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Multiscale and Multidirection Feature Extraction
Network for Hyperspectral and LiDAR Classification
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Abstract—Deep learning (DL) plays an increasingly important
role in Earth observation by multisource remote sensing. However,
the current DL-based methods do not make a fully use of the
complementary information among multisource remote sensing
data, such as hyperspectral image and light detection and ranging
data, and lack the consideration of multiscale, directional, and
fine-grained features. To address these issues, a multiscale and
multidirection feature extraction network is proposed in this arti-
cle. Specifically, the multiscale spatial feature (MSSpaF) module is
designed to extract the MSSpaFs, and then, these features are fused
by feature concatenation operation. In addition, the multidirection
spatial feature module is designed to further extract multidirec-
tion and frequency information, employing cross-layer connection
and multiscale feature fusion strategy to improve the fineness of
the proposed network. Moreover, the spectral feature module is
employed to provide detailed spectral information for enhancing
the expression ability of multiscale features. Experimental results
on three different datasets demonstrate the superior classification
performance of the proposed framework.

Index Terms—Convolutional neural network (CNN), feature
extraction, hyperspectral image (HSI), light detection and ranging
(LiDAR), multisource remote sensing.

I. INTRODUCTION

HYPERSPECTRAL image (HSI), which contains rich
spectral and spatial information [1], has been widely used

in resource management, urban planning, forest monitoring,
military, and security fields [2], [3], [4], [5]. However, for many
urban and rural scenes, it is difficult for HSI to distinguish objects
with similar spectral features (SpeF). For example, roads and
roofs of buildings are both made of concrete. Light detection
and ranging (LiDAR) data record the height and structure of
different surface objects, which can provide valuable supple-
mentary information. Since LiDAR provides digital surface
model (DSM) data that incorporate elevation information [6],
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joint classification of HSI and LiDAR data for object recognition
is a promising branch [6], [7].

Compared with single-source data, multisource data can
provide more comprehensive information and achieve better
monitoring effects [8]. Some studies show that complementary
information obtained by feature fusion of multisource data has
great potential in the field of remote sensing classification [9],
[10]. Since HSI and LiDAR data contain information of different
attributes, simple concatenation or stacking of features may be
limited in individual feature extraction. Therefore, effectively
extracting and fusing multisource data are crucial for multi-
source classification.

Many methods have been proposed to combine HSI and
LiDAR data for remote sensing classification. The traditional
methods are based upon feature fusion strategies, which man-
ually design feature extractors. The typical filtering algorithms
include morphological profile (MP), attribute profile (AP), and
extinction profile (EP). Liao et al. [11] used MP to extract
features from HSI and LiDAR data, a support vector machine
(SVM) for feature-level classification, and finally, a weighted
majority vote for joint decision-level classification. Ghamisi
et al. [12] used APs to extract spatial features from HSI and
LiDAR data and connected the extracted features to obtain better
classification results. In order to further improve classification
performance, Ghamisi et al. [13] employed EP to extract spatial
features from HSI and elevation features from LiDAR data.
In [14], a technique called sparse and low-rank component anal-
ysis was proposed to fuse HSI and LiDAR data. Kang et al. [15]
proposed an effective probabilistic optimization method based
on an extended random walk for HSI and LiDAR data classifi-
cation. Xia et al. [16] proposed semisupervised graph fusion, in
which morphological filters were applied to the first several com-
ponents of LiDAR and HSI data, and then, spectral, spatial, and
elevation features were projected into a lower subspace to obtain
joint features. In [17], multifeature-based super-pixel-level deci-
sion fusion was proposed to obtain discriminative Gabor features
of HSI and LiDAR data. However, traditional feature extraction
methods mentioned earlier are limited in extracting high-level
semantic information and digging latent representations from
raw data.

Feature extraction methods based on deep learning (DL)
networks are receiving increasing attention [18], [19], [20],
because they can learn deep semantic features in an end-to-end
manner to promote classification performance [21], [22]. In [13],
convolutional neural network (CNN) was early used for HSI and
LiDAR joint classification. Spatial and elevation features of HSI
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and LiDAR data were extracted by EP and then fed into CNN to
generate the final classification map. In [23], a dual-branch CNN
was proposed to reduce model complexity through weight shar-
ing, and feature and decision-level fusion strategies were used
for the precise classification of multisource remote sensing data.
In [24], a similar double-concentrated network was proposed for
effectively extracting features and accurately classifying ground
objects. The dual-centralized network captures the spectral and
spatial features of HSI and expands the connection of LiDAR
information based on the trained HSI branch. In [25], an inter-
leaving perception CNN was proposed to extract and integrate
HSI features and LiDAR features. A bidirectional autoencoder
was designed to reconstruct HSI and LiDAR data, and finally,
the concatenated feature map was sent to a two-branch CNN for
classification.

