportion of measurements
corresponding to very low rainfall intensities, providing a more
appropriate rain rate distribution in data analysis (see Fig. 1).
Second, this filtering process increased the reliability of model
validation by reducing the presence of lower rain rates, which
typically results in a lower implicit bias. The application of
this threshold ensured a more refined dataset that is consistent
with our objectives and supported the validation of our model.
After applying the data selection criteria detailed above (elimi-
nating land/ice contamination, high winds, and low rain rates),
the resulting dataset comprised 9 072 401 measurements for
developing the proposed ML-FM.

III. METHODOLOGY

While previous studies have demonstrated that precipitation
impacts both the ocean surface and atmosphere, the precise
relationship between the magnitude of these impacts (especially
on the ocean surface) and the rainfall intensity remains unclear.
Thus, the aim of this study was to elucidate the relationship
between satellite-observed TB variations and the rainfall inten-
sity using a data-driven approach to provide a reference for the
development of theoretical models and the removal of rainfall

Fig. 2. Schematic visualization of the modeling process for the influence of
precipitation on SMAP observations.

contamination during the retrieval of sea surface parameters.
Fig. 2 shows an overview of the modeling approach used to
characterize the effects of precipitation on SMAP observations.
Rain-contaminated SMAP measurements were first converted
into sea surface emissions using an atmospheric RTM. The rain-
induced excess brightness temperature (ΔTB) was then isolated
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from these emissions and modeled using a ML approach, with
HYCOM SSS values and CCMP winds as rain-free inputs. This
framework facilitates the quantification of the relationship be-
tween the rainfall intensity and associated TB variations through
a data-driven approach. Model development details are provided
in the following sections.

According to previous studies [19], [20], [21], [22], [23],
[24], precipitation impacts radiative transfer processes through
the ocean surface and the overlying atmosphere. The satellite-
observed TOA TB comprises contributions from sea surface
emissions, atmospheric effects, and cosmic background radi-
ation. To model these processes, we introduced a simplified
radiative transfer equation for the coupled ocean–atmosphere
system [44], which can be expressed as follows:

TB,toa = Tup + TB · e−τ +
(
Tdw + e−τ · Tsky

) · e−τ

·
(
1− TB

SSTs

)
+Ψrain (1)

where TB,toa is the radiation at the TOA, Tup, and Tdw are the
upwelling and downwelling atmospheric radiation values, re-
spectively, TB denotes the sea surface emission, which includes
the rain effects, Tsky is the celestial radiation, τ is the optical
depth of the atmosphere, SSTs is the sea surface temperature,
and Ψrain is the correction term for the atmospheric rainfall
effects.

Excluding the cosmic background radiation term, both the sea
surface and atmospheric effects must be characterized for the
ML-FM. However, estimating the effect of atmospheric rainfall
is relatively straightforward compared to estimating complex sea
surface responses. Atmospheric rainfall effects were previously
modeled based on raindrop size distributions using radiative
transfer theory coupled with Mie scattering calculations [24].
The RTM is often used to calculate Ψrain by propagating the L-
band microwave radiation through the precipitating atmosphere
[28] as follows:

μ
dL (τ ;μ, φ)

dτ
= −L (τ ;μ, φ)

+
ω̃ (τ)

4π

∫ 2π

0

∫ 1

−1

Z (τ ;μ, φ;μ′, φ′)

· L (τ ;μ′, φ′) dμ′dφ′ + (1− ω̃)B (T ) (2)

where L is the radiant field; Z is the scattering matrix of the
medium; μ is the cosine of the zenith angle; τ is the opti-
cal depth; ϕ is the azimuth angle; and B(T) is the blackbody
function. The matrix operator method can be used to solve this
equation. By applying the matrix operator method (a detailed
solution of the RTE is provided in [24], Appendix A), the
atmosphere was first partitioned into 26 layers with respect to
the different pressure levels according to the National Center
for Environmental Prediction (NCEP) Final (FNL) Operational
Global Analysis database. These layers were then subdivided
into several optically thin sublayers with reflection, transmis-
sion, and internal radiation source properties denoted by the R,
T, and J matrices, respectively. The two neighboring sublayers
can be further combined, and the reflection (Rc), transmission

(Tc), and source matrices (Jc) of the combined sublayer can be
obtained as

Tc=T2(E−R1R2)
−1T1

Rc=T2(E−R1R2)
−1R1T2+R2

Jc=J2+T2(E−R1R2)
−1 (J1+R1J2) (3)

where E is the identity matrix; Ri, Ti, and Ji are the reflection
(Ri), transmission (Ti), and source matrices (Ji), respectively,
of the ith sublayer, i = 1, 2. By applying (3) iteratively, the
thin sublayers were finally combined into a single layer, and the
reflection, transmission, and source matrices of the single layer
were calculated by the corresponding reflection, transmission,
and internal emission properties, respectively, of the whole
atmosphere. The extinction coefficients due to raindrops were
calculated using Mie theory

Kext =

∫ ∞

0

Cextn (D) dr

Ksca =

∫ ∞

0

Cscan (D) dr (4)

where Kext and Ksca are the extinction and scattering coeffi-
cients, respectively; Cext and Csca are the extinction and scatter-
ing cross sections, respectively; and n(D) is the Marshall–Palmer
distribution used for the particle size distribution of raindrops
and is given by

n (D) = 8000 exp (λD)

λ = − 4.1 · rr−0.21 cm−1 (5)

where D is the raindrop diameter. To efficiently incorporate RTM
solutions into the proposed ML-FM, a look-up table (LUT)
generated using RTM simulations was employed to calculate
Ψrain at different rain rates.

Thus, the ML model was designed to focus solely on model
calculations for the complex sea surface term. The effect of
atmospheric rain was accounted for through RTM-based LUTs.
This enabled the isolation of the rain-affected sea surface emis-
sion term by reformulating (1) as

TB = SSTs · TB,toa − Tup −Ψrain − (Tdw + e−τ · Tsky)

SSTs − (Tdw + e−τ · Tsky)
· eτ .

(6)
With these values, sea surface effects could be modeled,

including rain-induced effects (rain-induced ring waves, rain-
induced seawater dilution, and rain-induced local winds) and
wind-induced effects (roughness). For sea surface emission, the
vertically and horizontally polarized TB values were obtained
by the first and second Stokes parameters, respectively

T̄B =

[
TBv

TBh

]
=

[
(I +Q) /2
(I −Q) /2

]
(7)

where I and Q are the first and second Stokes parameters,
respectively. The excess surface TB (ΔTB) caused by rain and
wind was obtained as

ΔTB =

[
ΔTBv

ΔTBh

]
=

[
TBv − TBv,flat (Ss, Ts, θ)
TBh − TBh,flat (Ss, Ts, θ)

]
(8)
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where TB,flat is the TB for the flat sea surface, which can be
calculated by the dielectric constant model [45].

According to a previous study [46], the horizontally and ver-
tically polarized TBs (or the first and second Stokes parameters,
respectively) of the sea surface are even functions of the azimuth
angle ϕ. Thus, the first and second Stokes parameters can be
expanded into a Fourier series of the azimuth angle (ϕ). This
inherent symmetry enables the expansion of the excess TBs into
a cosine Fourier series truncated at the second harmonic order,
as follows:

ΔT̄B=

[
ΔTBv

ΔTBh

]
∼=

[
TBv,0 + TBv,1 cosϕ+ TBv,2 cos 2ϕ
TBh,0 + TBh,1 cosϕ+ TBh,2 cos 2ϕ

]

(9)
where ΔTBp is the polarized TB with p as either v or h, and the
harmonic coefficients TBp,i (Ss, Ts, θ, u, and rr) are functions
of the SSS (Ss), SST (Ts), incidence angle (θ), WS (u), and rain
rate (rr), respectively, where i = 0, 1, 2.

Subsequently, the ML approach was utilized to derive the
three zero- to second-order harmonic coefficients from the L-
band radiometric measurements. These coefficients are essential
for developing the ML-FM, which represents the symmetric and
asymmetric azimuthal variations in the rain-induced excess TB
responses.