Directly concatenating HSI and LiDAR features not only in-
creases the dimensionalities of feature maps but also deteriorates
classification accuracy due to ignoring the possible interaction
information of multisource data in DL networks. How to effec-
tively realize the information fusion and interaction for HSI and
LiDAR data becomes a key for accurate classification. In [26],
a cascade block is added to the two-branch network to realize
spatial and spectral feature extraction. In [27], a three-branch
CNN network was proposed, in which each CNN branch adopted
the multilayer fusion (MLF) module to fuse shallow and deep
features and then used the mutual guided attention (MGA)
module to enhance the information of HSI and LiDAR data.
In [28], a patch-to-patch CNN with an encoder–decoder struc-
ture was proposed by employing unsupervised learning methods
to learn and integrate spatial, spectral, and elevation information
from HSI and LiDAR data, generating superimposed vectors for
final classification. In [29], a deep encoder–decoder network
(EndNet) used an encoder network to extract features from
multisource data and fused them to reconstruct multisource
inputs. In [30], the CNNMRF method further utilized spatial
information by introducing Markov random fields into convo-
lutional networks. In [31], a new dual-channel spatial, spectral,
and multiscale attention convolutional long short-term memory
neural network (dual-channel A3CLNN) was proposed to learn
HSI and LiDAR features with multiscale attention mechanism
and a transfer learning strategy. In [32], a nest-neighbor-based
contrast learning network was proposed, which made full use
of large amounts of unlabeled data to learn discriminant feature
representations and designed bilinear attention modules to ex-
tract higher-order features of HSI and LiDAR data. In [33], an
adaptive multiscale spatial–spectral enhancement network with
multiple branches for HSI and LiDAR data classification was
proposed. In this method, SpeFs of HSI were deeply mined by
involutive operators, and spectral–spatial features were extracted
by hierarchical fusion strategy.

As an alternative to using deep networks for HSI and LiDAR
classification, there has been increasing interest in multiscale
network architectures (e.g., [34], [35], [36]), which enlarge the
range of the receptive fields of CNN-based networks. Typically,
such a multiscale network consists of, in essence, multiple
parallel branches of feature extraction in conjunction with some
form of feature fusion prior to classification, with the branches

being designed to independently extract features at differing
scales. Commonly, each branch implements a cascade of two
or more convolutional layers with feature summation or con-
catenation. In [34], a multiscale network and a single-branch
backbone network were designed, and the proposed position-
channel cooperative attention module adaptively enhanced the
features extracted from a multiscale network, so as to obtain
the comprehensive features of HSI and LiDAR data and reduce
the semantic differences of heterogeneous features. In [35],
a disentangled nonlocal network was proposed, which used
multiscale modules to capture spectral and spatial informa-
tion. In [37], a multiscale cross-level attention learning net-
work was proposed to fully mine the global and local mul-
tiscale features for classification. In [36], a new multiscale
network with self-calibrated convolution was proposed, us-
ing hierarchical residual structure and self-calibrated con-
volution to extract features with different receptive fields,
which can enhance the ability to represent multisource
data.

Although the methods mentioned above can perform well in
multiscale feature extraction, there is a lack of direction informa-
tion representation. Combining the Gabor filter into the CNN can
enhance the learning of multiscale and multidirection features
and favor texture information representation [38]. In [39], the
proposed fractional Gabor transformation enables data analysis
in both the real space and the frequency domain simultaneously.
The spatial pattern can be rotated as the fractional order changes.
In [40], the fractional Gabor convolutional network (FGCN)
was proposed for HSI and LiDAR classification, using Octave
convolution to reduce redundant low-frequency information and
fractional Gabor convolutional layers to extract multidirection
information, improving feature diversity and integrity. The pre-
vious methods, such as FGCN, simply used 1-D convolution to
extract SpeFs of HSI data. In addition, the independent extrac-
tion of spatial features by HSI and LiDAR channels will de-
grade the classification performance due to the large differences
in heterogeneous features. Third, widely used fusion methods
are relatively simple, limiting the representation of semantic
information. Considering the previous problems, a multiscale
and multidirection feature extraction network is proposed in
this article. Specifically, the multiscale spatial feature (MSSpaF)
module is designed to extract spatial and elevation features for
HSI and LiDAR data with a cross-channel connection improv-
ing the interaction of heterogeneous features. Additionally, the
multidirection spatial feature (MDSpaF) module is designed
for multidirection representation of the spatial and elevation
features, effectively mining fine-grained features through cross-
layer connection and multiscale fusion. Finally, the SpeF module
is designed to allocate channel weights for obtaining detailed
spectral information.

The primary contributions of this article are as follows.
1) In this article, multiscale features are extracted from HSI

and LiDAR data via a double-branch capitalizing on the
MSSpaF module with hierarchical residual connections.
The multiscale nature of the feature extraction is finely
grained by using information interaction of multisource
data.
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Fig. 1. Structure diagram of Res2Net.

2) The proposed MDSpaF module uses fractional Gabor
filters to modulate convolution, enabling the extraction
of multiscale and multidirection features. In different fea-
ture extraction stages, multiscale fractional Gabor filters
can improve the complementarity of heterogeneous fea-
tures. Our approach is, to the best of our knowledge,
the first to apply multiscale and multidirection feature
extraction for joint classification of HSI and LiDAR
data.

3) The SpeF module is designed to fully extract useful
SpeFs by adding a weight allocation mechanism. Instead
of simply stacking or adding spatial and SpeFs, the se-
mantic correlation of multisource data is strengthened by
spatial feature weight consideration in the feature fusion
stage.

The rest of this article is organized as follows. Section II in-
troduces the relevant theories of Res2Net and Gabor transform.
Section III describes the proposed network structure in detail.
Section IV gives the experimental results and analysis. Finally,
Section V concludes this article.

II. RELATED WORK

A. Res2Net

Gao et al. [41] proposed a novel CNN building block,
Res2Net, by constructing layered residual-like connections in
a single residual block. It represents fine-grained multiscale
features and enlarges each layer’s receptive fields. The structure
of the Res2Net module is shown in Fig. 1. Instead of using a set
of 3× 3 filters in a bottleneck block, the module seeks an al-
ternative architecture with stronger multiscale feature extraction
capability while maintaining similar computational complexity.
Specifically, after conducting a 1× 1 convolution, the input
feature map is evenly divided into s subbands, represented byxi,
where i ∈ {1, 2, . . . , s}. After division, the size of the subband
feature map remains unchanged while the number of bands is
1/s. Except for the first subband feature graph x1, the other

subbandsxi have a 3× 3 convolution layer, which is represented
by Ci. The output of subband features xi is represented by yi,
which can be expressed as

yi =

⎧⎪⎨
⎪⎩
xi, i = 1

Cixi, i = 2

Ci(xi + yi−1), 2 < i ≤ s

(1)

where each 3× 3 convolution can obtain information from
subbands, so the output features have larger receptive fields.
Moreover, the output of the Res2Net module contains feature
combinations with different numbers and scales, enabling the
Res2Net module to fully extract spatial features of remote
sensing images.

B. Gabor Transform

Although CNN has a strong ability to learn features from
multisource remote sensing images, it lacks the description of di-
rection and scale information. Because the Gabor filter has good
characteristics of time-domain and frequency-domain transfor-
mation, it can guide CNN to obtain MSSpaF and MDSpaFs.
In the backpropagation process, only a few parameters need
to be updated due to manually modulated convolution kernels,
reducing computational complexity. The complex form of the
Gabor function can be regarded as the product of the Gaussian
and sine function

g(x, y; λ, θ, ψ, σ, γ)=exp

(
−x

′2+γ2y′2

2σ

)
exp

[
j

(
2π
x′

λ
+ψ

)]

(2)

where {
x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ.

(3)

The different parameters of the Gabor function have different
influences on the filter. θ represents the direction of the filter, λ

represents the wavelength of the filter, ψ represents the phase
shift of the sine function in the Gabor function, σ denotes the
standard deviation of the Gaussian factor, and γ denotes the
aspect ratio.

III. METHODOLOGY

A. Overall Architecture

As shown in Fig. 2, the network comprises three parts, i.e.,
MSSpaF extraction module, MDSpaF extraction module, and
SpeF module. The MSSpaF extraction module contains three
residual structures, each of which has three Res2Net layers to
extract and fuse the spatial features of the HSI and LiDAR
data, respectively. The MDSpaF extraction module contains
three fractional Gabor convolution blocks, which can extract
texture, direction, and transformation information. To obtain
fine-grained features, feature reuse operations are conducted in
each fractional Gabor convolution block. The third part intro-
duces the SpeF module and classification framework. The SpeF
module is employed to extract detailed spectral information as a
supplement. The classification results are obtained by assigning
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Fig. 2. Framework of the proposed method.

weights to spatial features and concatenating them with SpeFs,
which are then fed into the Softmax layer.