IV. MODEL DEVELOPMENT

A. Model Selection

In this study, three common ML approaches—decision trees,
neural networks (NNs), and support vector machines (SVMs)—
were evaluated to characterize the impact of precipitation on
SMAP L-band ocean surface observations. Decision tree al-
gorithms operate by recursively splitting the data space into
branches based on the input features to estimate a target output.
They can mitigate overfitting through bootstrap aggregation,
whereby predictions are averaged across multiple randomized
decision trees. NNs approximate complex mappings between the
inputs and outputs by learning an optimized set of weights and
biases between connected nodes. The values of these parameters
(weights and biases) are iteratively updated via the backprop-
agation and gradient descent methods to minimize the cost
function. Finally, SVM algorithms aim to identify hyperplanes
that maximally separate classes of data points, enabled by kernel
functions that project inputs into higher-dimensional spaces to
obtain linear decision boundaries.

These three widely used approaches were implemented on
different platforms. Specifically, the decision tree method was
implemented based on the LightGBM framework.2 NN model
training and optimization were performed using the PyTorch
deep learning library. The SVM method was implemented with
a linear kernel function using the fitrsvm function in MATLAB
R2023a.

Among the considered approaches, the NN model demon-
strated the best performance (see Table I). Thus, the NN method
was selected to model the influence of precipitation on SMAP
L-band ocean surface observations.

2[Online]. Available at: https://github.com/microsoft/LightGBM/

TABLE I
COMPARISON OF THE MODEL PERFORMANCE LEVELS OF DIFFERENT ML

APPROACHES (DECISION TREE, NEUTRAL NETWORK, AND SVM)

Fig. 3. Illustration of the NN model structure.

B. NN Model Setup

In contrast to conventional approaches where NNs directly
predict the combined emission as a single output, the proposed
model leverages the NN model to separately regress the sea
surface harmonic coefficients. This represents a modification
from previous NN parameterizations that output an abstract
amalgamation of processes. Explicit prediction of the harmonic
coefficients provides a direct link to the physical meaning of
each term and allows the NN model to be interpreted through
the lens of physical processes.

The proposed NN architecture includes a series of inter-
connected layers consisting of an input layer, three hidden
layers, and an output layer (as shown in Fig. 3). In this con-
figuration, the input layer acquires an input dataset with m
samples D = {(x1, ϕ1

r, y
1), . . . , (xm, ϕm

r , ym)}, where xi =
(Si

S , T
i
S , θ

i, ui, rri) ∈ R5, i= 1, …, m denotes the input feature
vector, yi ∈ R denotes the sea surface emission, which can
be obtained from the satellite-observed TOA TB data using
(6), and ϕi

r is the relative azimuth angle between the global
radiometer look direction and the wind direction. Output ui =
(T i

B,0, T
i
B,1, T

i
B,2) ∈ R3 is the harmonic coefficient vector.

The hidden layers, employing a fully connected paradigm,
comprise 30, 50, and 30 neurons. In each hidden layer, every
neuron applies a linear transformation to the input vector through
a weight vectorW ∈ Rn and bias b ∈ R, where n is the number
of neurons in the previous layer. The activation of l neurons in
the current hidden layer is achieved by using the parametric
rectified linear unit (PReLU) activation function, which can be

https://github.com/microsoft/LightGBM/
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expressed as follows:

PReLU (x) =

{
x, if x > 0
ax, if x ≤ 0

(10)

where a is a learnable parameter in the training process. As a
result, the output z ∈ Rl of the jth hidden layer (j = 1, 2, 3) can
be obtained as follows:

z[j] = PReLU
(
W [j]z[j−1] + b[j]

)
(11)

where z[j−1] ∈ Rn is the output of the previous layer and
W ∈ Rl×n and b ∈ Rl are the weight and bias parameters,
respectively, to be updated. Finally, the output layer ŷ is a linear
combination of the activations of the third hidden layer

ŷ = PReLU
(
W outz

[3] + bout

)
(12)

where W out ∈ R3×30 and bout ∈ R3 are weight and bias pa-
rameters, respectively.