B. Multiscale Spatial Feature

Fundamentally, we use Res2Net blocks to extract the spatial
features of the HSI and LiDAR, as shown in Fig. 1. Each layer
of the Res2Net block is added with a residual structure, which
enlarges the receptive fields of each layer. In this step, the HSI
can be represented asXh ∈ R

r×c×bh , which means that there are
bh bands with r × c pixels in each band. The LiDAR image of the
same region is defined as Xl ∈ R

r×c×bl with bl bands. In each
3× 3 convolution layer, the parameters are set as stride = 1
and padding = 1, and the number of output channels (y1, y2, y3,
and y4) is the same as the number of input channels (x1, x2, x3,
and x4). After the convolution operation, the feature sizes of
the input channels and the output channels remain the same.
Therefore, the splicing operation can be directly carried out,
and then, the features of output channels are linearly integrated.
Finally, the Squeeze-and-Excitation (SE) module that imposes
different weights on different channels is adopted to enhance
or suppress the information of different channels. For HSI data,
the number of subsets in Res2Net blocks is set to 4. For the
LiDAR image, the number of subsets in Res2Net blocks is set to
2. As shown in Fig. 2, every three Res2Net blocks act as a basic
spatial feature extraction module that operates through residual
connections, which can alleviate problems such as gradient dis-
appearance and gradient explosion. Taking the HSI branch as an
example, X1

h ∈ R
r×c×bh1 , X2

h ∈ R
r×c×bh2 , and X3

h ∈ R
r×c×bh3

are obtained by basic spatial feature extraction modules in
different layers. Because the LiDAR image mainly contains
elevation information and weakly contains spatial information,
a spatial attention block is added at intervals of three Res2Net
blocks to help enhance spatial feature representation. Thus,

X1
l ∈ R

r×c×bl1 ,X2
l ∈ R

r×c×bl2 , andX3
l ∈ R

r×c×bl3 are obtained
on different layers of the LiDAR branch.

It is worth noting that in a two-branch network, the concate-
nation of features without considering the inherent differences
of multisource data often leads to significant differences in
features, which reduces classification accuracy. To solve this
problem, two cross-connections are set up between HSI and
LiDAR branches for information interaction, which is shown as
dotted lines in the MSSpaF module in Fig. 2. Before the third
basic feature extraction module, the features of the two branches
are concatenated as the input

X3
h = Concat

[
X1

l , X
2
h

]
(4)

X3
l = Concat

[
X1

h, X
2
l

]
. (5)

This is because featuresX1
h andX1

l contain spatial information
of HSI data and elevation information of LiDAR data, respec-
tively. If the cross-connections are performed for first or third
basic feature extraction modules, feature redundancy or feature
stacking will occur. It is also noted that the features concate-
nation of two branches will lead to the number of input feature
channels increasing. That is to say, although the number of input
and output feature channels will not change during the process
of the spatial feature extraction, there are bh1 = bh2 �= bh3 and
bl1 = bl2 �= bl3 after the third spatial feature extraction module.
Therefore, a 1× 1 convolution operation is added to keep the
number of feature channels consistent for feature fusion.

C. Multidirection Spatial Feature

Just as the Gabor transform is derived from the Fourier
transform, the fractional Gabor transform is derived from the
fractional Fourier transform. The fractional Fourier transform
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Fig. 3. Structure of the multiscale Gabor convolution module.

can be expressed as

Xp(u) =

∫ +∞

−∞
f(x)Kpx(x, u)dx (6)

where the kernel function Kpx(x, u) can be defined as

Kpx(x, u)=

⎧⎪⎪⎨
⎪⎪⎩
Ap exp

(
j
(

x2+u2

2 tanp − xu
sinp

))
, p �= nπ

δ(x− u), p = 2nπ

δ(x+ u), p = (2n+ 1)π

(7)

whereAp =
√

(1− j cot p)/2π, and p represents the fractional
order.

The 2-D fractional Fourier transform can be conducted by

Fx,y(x, y, u, v)

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)Kpx(x, u)Kpy(y, v)dxdy

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)Kpx,py(x, y, u, v)dxdy. (8)

The obtained 2-D fractional Gabor transform can be described
as

Gx,y(x, y, u, v)

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)Kpx(x, u)Kpy(y, v)h(x, y)dxdy

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)Kpx,py(x, y, u, v)h(x, y)dxdy (9)

where (x, y) represents the spatial position,u and v represent the
spatial position corresponding to x and y in a fractional Gabor
domain, f(x, y) represents the input image, Kpx,py(x, y, u, v)
represents the 2-D fractional Gabor transform kernel, px and
py represent the fractional components in the horizontal and
vertical directions, and h(x, y) represents the 2-D Gaussian
function. Gabor filter has two essential parameters: 1) scale and
2) direction. In order to extract multiscale and multidirection
features of HSI and LiDAR, frequency (f ) and direction angle
(θ) are determined as parameters by the grid search method. In

fact, the classification accuracy will increase with the number of
f and θ. Considering the complexity of the network, these two
parameters are set as

θ ∈
{
0,
π

16
,
π

8
,
3π

16
, . . . ,

15π

16

}
(10)

f ∈
{
1,

1

2
,
1

3
,
1

4

}
. (11)

In this work, the MDSpaF module is designed to extract the
spatial features of HSI, the elevation features of the LiDAR
image. As shown in Fig. 2, MDSpaF module is the second
part of the proposed network. And the details are presented in
Fig. 3. An interlayer residual structure is added in each fractional
Gabor convolution block; a jump connection is added between
two adjacent channels. With the addition of a jump connection,
the receptive field of the fractional Gabor convolution block is
expanded. Followed by a Conv layer, ReLU layer, and MaxPool-
ing layer, multiscale and multidirection features are obtained.
Notably, previous feature extraction methods show that low-
level features contain rich spatial information but lack semantic
information while high-level features are the opposite. Multi-
scale feature fusion can introduce more semantic information
into low-level features and embed more spatial information into
high-level features, to obtain more comprehensive multiscale
features. Therefore, the proposed MDSpaF module employs
three fractional Gabor convolution blocks to extract spatial
feature map fspat, balancing spatial and semantic information.

D. SpeF and Classification

HSI contains rich spectral bands, and most existing SpeF
extraction methods focus on 1-D stack convolution, so they
will not be able to make full use of much spectral informa-
tion. In this work, we propose an SpeF module, in which the
spectral channel attention mechanism is considered to enhance
or suppress different spectral channels by assigning weights
for complementary spectral information. As shown in Fig. 2,
by employing two 1× 1 convolutional layers, a ReLU layer,
and a Sigmoid layer, the weights of spectral channels will
be obtained. Assigning different weights to different channels
helps the network balancing information contributions between
different layers. And, operating residual connections achieves
information supplement since some useful information may be
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lost during feature extraction. The SpeF map can be obtained by

f spec
i = (W spec

i ⊗ f spec
i−1 )⊕ f spec

i−1 (12)

where W spec
i represents the spectral weight, which can be ex-

pressed as

W spec
i = Sigmoid(ReLU(Conv(Conv(f spec

i−1 )))) (13)

where f spec
i represents the SpeF of the ith layer, ⊗ represents

elementwise multiplication, and ⊕ represents the element ad-
dition operation. The final SpeF fspec is obtained by the SpeF
module. fspec contains SpeFs obtained by assigning weights to
spectral channels, which provides supplementary information
for multisource data joint classification.

By now, we have obtained the SpeF map fspec for HSI and
the fused spatial feature map fspat for HSI and LiDAR data. If
the spatial features and SpeFs are simply stacked or added, their
semantic relevance will be limited and the effect of feature fusion
will be greatly reduced. Considered spatial attention mechanism,
the fused feature map can be expressed as ffuse

ffuse = fspec +Wspat ⊗ fspat (14)

where

Wspat = Sigmoid(ReLU(Conv(fspat))). (15)

Multiplying Wspat by spatial feature fspat can allocate
weights to spatial features to increase useful spatial information
and suppress redundant spatial information. Thus, the feature
fusion is implemented by (13), where Wspat is obtained by
performing a 3× 3 convolution operation, a ReLU operation,
and a Sigmoid operation. Finally, classification is processed by
two 1× 1 convolutions, two ReLU activation functions, and
a softmax activation. The steps of the proposed network are
summarized in Algorithm 1.

E. Motivations Analysis of the Proposed Method

HSIs contain rich spectral and spatial information, which
can identify ground targets. LiDAR data provide elevation in-
formation, recording the height and structure of objects. The
combined application of HSI and LiDAR data allows for more
detailed and precise identification of ground objects. On this
basis, the proposed network fully considers spatial–spectral
characteristics of HSI and spatial-elevation characteristics of
LiDAR data. The MSSpaF module extracts the spatial features of
HSI and LiDAR data respectively, retains the LiDAR elevation
information, and combines these features. MDSpaF module is
used to extract the multidirection features, which can be obtained
by combining the modulated Gabor kernel with CNN, yielding
accurate classification results, especially for the objects with
different shapes. In addition, the SpeF module is designed to
extract SpeFs of HSI as a complement to the fused feature map.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset Description

MUUFL Gulfport [42]: The MUUFL Gulfport dataset was
collected in November 2010 at the University of Southern Mis-
sissippi campus in Bay Park, Long Beach, Mississippi, USA.

Algorithm 1: Pseudocode for our method Training.
Input: HSI data Xh, LiDAR data Xl, Ground truth Y .
Output: Classification map M .

1: Parameter setting and weight initialization.
2: for epochs do
3: Extract the MSSpaFs X3

h and X3
l of HSI data and

LiDAR data according to Eq. (5) and Eq. (6),
respectively, and feed these features into the
MDSpaF module. Then, MSSpaF and MDSpaF map
fspat will be obtained.

4: Extract SpeFs fspec from HSI data according to Eq.
(8)

5: Take fspat multiplied by spatial weights and fspec as
to obtain ffuse and then get the classification map
through the Softmax classifier.

6: Train network as shown in Fig. 2.
7: end for
8: Obtain the probability distribution and classification

map.