The NN model can be determined by minimizing the cost
function in the training process. Since the output of the NN
model is the harmonic coefficient vector u, the cost function is
defined by estimating the distance between the actual sea surface
emission y and the reconstructed emission obtained by summing
the predicted second-order harmonic series ŷ

J (x) =
1

m

m∑
i=1

‖y − ŷ (Ss, Ts, θ,u, rr, ϕr)‖2 (13)

where y is an n×1 SMAP measurement vector and ŷ is the
corresponding FM with the form expressed in (9). To obtain
the optimal weight and bias values, the cost function was mini-
mized using the backpropagation algorithm on the given training
dataset.

The above-mentioned NN model was implemented using
the dataset described in Section II. Before model training, the
quality-controlled data were partitioned into distinct training
and test datasets for model fitting and evaluation purposes,
respectively. The training data comprised 70% of the samples
randomly selected from the entire dataset, whereas the remaining
30% were used for independent testing purposes.

Before training, the weights (Ws) and biases (bs) were ini-
tialized using the Kaiming optimization technique [47]. These
parameters were then updated through a backpropagation algo-
rithm based on the cost function gradients. To ensure effective
model training, the Adam optimization algorithm was utilized
to iteratively adjust the weights and biases [47]. Kaiming initial-
ization and Adam optimization are well-established techniques
that facilitate efficient convergence and achieve the optimal per-
formance during NN training. Leveraging these methods could
enable proper initialization of the model parameters and efficient
navigation of the high-dimensional error surface to derive an
accurate mapping from the inputs to the harmonic coefficients.

During the test phase, the optimal values of Ws and bs were
derived from the training phase and applied in the test dataset
to estimate the zero- to second-order harmonic coefficients. The
predicted harmonic terms were summed to reconstruct the total
sea surface emission, which was compared against the satellite-
derived values to evaluate the model accuracy.

V. RESULTS

A. Overall Model Performance on the Test Dataset

The developed ML-FM was validated by comparing the mod-
eled TOA TB with the SMAP-observed TOA TB. The ML-FM
provides a direct metric for analyzing the model performance
under different rain rates and geophysical conditions using
matched satellite observations.

The performance of the ML-FM was assessed using the test
dataset, which comprises a total of 1 814 479 matchup data. The
use of statistical calculations between the ML-FM-computed
and SMAP-measured TOA TB data provided insights into the
root mean square error (RMSE) for both the horizontal and
vertical polarizations. A direct comparison revealed a close
correlation between the simulated and measured TOA TB data
(see Fig. 4), with RMSE values of 0.51 and 0.53 K for the
horizontal and vertical polarizations, respectively. There was a
substantial improvement in the ML-FM outputs relative to the
theoretical values (from our previous study), with RMSE values
of 1.14 and 1.51 K for the horizontally and vertically polarized
TBs, respectively. However, the ML-FM-retrieved TOA TB was
underestimated at high rain rates.

There could be two reasons for the deviation of the computed
TOA TB: 1) the ML-FM was trained on fewer training samples
at high rainfall intensities (N<150 for rain rates higher than
80 mm/h, according to Fig. 1), and 2) the ML-FM was trained
on instantaneous rain rate data, thereby failing to model the
accumulated fresh water input. Moreover, although the rain rate
data extended to 115 mm/h, the rain rate values above 80 mm/h
are less reliable and hence were excluded from the analysis.

Fig. 5 shows histograms of the difference in the TOA TB
between the ML-FM-retrieved data and SMAP measurements
(i.e., SMAP minus model). For both the horizontal and vertical
polarizations, the data were slightly positively skewed, although
they were nearly centered at approximately zero, with standard
deviations (SDs) of 0.51 and 0.53 K, respectively. This differ-
ence between the retrieved and measured TOA TB data is small,
which demonstrates the robust model performance over the wide
range of the test data samples.

Fig. 6 shows the mean biases (differences) and SD values of
the binned data as a function of the rain rate. The mean bias
between the ML-FM-retrieved TOA TB and SMAP-measured
TOA TB remained close to zero for all rain rates for the hor-
izontal polarization, but it increased sharply above 60 mm/h
for the vertical polarization (for example, ∼0.7 K for rain rates
up to 80 mm/h). This high bias occurred due to TOA TB
underestimation at very high rain rates, as previously reported.
Nonetheless, the SD remained small (0.5–1.6 K up to 80 mm/h),
and the FM-retrieved and SMAP-measured TOA TB data points
occurred close to the 1:1 line, as shown in Fig. 4.

It should be noted that the ML-FM operated as a function of
both the rain rate and WS, although the WS range was limited
to less than 12 m/s. Thus, the performance of the ML-FM
was analyzed over a 2-D function of the rain rate and WS.
Fig. 7 shows the average values of the SMAP-measured TB
data minus the ML-FM TOA TB data as a 2-D function of
the rain rate and WS. Except for marginal cases with sparsely
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Fig. 4. ML-FM-retrieved TOA TB versus the SMAP measurement data for the horizontal (left panel) and vertical (right panel) polarizations.

Fig. 5. Histogram of the difference between the ML-FM-retrieved TOA TB
values and SMAP measurements for the test data samples.

populated data, very favorable agreement was observed between
the ML-FM-retrieved TOA TB values and SMAP measurements
for all RR and WS conditions (see Fig. 7). A notable exception
was the horizontally polarized TB at low WSs, with a positive
difference indicating underestimation of the excess emissions
by the ML-FM. This highlights an area for further refinement
through additional data training at low WSs and moderate rain
rates.

Furthermore, the dependence of the model performance on the
azimuth angle was analyzed by binning the TOA TB differences
by the azimuth angle. Fig. 8 shows the mean and SD of the
binned differences as a function of the azimuth angle. A suitable
consistency was achieved over all azimuth angles, with a mean
difference close to 0.1 K and a SD close to 1 K for both

polarizations. The lack of azimuthal dependence also verified
that the ML-FM could adequately learn the anisotropic rain
signatures manifested at the different angles.

B. Comparison With the SMAP-GMF Data (Version 3)

The ML-FM results were compared with those of the SMAP
geophysical model function (GMF) version 3.0. The SMAP-
GMF model was developed by the RSS Corporation based on the
retrieval algorithm for Aquarius (version 5 release) and adapted
to process the SMAP data. In this analysis, RSS L-band GMF
data were obtained3 with user registration. Since the SMAP-
GMF only characterizes the change in TB emitted by a rough
ocean surface, the sea surface emission derived from the RSS
L-band GMF was converted into the TOA TB [according to (1)]
and compared with the SMAP measurements.

To evaluate the model generalization performance, SMAP
measurements spanning 1 January 2022 to 31 December 2022
were utilized as an additional fully independent test set in
this analysis. This one year of data was excluded from train-
ing/validation to prevent learning irrelevant temporal patterns.
Although the filtering criteria described before were also applied
to these data, there was still an overabundance of low rain rate
cases in the data. Thus, redundant samples with low rain rates
were randomly discarded to achieve a more balanced rain rate
distribution (see Fig. 9). As previously noted, data with unreli-
able rain rates >80 mm/h were also excluded. This screening
provided an unbiased 1-year evaluation dataset with a reasonably
large sample size across the different rainfall conditions. A
comparative assessment based on this distinct long-term dataset
could quantify the actual model generalization performance.

The results shown in Fig. 10 demonstrate that the ML-FM-
retrieved-TOA TB exhibited better agreement with the SMAP

3[Online]. Available at: https://data.remss.com/smap/SSS/

https://data.remss.com/smap/SSS/


10298 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 6. Mean bias and SD of the differences between the ML-FM retrieved TOA TB values and SMAP measurement data for the horizontal (left panel) and
vertical (right panel) polarizations. The bars in the background data are the rain rate histograms.

Fig. 7. Plots of the difference between the SMAP measurements and retrieved TOA TB values as a function of the rain rate and WS for the horizontal (upper
panel) and vertical polarizations (lower panel). The blank array denotes no data.
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Fig. 8. Error plots (mean bias and SD) as functions of the azimuth angle for the horizontal (upper panel) and vertical (lower panel) polarizations. Bias errors
(SDs) are plotted with squares (vertical bars).