TABLE I
NUMBER OF TRAINING AND TESTING SAMPLES FOR THE MUUFL DATA

HSI data were collected by the Compact Airborne Spectro-
graphic Imager (CASI)-1500 sensor, covering the wavelength
range of 367.7–1043.4 nm. The original HSI contains 72 spectral
bands. Eight noise bands were removed, and the remaining
64 bands were used for experiments. HSI is composed of
325×220 pixels, and the spatial resolution is 0.54 m. The DSM
of LiDAR data was obtained by the airborne laser terrain mapper
sensor using a laser with a wavelength of 1064 nm. MUUFL
Gulfport dataset covers 11 classes, as shown in Table I.

Houston 2013 [6]: The Houston 2013 dataset is composed
of HSI and LiDAR-based DSM. The size of the data is
349×1905 pixels. The HSI scene is acquired by the ITRES
CASI-1500 sensor, which consists of 144 spectral bands with
wavelengths ranging from 0.38 to 1.05μm, including 15 classes,
as shown in Table II. The spatial resolution of both HSI and
LiDAR-based DSM is 2.5 m.

Trento [43]: The Trento dataset covers a rural area in southern
Trento, Italy. The HSI data were collected by the AISA Eagle
sensor, covering 63 spectral bands with a spectral range of
402.89−989.09 nm and a spatial resolution of 1 m. The DSM
of LiDAR data was collected by the Optech Airborne Laser
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TABLE II
NUMBER OF TRAINING AND TESTING SAMPLES FOR THE HOUSTON DATA

TABLE III
NUMBER OF TRAINING AND TESTING SAMPLES FOR THE TRENTO DATA

Topographer (ALTM) 3100EA sensor, which is composed of
166 ×600 pixels and the spatial resolution is 1 m. This dataset
has six classes, as shown in Table III.

B. Experimental Setup

All DL methods are implemented in TensorFlow and the
high-level API Keras framework. To optimize them, we use the
Adam algorithm. Keras is a simplified interface to TensorFlow,
an open-source software library for numerical calculations using
data flow diagrams. All experiments were conducted on a PC
equipped with Ubuntu 18.04 and a GTX-2080 GPU.

To gauge performance, we calculate overall accuracy (OA),
average accuracy (AA), class-specific accuracy (CA), and Kappa
coefficient (κ). OA is the ratio of the number of correct predic-
tions to the total number of pixels in all test sets, AA denotes
the average of individual class accuracies. The calculation of κ
and CA is based on a confusion matrix, which is an indication
of consistency. To avoid any bias induced by random sampling,
we conducted ten trials and reported average results along with
standard deviation.

C. Algorithm Configuration and Parameter Tuning

According to the mainstream CNN-based HSI and LiDAR
joint classification methods, the fundamental hyperparameters
are convolution kernel size r, fractional order p, and the learning
rate lr [23], [26]. The tenfold cross-validation is adopted to select
the optimal hyperparameters.

During the training of the proposed network, we divide the
training/validation set randomly into two equal-size parts-one
part is used to train the network while the other part is a validation
set used to tune the network hyperparameters. To make the
network model fully converge, the number of training rounds
was set asnum_epoch = 2000. The value ranges of the learning
rate are {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1}. According to
experimental results, the proposed method is insensitive to this
hyperparameter. The learning rate is lr = 1e− 3 in the following
experiments. To evaluate the influence of other hyperparameters,
i.e., fractional order p and convolution kernel size r, the value
range of r is 3–13 and that of p is 0.05−0.5, respectively.
As shown in Fig. 4, the network is sensitive to p and r. For
example of the Trento dataset, 25 samples of the training set
and the validation set were selected individually for parameter
adjustment. The results show that when r = 13 and p = 0.1
OA is the highest, i.e., 0.9821. For the MUUFL dataset and
the Houston 2013 dataset, 50 samples from the training and
validation sets were selected for parameter adjustment. When
r = 3 and p = 0.2, the OAs for these datasets are the highest,
with values of 0.8883 and 0.9725, respectively. The experimental
results indicate that features extracted using different convo-
lutional kernels produce different classification performances.
For scenes containing complex spatial texture information, a
convolutional kernel with a relatively big size expects better
classification results. For example, the proposed method reaches
a satisfactory OA for the Houston dataset using a convolutional
kernel with a size of r = 13. The Trento and MUUFL datasets
require smaller convolutional kernels. For parameter p, a larger
fractional order implies Gabor features close to the feature map
in the frequency domain, and small fractional orders retain more
spatial information. The Houston dataset contains more classes
and the distribution of features is more complex, so smaller
fractional order is helpful for extracting more useful spatial
features. For the MUUFL and Trento datasets with relatively
simple terrain distribution, the larger fractional orders were
chosen.

D. Experimental Results and Analysis

In comparative experiments, multisource data classification
performance was evaluated quantitatively and qualitatively.
OA, AA, CA, and κ were used to evaluate the classification
performance of the proposed and several comparable meth-
ods while classification maps were also shown in a qualita-
tive perspective. The comparable methods include SVM [44],
as well as five advanced DL methods, namely deep End-
Net [29], two branch CNN (TBCNN) [26], two-channel CNN
(Coupled CNN) [23], Markov-random-field-based CNN (CN-
NMRF) [30], and FGCN [39]. This article focuses on MSSpaF
and MDSpaF extraction by incorporating feature reuse opera-
tions into fractional Gabor convolution and designing the SpeF
module to supplement multisource features. To make a fair
comparison, we selected the optimal hyperparameters of the
corresponding articles.

Tables IV–VI list the average values with a standard deviation
of OA, AA, κ, and CA for the three mentioned datasets. The



9968 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 4. Parameter tuning of p and r for the proposed network using three datasets. (a) MUUFL. (b) Houston 2013. (c) Trento.

TABLE IV
CLASSIFICATION ACCURACY (AVERAGE AND STANDARD DEVIATION) FOR THE MUUFL DATASET

bold text in these tables represents the best values for the corre-
sponding rows. The results of qualitative analysis for different
datasets show that the traditional methods are easily affected
by noise due to the lack of spatial information. For example, it
can be seen from Trento datasets in Fig. 7(d) and (e) that it is
difficult for SVM and EndNet to maintain spatial continuity.
Specifically, certain ground objects, such as the Vineyard in
the Trento dataset, were mistakenly classified as Apple Trees
and Woods. Due to the deep encoder–decoder structure, EndNet
can better extract features in the multisource data fusion stage,
compared with SVM. The methods using spatial information,
such as CNNMRF, TBCNN, and Coupled CNN, yield higher
OAs than in previous two method shown in Tables IV–VI and
smoother classification maps shown in Fig. 7(f)–(h). Compared
with Fig. 7(d) and (e), the classification effect of Vineyard, Apple
Trees, and Woods were significantly improved. However, their
classification performance are limited when dealing with the
classes with small samples, such as the Ground of the Trento
dataset. Coupled CNN not only extracts spatial features but also
adopts feature-level fusion strategy and decision-level feature
fusion strategy for multisource data classification, further im-
proving classification performance. Due to the residual structure

adopted by TBCNN, its network depth can be increased to
some extent while reducing the occurrence of the overfitting
phenomenon. It has been proved that deep networks have greater
potential in HSI and LiDAR joint classification. As our previous
work, FGCN extracts both high-frequency and low-frequency
features of HSI and LiDAR data by Octave convolution and
extracts multiscale and multidirection features by fractional
Gabor convolution improving classification performance to a
certain degree. As shown in Tables IV–VI, OA of the MUUFL
dataset is 87.62%, that of the Houston dataset is 97.06%, and
that of the Trento dataset is 98.31%.

According to the classification results of Tables IV–VI, it is
obvious that the proposed network can get the best classification
performance. The reasons may be that, MSSpaFs are extracted
by Res2Net with cross-connections between HSI branch and Li-
DAR branch enhancing information interaction; feature reuse is
beneficial to obtaining fine-grained information of multisource
data; residual structure can guarantee the depth of network at the
same time, reducing the overfitting phenomenon; multidirection
features can be extracted by fractional Gabor convolution, in
which multiscale feature fusion is operated to enlarge the recep-
tive fields of convolution.
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TABLE V
CLASSIFICATION ACCURACY (AVERAGE AND STANDARD DEVIATION) FOR THE HOUSTON DATASET

TABLE VI
CLASSIFICATION ACCURACY (AVERAGE AND STANDARD DEVIATION) FOR THE TRENTO DATASET

Classification maps of the proposed and comparable methods
are shown in Figs. 5–7. It is obvious that the boundary continuity
and regional smoothness of our classification map are better
than those of the comparative methods. For example, in the
bottom-right corner of Fig. 5(j), the boundary of the Road is
more continuous than that of Fig. 5(i), and the proposed method
has more obvious advantages in this respect than the other five
methods. As can be seen from the top-left corner of Fig. 5(j), the
classification smoothness of the proposed method for the Mixed
Ground Surface also provides further improvement of smoother
classification maps. The same conclusion can be reached for
the Highway in Fig. 6 and the Woods in Fig. 7. In addition, the
proposed method can obtain a more distinct classification map
for the classes with multiple regions with different sizes. For
example, the Trees are widely distributed and cluttered in the
MUUFL dataset. Compared with other classification maps in