Fig. 9. Distribution of the data points for the different rain rates.

data than the RSS FM products. The superior performance
of the ML-FM was indicated by RMSE values of 0.71 K for
the horizontally polarized TBs and 0.73 K for the vertically
polarized TBs. The RSS L-band GMF yielded RMSE values of
2.82 and 2.48 K for the horizontally and vertically polarized TBs,
respectively. These findings indicated significant improvements
in the TOA TB retrievals achieved by the proposed ML-FM
for the different rain rates. However, the lower performance
of the ML-FM on the original test dataset could be attributed

TABLE II
SEA SURFACE PROPERTIES FOR EXCESS SEA SURFACE EMISSION

CALCULATIONS UNDER DIFFERENT RAINFALL CONDITIONS

to differences in the rain rate distributions. It should be noted
that the original test dataset contained a high proportion of data
with low rain rates, which reduced the uncertainty in TOA TB
retrievals due to high rainfall intensities. Overall, our validation
analysis revealed a greater accuracy of TOA TB retrieval for the
proposed ML-FM than for the previous (rain effect correction)
model.

Our analysis further revealed that the performance of the
retrieved horizontally polarized TB products was slightly better
than that of the retrieved vertically polarized TB products for
both the original test data and independent 1-year data. These
results are also consistent with our previous findings [24].

C. Model Sensitivity Analysis

The ability of the ML-FM to simulate the harmonic behavior
of excess sea surface emissions under different rainfall condi-
tions was analyzed for assimilation and retrieval applications.
The sea surface properties for the model calculations are listed
in Table II.
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Fig. 10. Comparison of the model-retrieved TOA TB data with SMAP measurements for the horizontal (left column) and vertical (right column) polarizations
for the proposed ML-FM (upper panel) and SMAP’s L-band GMF (lower panel).

Fig. 11. (a) Zeroth-order, (b) first-order, and (c) second-order coefficients of the horizontally and vertically polarized TBs versus rainfall rates in the L-band for
a sea surface temperature of 290 K, SSS of 34 psu, and WS of 6 m/s.

The ML-FM-computed zeroth-, first-, and second-order har-
monic coefficients are shown in Fig. 11. As shown in Fig. 11(a),
for the isotropic components (TBh,0 and TBv,0) of the excess
surface emission, the horizontal polarization was slightly more
sensitive to the rain rate than the vertical polarization. More-
over, the TBh,0 and TBv,0 components peaked at a rain rate
of approximately 45 mm/h. There could be two reasons for

these results: 1) the precipitation signal is close to saturation
when the rain rate is above 50 mm/h, and 2) the model is
insufficiently trained due to the insufficient data points for rain
rates above 50 mm/h, so the rain effect is underestimated by the
ML-FM.

The modeled first harmonic amplitudes (TBh,1 and TBv,1) [as
shown in Fig. 11(b)] exhibited polarization dependence, with
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Fig. 12. Modeled excess surface emission variation as a function of the azimuth angle for six IMERG rain rates. The black and red curves denote the sums of the
three-term cosine series for the horizontally and vertically polarized TBs, respectively. The sea surface properties are the same as those in Fig. 11. (a) 10 mm/h. (b)
20 mm/h. (c) 30 mm/h. (d) 40 mm/h. (e) 50 mm/h. (f) 60 mm/h.

TBv,1 increasing with increasing rain rate and TBh,1 remaining
near zero. Conversely, the second harmonics (TBh,2 and TBv,2)
[as shown in Fig. 11(c)] exhibited the opposite behavior, as
TBh,2 decreased with increasing rain rate and TBv,2 remained
approximately zero. Notably, the variations in TBh,2 were much
lower than those in TBv,1. This reveals the distinct first- and
second-harmonic signatures for each polarization, with the pri-
mary rainfall response manifestation in the first harmonic for the
vertical polarization measurements and in the second harmonic
for the horizontal polarization measurements.

Fig. 12 shows the modeled azimuthal variation in the excess
surface emission for rain rates from 10 to 60 mm/h using
the same sea surface properties. The peak-to-peak difference
increased from nearly zero at 10 mm/h to approximately 0.3 K at
50 mm/h and above. Moreover, very similar directional patterns
were obtained between the different rain rates. These results
indicate that precipitation exerted a relatively minor impact on
the harmonic azimuthal dependency and induced only slight
perturbations to the intrinsic wind-driven directional signatures.
When the amplitude of the rainfall effect increases with the rain
rate, the angular shape remains largely unchanged.