Fig. 5, it can be found that the classification region obtained by
the proposed method is clearer. Similarly, the Parking lot 1 in the
Houston dataset and the Roads in the Trento dataset also contain
multiple regions with different sizes. It can be seen from Figs. 6
and 7 that our method can obtain a classification map closer to the
ground truth for these classes. In addition, Figs. 5–7 show that
the proposed method can yield classification maps with fewer
erroneous outliers, such as the Dirt and sand in the top-right
part and the bottom-right part of Fig. 5(j), the Highway in the
upper half of Fig. 6(j), and the Woods in Fig. 7(j). In general,
the classification maps obtained by the proposed method are
smoother, with clearer boundaries and fewer erroneous outliers.
No matter the Trento dataset with evenly terrain distribution or
Houston and MUUFL datasets with complex terrain distribu-
tion, the proposed method obtains more accurate classification
maps.
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TABLE VII
ABLATION ANALYSIS OF THE PROPOSED METHOD IN TERMS OF OA (%) AND KAPPA (%)

Fig. 5. Classification maps for the MUUFL dataset. (a) Pseudocolor image for HSI. (b) LiDAR-based DSM. (c) Ground truth map. (d) SVM (84.44%).
(e) EndNet (81.13%). (f) CNNMRF (81.82%). (g) TBCNN (83.18%). (h) Coupled-CNN (81.88%). (i) FGCN (87.62%). (j) Proposed method (89.72%).

Fig. 6. Classification maps for the Houston dataset. (a) Pseudocolor image for HSI. (b) LiDAR-based DSM. (c) Ground truth map. (d) SVM (92.75%). (e) EndNet
(90.69%). (f) CNNMRF (91.79%). (g) TBCNN (94.43%). (h) Coupled-CNN (95.55%). (i) FGCN(97.06%). (j) Proposed method (98.01%).
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Fig. 7. Classification maps for the Trento dataset. (a) Pseudocolor image for HSI. (b) LiDAR-based DSM. (c) Ground truth map. (d) SVM (84.64%). (e) EndNet
(91.65%). (f) CNNMRF (96.54%). (g) TBCNN (98.12%). (h) Coupled-CNN (98.11%). (i) FGCN (98.31%). (j) Proposed method (99.24%).

Fig. 8. Classification performance for varying number of training samples for
the MUUFL dataset.

Fig. 9. Classification performance for varying number of training samples for
the Trento dataset.

Figs. 8 and 9 depict the classification performance of the
various algorithms as the training ratio varies. It can be seen that
classification performance for all methods under comparison
degrades with the decreasing number of training samples, which
is as expected. However, compared to the other techniques,
the proposed approach always achieves higher classification

accuracy even with an exceedingly small training ratio (e.g.,
1%).

E. Ablation Analysis

We conduct a battery of ablation experiments to verify various
factors of the proposed method design. Specifically, we look at
the impact of using the SpeF, the MSSpaF, and the MDSpaF
modules. As discussed in Section III-D, the SpeF module em-
ploys a spectral channel attention mechanism to assign weights
for extracting SpeFs as complementary information. MSSpaF
module extracts MSSpaFs and fuses them through a residual
connection while MDSpaF module extracts multidirection and
multifrequency information and through cross-layer connection
and multiscale feature fusion strategy. We design six additional
networks, as given in Table VII, to gauge the effects of these
three modules within the proposed approach. The OA and Kappa
are shown for the three mentioned datasets. As can be seen from
the results in this table, the classification results for the three
datasets are worst only considering SpeFs. This is because the
SpeF module is designed to complement the multiscale feature
module and multidirectional feature module. Using this module
alone cannot fully reflect the network design, but it is expected
to enhance the effect of combining SpeFs with spatial features.
When MSSpaF or MDSpaF module is used, the classification
performance will improve, because these two modules are based
on MSSpaF extraction, which can expand convolutional recep-
tive fields and extract much more fine-grained features. When
the SpeF module is combined with the MSSpaF or MDSpaF
module, the classification performance will also be improved
to some extent. Without considering SpeFs, the joint use of
MSSpaF and MDSpaF modules for spatial feature extraction can
yield satisfactory classification results. Furthermore, the com-
bined application of the proposed three modules can improve
classification performance.

V. CONCLUSION

In this article, a multiscale and multidirection feature extrac-
tion network is proposed for HSI and LiDAR data classification.
First, the MSSpaF module is designed to extract multiscale spa-
tial information of HSI and LiDAR data, expanding the receptive
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fields of convolution in a more fine-grained manner than that
of other architectures in the literature. In addition, multiscale
and multidirection features are extracted using the proposed
MDSpaF module, and then, the receptive fields of fractional
Gabor convolution are enlarged through hierarchical jumping
connections. The SpeF module extracts SpeFs of HSI data
as complementary information following assigning spatial and
spectral information weights, and finally, multisource feature
maps are fused and fed into a classifier. Ablation experiments
proved the ability and effectiveness of the proposed network to
extract multiscale and multidirection features from HSI and Li-
DAR datasets while a battery of experimental results compared
to other state-of-the-art networks demonstrated that the proposed
network achieves outstanding classification performance even
with limited training data.
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