D. Application of the ML-FM for SSS Retrieval

To more thoroughly assess the developed model, we employed
the ML-FM to retrieve the SSS using the SMAP data for analyt-
ical purposes. However, as mentioned above, SSS retrieval anal-
ysis is qualitative rather than quantitative due to the difficulty in

matching the SMAP data and in situ measurements. Therefore,
a region free from the influences of land contamination, sea ice,
and RFI was selected for analysis. This region occurs in the
Northern Hemisphere (6°N–10°N, 122°W–126°W). According
to the IMERG data, this region experienced a heavy rain event
on June 11, 2021, with a maximum rain rate of 43.4 mm/h [see
Fig. 13(a)]. The TB in the precipitation zone was notably ele-
vated relative to the TB values in rain-free regions, as expected
[see Fig. 13(c) and (d)]. Moreover, the surface wind in the area
was relatively moderate, ranging from 0.5 to 10 m/s according
to the CCMP data [see Fig. 13(b)].

It is important to emphasize that the ML-FM does not explic-
itly differentiate between the excess surface emission resulting
from the rain-induced surface roughness and that arising from
salinity dilution. Thus, we first used the previously developed
model to decouple the effects of the rain-induced roughness
and SSS dilution [24], after which the maximum likelihood
method was employed for SSS retrieval, utilizing the specified
cost function according to the RSS algorithm theoretical basis
document [34], which can be defined as follows:

√
χ2 =

{
[TB,surface − TB,model]

2
V−pol

+ [TB,surface − TB,model]
2
H−pol

}0.5

(14)

where TB,sur is the sea surface emission retrieved from satellite
observations and TB,mod is the predicted TB.
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Fig. 13. Study area chosen for analysis. (a) Spatial distribution of the rain rate. (b) Spatial distribution of the WS. (c) Spatial distribution of the SMAP-observed
vertically polarized TB. (d) Spatial distribution of the SMAP-observed horizontally polarized TB.

Fig. 14. Spatial distribution of the SSS. (a) With correction. (b) Without correction. (c) Reference SSS.

Consequently, Fig. 14 shows the spatial patterns of both the
retrieved and reference SSS data. The retrieved SSS exhibited
favorable consistency with the spatial distribution of the rain rate.
The retrieved SSS without rain effect correction [see Fig. 14(b)]
was much lower than that determined with the ML-FM [see
Fig. 14(a)]. For example, in the area with a high rain rate (6°N–
8°N, 123°W–124°W), the SSS obtained without correction was
below 28 psu, whereas the corrected SSS reached approximately

31 psu. Compared to the reference SSS [depicted in Fig. 14(c)],
the anomalies in the SSS induced by the rain amount reached
approximately 5–6 psu, as observed in the retrieved SSS data
without correction [see Fig. 14(b)]. In contrast, when the SSS
was retrieved after correction, these anomalies reached approx-
imately 3 psu. As reported in prior studies, rain-induced SSS
anomalies have been estimated at approximately 1.5–3 psu at
the sea surface for a rain rate of approximately 20 mm/h [17],
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[25]. This suggests that in the absence of rain correction, the
retrieved SSS may be underestimated.

VI. DISCUSSION

The results described in Section V show the ability of the
ML-FM to characterize the impact of precipitation on SMAP
L-band ocean surface observations and validate the approach
proposed in Section IV. The developed ML-FM achieved RMSE
values of 0.71 K for the horizontal polarization and 0.73 K for
the vertical polarization. While the accuracy is higher than that
reported in a previous study [24], visual inspection of the TB
distributions revealed that the ML-FM method underestimated
the TB at high observed TBs (see Figs. 4 and 10). Since the
WSs represented in the dataset are moderate (0–12 m/s) and
the CCMP product (wind velocity and direction) exhibits a
documented high accuracy relative to buoy and scatterometer
measurements [48], the wind-driven sea surface roughness can
be excluded as the source of model underestimation. Moreover,
the order of magnitude of the difference precludes SSS and
SST input data uncertainty as a likely explanation [49], [50].
Instead, the uncertainty in the precipitation input data is the
primary factor contributing to the modeled underestimation.
Specifically, two potential mechanisms may contribute to the
observed underestimation: 1) due to the relatively small amount
of low-accuracy data at very high rain rates (>45 mm/h),
the proposed model may underestimate the rain-induced sea
surface emission excess under these conditions and may un-
derestimate the threshold of rainfall intensities causing signal
saturation (see Fig. 11); 2) the ML-FM uses instantaneous rain
rate data as input, but the excess sea surface emission induced by
an accumulated freshwater input was not considered [17]. Nev-
ertheless, this work showed that the influence of precipitation on
L-band radiometer observations could be reasonably modeled.

VII. CONCLUSION

The use of L-band radiometers to measure ocean surface prop-
erties requires an accurate model to remove superfluous signals
from the observed TBs. This requires accurate knowledge of the
signal itself and its dependence on environmental factors such
as the rainfall intensity and ocean surface WS. Earlier works
have extensively studied wind effects within this context, but the
characterization of multidimensional rainfall signatures remains
very limited.

In this study, we proposed a new NN-based FM (ML-FM)
to characterize L-band measurements of rain-affected ocean
surfaces. Here, we first separated the atmospheric rain effect
from the satellite-observed TOA TB data using the previously
developed RTM. This facilitated the isolation of complex mul-
tidimensional sea surface emission signatures induced by both
wind and rain. Then, we employed an NN model to predict the
excess emissions of rain-affected rough sea surfaces. By learning
the intricate nonlinear relationships from the data, the ML-FM
could capture the effects of precipitation missing in existing
models.

The ML-FM showed a significant rain rate dependence for
both the horizontal and vertical polarizations. To validate the

ML-FM results, we first used the test dataset. The results showed
satisfactory agreement between the ML-FM-retrieved TOA TB
values and SMAP measurements, with RMSE values of 0.51
and 0.53 K for the horizontal and vertical polarizations, re-
spectively. The means and SDs of the differences (SMAP TOA
TB minus modeled TOA TB) also supported these results. The
mean difference was less than 1 K for all rain rates, and the
SD of the differences was less than 0.6 K for rain rates lower
than 60 mm/h and remained less than 1.6 K up to 80 mm/h.
Furthermore, for all azimuth angles, the mean difference was
close to zero, and the SD was close to 1 K. The ML-FM
retrievals were then compared with the SMAP L-band FM V3
product (using SMAP data) for 2022. The results showed that the
ML-FM performed better than the RSS FM when compared to
the SMAP measurements under the different rainfall conditions.
Consequently, the ML-FM yielded RMSE values of 0.73 and
0.71 K for the vertically and horizontally polarized TBs, respec-
tively, which are much better than those of the RSS L-band FM
(RMSE values of 2.82 and 2.48 K for the vertical and horizontal
polarizations, respectively). These results clearly indicate the
superior accuracy of the proposed ML-FM over that of the RSS
L-band FM for correcting satellite-observed TBs under different
rainfall conditions.

Finally, we evaluated the harmonic behavior and the direc-
tional characteristics of the excess surface emission. The results
showed that the zeroth-order harmonic coefficients were greatly
influenced by the rainfall intensity but reached a peak at a rain
rate of approximately 45 mm/h. The findings also revealed that
precipitation imposed relatively little effect on the directional
characteristics of the excess sea surface emissions. We also
applied the ML-FM (since the ML-FM cannot separate the
influences of the rain-induced roughness and SSS dilution, we
used our previously developed model to decouple these two
parts of rain-induced sea surface effects) for SSS retrieval. The
outcome revealed that the developed model effectively addresses
the issue of underestimation in SSS retrieval.

Overall, the ML-FM provided a relatively satisfactory accu-
racy in predicting rainfall effects and could serve as a useful
tool for current and future airborne and spaceborne L-band
measurements of ocean surface parameters under different rain-
fall conditions. Moreover, the use of instantaneous rather than
accumulated rain rate data represents a significant limitation that
could introduce uncertainties in empirical modeling approaches,
especially for prolonged and heavy precipitation events. By
training on instantaneous data, the model may not fully capture
rain effects over longer timescales. In the future, more efforts
will be made to investigate the rain-induced sea surface emission
excess under very heavy rainfall conditions and examine the
dependence of the excess sea surface emission on the accumu-
lated rain rate data for improving TB predictions by utilizing
more reliable models and experimental data.
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